QCD Critical Point : Synergy of Lattice & Experiments

Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction

Lattice QCD Results

Searching Experimentally

Summary

- ♠ Many models & Approaches for QCD Phase Diagram
- \spadesuit QCD Critical Point in T- μ_B plane.

- ♠ Many models & Approaches for QCD Phase Diagram
- \spadesuit QCD Critical Point in T- μ_B plane.

From Rajagopal-Wilczek Review

- ♠ Many models & Approaches for QCD Phase Diagram
- \spadesuit QCD Critical Point in T- μ_B plane.

From Rajagopal-Wilczek Review

- Search for its location using ab initio methods
- Search for it in the experiments RHIC, FAIR,...

- ♠ Many models & Approaches for QCD Phase Diagram
- \spadesuit QCD Critical Point in T- μ_B plane.

From Rajagopal-Wilczek Review

- Search for its location using ab initio methods
- Search for it in the experiments RHIC, FAIR,...
- What hints can Lattice QCD investigations provide?

The $\mu \neq 0$ problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f=2$ and anomaly to persist by T_c .

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f=2$ and anomaly to persist by T_c .
- Domain Wall or Overlap Fermions better, although computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007).

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f=2$ and anomaly to persist by T_c .
- Domain Wall or Overlap Fermions better, although computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007).
- Unfortunately BW-prescription breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008; PoS (Lattice 2008); PRD 2009) Furthermore, anomaly for it depends on μ unlike in continuum QCD (Gavai & Sharma PRD 2010).
- Desperately needed : Formalism with Continuum-like (flavour & spin) symmetries for quarks at nonzero μ and T.

The $\mu \neq 0$ problem : The Measure

det M is a complex number for any $\mu \neq 0$: The Phase/sign problem Lattice Approaches in the past decade —

The $\mu \neq 0$ problem : The Measure

det M is a complex number for any $\mu \neq 0$: The Phase/sign problem Lattice Approaches in the past decade —

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, PoS LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

Lattice QCD Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_\pi=230~{
 m MeV}$ (Gavai-Gupta, PRD 2005, 2009).

Lattice QCD Results

- ullet Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_\pi=230~{
 m MeV}$ (Gavai-Gupta, PRD 2005, 2009).

Window of positivity just below T_c

Preliminary Results with μN -idea

 \spadesuit Using our proposed μN term $_{\rm (Gavai-Sharma\ PRD\ 2010)}$ to evaluate the baryon susceptibility at $\mu=$ 0,

Preliminary Results with μN -idea

 \spadesuit Using our proposed μN term $_{\rm (Gavai-Sharma\ PRD\ 2010)}$ to evaluate the baryon susceptibility at $\mu=$ 0,

- ♥ ALL NLS Coefficients do have the same sign for the new method.
- ♠ The estimates for radius of convergence are comparable as well.

- $\frac{T^E}{T_c}=0.94\pm0.01$, and $\frac{\mu_B^E}{T^E}=1.8\pm0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E=1.3\pm0.3$. Infinite volume result: \downarrow to 1.1(1)
- Critical point at $\mu_B/T \sim 1-2$.

Cross Check on μ^E/T^E

 \spadesuit Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

Cross Check on μ^E/T^E

 \spadesuit Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

- Use Padé approximants for the series to estimate the radius of convergence.
- Consistent Window with our other estimates.

Lattice predictions along the freezeout curve

• Hadron yields well described using Thermodynamical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

Lattice predictions along the freezeout curve

• Hadron yields well described using Thermodynamical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

• Plotting these results in the T- μ_B plane, one has the freezeout curve, which was shown to correspond the $\langle E \rangle/\langle N \rangle \simeq 1$. (Cleymans and Redlich, PRL 1998)

(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

• Our Key Proposal : Use this freezeout curve to relate (T,μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define $m_1=\frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3=\frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2=m_1m_3$ (Gupta, arXiv : 0909.4630) and use the Padè method to construct them.

- Define $m_1=\frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3=\frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2=m_1m_3$ (Gupta, arXiv: 0909.4630) and use the Padè method to construct them.
- Near the critical point, $\chi_B \sim |\mu \mu_E|^{\delta}$. Thus the ratios, m_i , should diverge in the critical region as well.

- m_i are dimensionless, and are computed as functions of T/T_c . \Longrightarrow expect small lattice spacing corrections.
- Spatial Volume cancels out in these ratios

 Suitable for experiments who can use their favourite proxy for it.

- m_i are dimensionless, and are computed as functions of T/T_c . \Longrightarrow expect small lattice spacing corrections.
- Spatial Volume cancels out in these ratios

 Suitable for experiments who can use their favourite proxy for it.
- Defining $z = \mu_B/T$, and denoting by r_{ij} the estimate for radius of convergence using χ_i , χ_j , one has

$$m_1 = \frac{2z}{r_{24}^2} \left[1 + \left(\frac{2r_{24}^2}{r_{46}^2} - 1 \right) z^2 + \left(\frac{3r_{24}^2}{r_{46}^2 r_{68}^2} - \frac{3r_{24}^2}{r_{46}^2} + 1 \right) z^4 + \mathcal{O}(z^6) \right] .$$

• Similar series expressions for m_2 and m_3 . Resum these by Padè ansatz :

$$m_1 = zP_1^1(z^2; a, b), \qquad m_3 = \frac{1}{z}P_1^1(z^2; a', b')$$

.

- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.

- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting:
 Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which would be accessible to the low energy scan of RHIC BNL!

- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which would be accessible to the low energy scan of RHIC BNL!
- Proton number fluctuations (Hatta-Stephenov, PRL 2003): Diverging ξ at critical point is linked to σ mode which cannot mix with any isospin modes $\Rightarrow \chi_I$ to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B=1:0:4$
- Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.

Aggarwal et al., STAR Collaboration, arXiv: 1004.4959

Aggarwal et al., STAR Collaboration, arXiv: 1004.4959

Aggarwal et al., STAR Collaboration, arXiv: 1004.4959

Reasonable agreement with our lattice results. Where is the critical point?

Private communication from STAR Collaboration

Summary

• Phase diagram in $T-\mu$ has begun to emerge: Different methods, \leadsto similar qualitative picture. Critical Point at $\mu_B/T\sim 1-2$.

Summary

- Phase diagram in $T-\mu$ has begun to emerge: Different methods, \leadsto similar qualitative picture. Critical Point at $\mu_B/T\sim 1-2$.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.
- STAR results appear to agree with our Lattice QCD predictions.

Summary

- Phase diagram in $T-\mu$ has begun to emerge: Different methods, \leadsto similar qualitative picture. Critical Point at $\mu_B/T\sim 1-2$.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.
- STAR results appear to agree with our Lattice QCD predictions.

So far no signs of a critical point in the experimental results at CERN. Will RHIC energy scan deliver it for us? and/or Will it be FAIR?

The critical endpoint (II)

0.85

8.0

0.75

0

method for locating of the CEP:

- determine largest temperature where all coefficients are positive → T^{CEP}
- determine the radius of convergence at this temperature $\rightarrow \mu^{\text{CEP}}$

first non-trivial estimate of $T^{
m CEP}$ by c_8 second non-trivial estimate of $T^{
m CEP}$ by c_{10}

$$\rho_n(p) = \sqrt{c_n/c_{n+2}}$$

$$\rho = \lim_{n \to \infty} \rho_n$$

 $\rho_4(p)$

 $\rho_4(\chi_B)$

2

(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)

 μ_{B} / $T_{\text{c}}(0)$

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- \bullet E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

We study volume dependence at several T to i) bracket the critical region and then to ii) track its change as a function of volume.