Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma* T. I. F. R., Mumbai

* arXiv : 0803.3925, to appear in Phys. Rev. D, & in preparation.

Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma^{*} T. I. F. R., Mumbai

Introduction

GW relation and $\mu \neq 0$

Our Results

Summary

* arXiv : 0803.3925, to appear in Phys. Rev. D, & in preparation.

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008

A fundamental aspect of QCD – Critical Point in T- μ_B plane;

A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \clubsuit A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram ... but could, however, be ...

Pisarski 2007

A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram ... but could, however, be ... McLerran-

GW relation and $\mu \neq 0$

• Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.

GW relation and $\mu \neq 0$

• Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.

• In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi = \alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi} = \alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S = \sum \bar{\psi}D\psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D\gamma_5 - \frac{a}{2} D\gamma_5 D - \frac{a}{2} D\gamma_5 D \right]_{xy} \psi_y = 0 \tag{1}$$

GW relation and $\mu \neq 0$

• Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.

• In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi = \alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi} = \alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S = \sum \bar{\psi}D\psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D\gamma_5 - \frac{a}{2} D\gamma_5 D - \frac{a}{2} D\gamma_5 D \right]_{xy} \psi_y = 0 \tag{1}$$

Overlap fermions, and Domain Wall fermions in the limit of large fifth dimension satisfy this relation.

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (2)$$

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (2)$$

where D_{dw} is defined in terms of D_w as

$$D_{dw}(x,s;x',s') = [a_5D_w + 1]\delta_{s,s'} - [P_-\delta_{s,s'-1} + P_+\delta_{s,s+1'}], \qquad (3)$$

with boundary conditions $P_+\psi(x,0) = -am \ P_+\psi(x,N_5)$ and $P_-\psi(x,N_5+1) = -am \ P_-\psi(x,1).$

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (2)$$

where D_{dw} is defined in terms of D_w as

$$D_{dw}(x,s;x',s') = [a_5D_w + 1]\delta_{s,s'} - [P_-\delta_{s,s'-1} + P_+\delta_{s,s+1'}], \qquad (3)$$

with boundary conditions $P_+\psi(x,0) = -am \ P_+\psi(x,N_5)$ and $P_-\psi(x,N_5+1) = -am \ P_-\psi(x,1).$

• Only light modes attached to the wall(s) are physical. Divide out heavy modes by having the $D_{dw}(am)/D_{dw}(am = 1)$ as the effective Domain Wall operator in \mathcal{Z} .

 \heartsuit As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

$$\left[(1+am) - (1-am)\gamma_5 \tanh(\frac{N_5}{2}\ln|T|) \right],$$
 (4)

with $T = (1 + a_5 \gamma_5 D_w P_+)^{-1} (1 - a_5 \gamma_5 D_w P_-).$

 \heartsuit As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

$$\left[(1+am) - (1-am)\gamma_5 \tanh(\frac{N_5}{2}\ln|T|) \right] , \qquad (4)$$

with $T = (1 + a_5 \gamma_5 D_w P_+)^{-1} (1 - a_5 \gamma_5 D_w P_-).$

 \heartsuit Taking the limit $N_5 \rightarrow \infty$ for $a_5 = 1$, one obtains sign function of log |T|, proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.

 \heartsuit Taking the limit $a_5 \to 0$ such that $L_5 = a_5 N_5 = \text{constant}$, one can show $N_5 \ln T \to L_5 \gamma_5 D_{dw}$. Further, for $L_5 \to \infty$, DWF reduce to the overlap fermions.

 \heartsuit We use this form in our numerical work.

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
- Note γ₅D_w(aµ) is no longer Hermitian, requiring an extension of the sign function. B & W proposal : For complex λ = (x + iy), sign(λ) = sign (x).

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
- Note γ₅D_w(aµ) is no longer Hermitian, requiring an extension of the sign function. B & W proposal : For complex λ = (x + iy), sign(λ) = sign (x).
- Gattringer-Liptak, PRD 2007, showed for M = 1 numerically that no μ^2 divergences exist for the free case (U =1).

• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that K(aμ) · L(aμ) = 1 for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \Big[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2}D(0)\gamma_5 D(a\mu) - \frac{a}{2}D(a\mu)\gamma_5 D(0) \Big]_{xy} \psi_y ,$$
(5)

under Lüscher's chiral transformations.

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that K(aμ) · L(aμ) = 1 for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \Big[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2}D(0)\gamma_5 D(a\mu) - \frac{a}{2}D(a\mu)\gamma_5 D(0) \Big]_{xy} \psi_y ,$$
(5)

under Lüscher's chiral transformations.

• However, the sign function definition above merely ensures

$$\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a \ D(a\mu)\gamma_5 D(a\mu) = 0$$
, (6)

which is not sufficient to make $\delta S = 0$.

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that K(aμ) · L(aμ) = 1 for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \Big[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2}D(0)\gamma_5 D(a\mu) - \frac{a}{2}D(a\mu)\gamma_5 D(0) \Big]_{xy} \psi_y ,$$
(5)

under Lüscher's chiral transformations.

