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Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

(McLerran-

Pisarski 2007; Castorina-RVG-Satz 2010)

Constituent Q-Gas (PC-RVG-Satz)
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The Race is ON

• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;
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• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;

• Between the theorists and experimentalists : to establish/locate OR to disprove;

• And, of course, between the various ongoing (RHIC/STAR) and the
proposed/designed experiments (FAIR/CBM).
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• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;

• Between the theorists and experimentalists : to establish/locate OR to disprove;

• And, of course, between the various ongoing (RHIC/STAR) and the
proposed/designed experiments (FAIR/CBM).

♥ Maybe it is the synergy between one or more of them that will eventually lead
us to the holy grail.
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Lattice QCD Results

• Lattice QCD – Most Reliable and Completely parameter-free way to extract
non-perturbative physics relevant to Heavy Ion Colliders.

• The Transition Temperature Tc, the Equation of State (used now in ‘elliptic
flow’ analysis), and the Wróblewski Parameter λs etc. (Wuppertal-Budapest, HotQCD, GG ’02)
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Lattice QCD Results

• Lattice QCD – Most Reliable and Completely parameter-free way to extract
non-perturbative physics relevant to Heavy Ion Colliders.

• The Transition Temperature Tc, the Equation of State (used now in ‘elliptic
flow’ analysis), and the Wróblewski Parameter λs etc. (Wuppertal-Budapest, HotQCD, GG ’02)

• Flavour Correlations (CBS) and Charm Diffusion Coefficient D are some more
such examples for RHIC Physics. (Gavai-Gupta, PRD 2006 & Banerjee et al. PRD 2012)
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The µ 6= 0 problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice.
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The µ 6= 0 problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice.

• Domain Wall or Overlap Fermions better. BUT Computationally expensive.

• Introduction of µ a la Bloch & Wettig (PRL 2006 & PRD2007)

• Unfortunately breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008;
PoS (Lattice 2008); PRD 2009 )

• Good News : Problem Solved !
Overlap Lattice Action with exact chiral invariance at nonzero µ and any a now
exists (Gavai & Sharma , arXiv : 1111.5944; PLB in press, Narayanan-Sharma
JHEP ’11).
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• Using chiral projectors for overlap fermions as, ψL = [1− γ5(1− aDov)]ψ/2 &
ψR = [1 + γ5(1− aDov)]ψ/2, leaving the antiquark field decomposition as in
the continuum, the overlap action for nonzero µ is

SF =
∑
n

[ψ̄n,L(aDov + aµγ4)ψn,L + ψ̄n,R(aDov + aµγ4)ψn,R]

=
∑
n

ψ̄n[aDov + aµγ4(1− aDov/2)]ψn .
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ψR = [1 + γ5(1− aDov)]ψ/2, leaving the antiquark field decomposition as in
the continuum, the overlap action for nonzero µ is

SF =
∑
n

[ψ̄n,L(aDov + aµγ4)ψn,L + ψ̄n,R(aDov + aµγ4)ψn,R]

=
∑
n

ψ̄n[aDov + aµγ4(1− aDov/2)]ψn .

• Easy to check that under the chiral transformations, δψ = iαγ5(1− aDov)ψ
and δψ̄ = iαψ̄γ5, it is invariant or all values of aµ and a.

• Order parameter exists for all µ and T . It is

〈ψ̄ψ〉 = limam→0 limV→∞〈Tr (1−aDov/2)
[aDov+(am+aµγ4)(1−aDov/2)]

〉.
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The µ 6= 0 problem : The Measure
Simulations can be done IF Det M > 0. However, det M is a complex number for
any µ 6= 0 : The Phase/sign problem
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The µ 6= 0 problem : The Measure
Simulations can be done IF Det M > 0. However, det M is a complex number for
any µ 6= 0 : The Phase/sign problem

Several Approaches proposed in the past two decades :

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).

• Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

• Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• Better control of systematic errors.
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thermodynamic limit.
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• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.
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• Ease of taking continuum and
thermodynamic limit.

• Better control of systematic errors.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

T

µ

V2

V1

We studied volume dependence at several T to i) bracket the critical region and
then ii) tracked its change as a function of volume.
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Details of Expansion

Standard definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P

T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1

nu!

(µu
T

)nu 1

nd!

(µd
T

)nd
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives estimate of the location of nearest critical point.

• Successive estimates for the radius of convergence obtained from these using√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

T 2
or

(
n!