• However, the sign function definition above merely ensures

$$\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a \ D(a\mu)\gamma_5 D(a\mu) = 0 , \qquad (6)$$

which is not sufficient to make $\delta S = 0$. True for both Overlap and Domain Wall fermions and any K,L.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
- Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
- Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.
- Dirac operator is diagonal in momentum space. Use its eigenvalues to compute \mathcal{Z} : $\lambda_{\pm} = 1 - [sgn\left(\sqrt{h^2 + h_5^2}\right)h_5 \pm i\sqrt{h^2}]/\sqrt{h^2 + h_5^2}$, with $h_i = -\sin ap_i$, i =1, 2 and 3, $h_4 = -a \sin(a_4p_4)/a_4$ and $h_5 = M - \sum_{i=1}^3 [1 - \cos(ap_i)] - a[1 - \cos(a_4p_4)]/a_4$.

• Easy to show that $\epsilon = 3P$ for all a and a_4 .

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .
- Hiding p_i -dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^{4} = \frac{2}{N^{3}N_{T}} \sum_{p_{i},n} F(\omega_{n}) = \frac{2}{N^{3}N_{T}} \sum_{p_{i},n} \left[(g + \cos \omega_{n}) + \sqrt{d + 2g \cos \omega_{n}} \right] \\ \times \left[\frac{(1 - \cos \omega_{n})}{d + 2g \cos \omega_{n}} + \frac{\sin^{2} \omega_{n} (g + \cos \omega_{n})}{(d + 2g \cos \omega_{n})(f + \sin^{2} \omega_{n})} \right] (7)$$

where ω_n are the Matsubara frequencies.

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .
- Hiding p_i -dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^{4} = \frac{2}{N^{3}N_{T}} \sum_{p_{i},n} F(\omega_{n}) = \frac{2}{N^{3}N_{T}} \sum_{p_{i},n} \left[(g + \cos \omega_{n}) + \sqrt{d + 2g \cos \omega_{n}} \right] \\ \times \left[\frac{(1 - \cos \omega_{n})}{d + 2g \cos \omega_{n}} + \frac{\sin^{2} \omega_{n} (g + \cos \omega_{n})}{(d + 2g \cos \omega_{n})(f + \sin^{2} \omega_{n})} \right] (7)$$

where ω_n are the Matsubara frequencies.

• Can be evaluated using the standard contour technique or numerically.

• Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2q}$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.
- Evaluating integrals, $\epsilon a^4 = 4N^{-3}\sum_{p_j} \left[\sqrt{f/1+f}\right]$ $\left[\exp(N_T \sinh^{-1}\sqrt{f}) + 1\right]^{-1}$ $+\epsilon_3 + \epsilon_4$, where $f = \sum_i \sin^2(ap_i)$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.
- Evaluating integrals, $\epsilon a^4 = 4N^{-3}\sum_{p_j} \left[\sqrt{f/1+f}\right]$ $\left[\exp(N_T \sinh^{-1}\sqrt{f}) + 1\right]^{-1}$ $+\epsilon_3 + \epsilon_4$, where $f = \sum_i \sin^2(ap_i)$.
- Can be seen to go to ϵ_{SB} as $a \rightarrow 0$ for all M.

More Details : T = 0, $\mu \neq 0$

• Defining $K(\mu) + L(\mu) = 2R \cosh \theta$ and $K(\mu) - L(\mu) = 2R \sinh \theta$, the same treatment as above goes through by substituting $\sin \omega_n \to R \sin(\omega_n - i\theta)$ and $\cos \omega_n \to R \cos(\omega_n - i\theta)$.

More Details : T = 0, $\mu \neq 0$

- Defining $K(\mu) + L(\mu) = 2R \cosh \theta$ and $K(\mu) L(\mu) = 2R \sinh \theta$, the same treatment as above goes through by substituting $\sin \omega_n \to R \sin(\omega_n i\theta)$ and $\cos \omega_n \to R \cos(\omega_n i\theta)$.
- Energy density is also functionally the same with $F(1, \omega_n) \rightarrow F(R, \omega_n i\theta)$.
- Additional observable, number density : Has the same pole structure so similar computation.

• Doing the contour integral, the energy density turns out to be : $\begin{aligned} \epsilon a^4 &= (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R,\omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) \right. \\ &+ \int_{-\pi}^{\pi} F(R,\omega) d\omega - \int_{-\pi}^{\pi} F(1,\omega) d\omega \right]. \end{aligned}$

- Doing the contour integral, the energy density turns out to be : $\begin{aligned} \epsilon a^4 &= (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R,\omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) \right. \\ &+ \int_{-\pi}^{\pi} F(R,\omega) d\omega - \int_{-\pi}^{\pi} F(1,\omega) d\omega \right]. \end{aligned}$
- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .

- Doing the contour integral, the energy density turns out to be : $\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R,\omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) + \int_{-\pi}^{\pi} F(R,\omega) d\omega - \int_{-\pi}^{\pi} F(1,\omega) d\omega \right].$
- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .
- K and L should be such that $K(a\mu) L(a\mu) = 2a \ \mu + \mathcal{O}(a^3)$ with K(0) = 1 = L(0).

- Doing the contour integral, the energy density turns out to be : $\begin{aligned} \epsilon a^4 &= (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R,\omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) \right. \\ &+ \int_{-\pi}^{\pi} F(R,\omega) d\omega - \int_{-\pi}^{\pi} F(1,\omega) d\omega \right]. \end{aligned}$
- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .
- K and L should be such that $K(a\mu) L(a\mu) = 2a \ \mu + \mathcal{O}(a^3)$ with K(0) = 1 = L(0).
- Generalization to $T \neq 0$ and $\mu \neq 0$ case straightforward. One merely needs two different contours depending on pole locations and value of θ .

& Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

& Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

& Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

• Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

& Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

• Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

 \heartsuit Results for M = 1 agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

 \heartsuit Results for M = 1 agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

 $\heartsuit 1.50 \le M \le 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12$.

Rajiv V. Gavai and Sayantan Sharma, in preparation.

Rajiv V. Gavai and Sayantan Sharma, in preparation.

$\Diamond L_5 \ge 14$ seems to be large enough to get L_5 -independent results.

Rajiv V. Gavai and Sayantan Sharma, in preparation.

 $\Diamond L_5 \ge 14$ seems to be large enough to get L_5 -independent results.

 \diamondsuit Optimal range again seems to be $1.50 \leq M \leq 1.60.$

Domain Wall Fermions $(a_5 = 1)$

Rajiv V. Gavai and Sayantan Sharma, in preparation.

Domain Wall Fermions $(a_5 = 1)$

Rajiv V. Gavai and Sayantan Sharma, in preparation.

 $\Diamond \zeta \ge 4$ seems to be large enough to get thermodynamic limit. \Diamond Optimal range now seems to be $1.40 \le M \le 1.50$; M = 1.9 used by Chen et al. (PRD 2001) in their study of order parameters of FTQCD.

 \diamondsuit Two Observables : $\Delta\epsilon(\mu,T)=\epsilon(\mu,T)-\epsilon(0,T)$ and Susceptibility, $\sim\partial^2\ln\mathcal{Z}/\partial\mu^2.$

 \diamondsuit Two Observables : $\Delta\epsilon(\mu,T)=\epsilon(\mu,T)-\epsilon(0,T)$ and Susceptibility, $\sim\partial^2\ln\mathcal{Z}/\partial\mu^2.$

 \diamondsuit For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

 \diamondsuit Two Observables : $\Delta\epsilon(\mu,T)=\epsilon(\mu,T)-\epsilon(0,T)$ and Susceptibility, $\sim\partial^2\ln\mathcal{Z}/\partial\mu^2.$

 \diamond For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

 \diamondsuit Former computed for two $r=\mu/T=0.5$ and 0.8 while latter for $\mu=0$

 \diamond Two Observables : $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z} / \partial \mu^2$.

 \diamondsuit For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

 \diamondsuit Former computed for two $r=\mu/T=0.5$ and 0.8 while latter for $\mu=0$

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008

 \heartsuit Susceptibility too behaves the same way as the energy density.

 \heartsuit Susceptibility too behaves the same way as the energy density.

 \heartsuit Again $1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12.$

Domain Wall Fermions $(a_5 = 1)$

\heartsuit Again Susceptibility behaves the same way as the energy density.

Domain Wall Fermions $(a_5 = 1)$

 \heartsuit Again Susceptibility behaves the same way as the energy density.

 \heartsuit Again $1.40 \le M \le 1.50$ seems optimal, with small deviations already $N_T = 12$.

Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ -T plane.
- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.

Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ -T plane.
- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.
- However, any μ^2 -divergence in the continuum limit is avoided for it and an associated general class of functions $K(\mu)$ and $L(\mu)$ with $K(\mu) \cdot L(\mu) = 1$.
- For the choice of $1.5 \le M \le 1.6$ $(1.4 \le M \le 1.5)$, both the energy density and the quark number susceptibility at $\mu = 0$ exhibited the smallest deviations from the ideal gas limit for $N_T \ge 12$ for Overlap (Domain Wall) Fermions.

Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.
- μ -dependent mass for even massless quarks.

Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.
- μ -dependent mass for even massless quarks.
- Only smooth chiral condensates : No (clear) chiral transition for any (large) μ possible. How small a, or large N_T may suffice ?
- All coefficients of a Taylor expansion in μ do have the chiral invariance but the series will be smooth and should always converge.

 \blacklozenge the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar\psi=\alpha\bar\psi(1-\frac{a}{2}D(a\mu))\gamma_5$?

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

• Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H, N_i] = 0$. At least the symmetry should not change as μ does.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

- Symmetry transformations should not depend on "external" parameter μ. Chemical potential is introduced for charges N_i with [H, N_i] = 0. At least the symmetry should not change as μ does.
- Moreover, symmetry groups *different* at each μ . Recall we wish to investigate $\langle \bar{\psi}\psi \rangle(a\mu)$ to explore if chiral symmetry is restored.
- The symmetry group remains same at each T with $\mu = 0$ $\implies \langle \bar{\psi}\psi \rangle (am = 0, T)$ is an order parameter for the chiral transition.