χ
(2)
B

χ
(n+2)
B

T 2

)1/n

. We use both and terms up to 8th order in

µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• We (Gavai-Gupta ’05, ’09) use up to 8th order. B-RBC so far has up to 6th order.

• 10th & even 12th order may be possible : Ideas to extend to higher orders are
emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.
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The Susceptibilities

All susceptibilities can be written as traces of products of M−1 and various
derivatives of M .

At leading order,

χ20 =

(
T

V

)
[〈O2 +O11〉], χ11 =

(
T

V

)
[〈O11〉]

Here O2 = Tr M−1M ′′−Tr M−1M ′M−1M ′, and O11 = (Tr M−1M ′)2, and the
traces are estimated by a stochastic method (Gottlieb et al., PRL ’87):

Tr A =
∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1),

where Ri is a complex vector from a set of Nv subdivided in L independent sets.
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Higher order NLS are more involved. E.g., at the 8th order, terms involve
operators up to O8 which in turn have terms up to 8 quark propagators and
combinations of M ′ and M ′′.

In fact, the entire evaluation of the χ80 needs 20 inversions of Dirac matrix.

This can be reduced to 8 inversions using an action linear in µ (Gavai-Sharma PRD 2012 &

PRD 2010), leading still to results in agreement with that exponential in µ.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 (MILC); Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 (MILC); Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).

• Even finer Lattice : 8 ×323 — This Talk (Datta-RVG-Gupta, ’12)
Aspect ratio, Ns/Nt, maintained four to reduce finite volume effects.

• Simulations made at T/Tc = 0.90, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.12, 1.5
and 2.01. Typical stat. 100-200 in max autocorrelation units.

• Tc — defined by the peak of Polyakov loop susceptibility.
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier coarser

lattice result was µEB/T
E = 1.3± 0.3. Infinite volume result: ↓ to 1.1(1)

• Critical point at µB/T ∼ 1− 2.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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♥ Consistent Window with our other estimates.
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Critical Point : Story thus far
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♠ Nf = 2 (magenta) and 2+1 (blue) (Fodor-Katz, JHEP ’04).

♥ Nt = 4 Circles (GG ’05 & Fodor-Katz JHEP ’02), Nt = 6 Box (GG ’09).
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χ2 for Nt = 8, 6, and 4 lattices
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♠ Nt = 8 (Datta-Gavai-Gupta, QM12) and 6 (GG, PRD ’09) results agree.

♥ βc(Nt = 8) agrees with Gottlieb et al. PR D47,1993.
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χnB for Nt = 8 lattice
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♠ 100 configurations & 1000 vectors at each point employed.

♥ More statistics coming in critical region. Window of positivity in anticipated
region.
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Radius of Convergence result
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♠ At our (TE, µE) for Nt = 6, the ratios display constancy for Nt = 8 as well.

♥ Currently : Similar results at neighbouring T/Tc =⇒ a larger ∆T at same µEB.
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Critical Point : Inching Towards Continuum
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout
curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler, Cleymans, Redlich &

Wheaton, 2009)
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout
curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler, Cleymans, Redlich &

Wheaton, 2009)
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• Our Key Proposal : Use the freezeout curve from hadron abundances to predict
fluctuations using lattice QCD along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
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• Use the freezeout curve to relate (T, µB)to
√
s and employ lattice QCD

predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
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• Use the freezeout curve to relate (T, µB)to
√
s and employ lattice QCD

predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define m1 = Tχ(3)(T,µB)

χ(2)(T,µB)
, m3 = Tχ(4)(T,µB)

χ(3)(T,µB)
, and m2 = m1m3 and use the Padè

method to construct them.
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Filled circles: negative values

♠ Gavai & Gupta, arXiv: 1001.3796.
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♠ Used Tc(µ = 0) = 170 MeV (Gavai & Gupta, arXiv: 1001.3796).
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♠ Marginal change if Tc = 175 MeV (Datta, Gavai & Gupta, QM ’12).
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Gavai-Gupta, ’10 & Datta-Gavai-Gupta, QM ’12
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• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.
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• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !
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s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

New Frontiers in Lattice Gauge Theory, Galileo Galilei Institute, Florence, Italy, August 31, 2012 R. V. Gavai Top 30



• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.
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Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

• Reasonable agreement with our lattice results. Where is the critical point ?
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Xiaofeng Luo, QM’12 Gavai-Gupta, ’10
From STAR Collaboration Datta-Gavai-Gupta, QM ’12
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.

• Critical Point leads to structures in mi

on the Freeze-Out Curve.

• STAR results appear to agree with our

Lattice QCD predictions.
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