Anomaly at Finite Density & Chiral Fermions on Lattice

Rajiv V. Gavai & Sayantan Sharma* T. I. F. R., Mumbai

^{*} arXiv: 0906.5188, submitted to Phys. Rev. D.

Anomaly at Finite Density & Chiral Fermions on Lattice

Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Introduction

Anomaly for $\mu \neq 0$: Continuum

Two simple ideas for Lattice

Summary

^{*} arXiv: 0906.5188, submitted to Phys. Rev. D.

Introduction

- The Nielsen-Ninomiya Theorem (1981): For each set of quantum numbers, there are an equal number of *left*-handed and *right*-handed particles in the lattice fermion propagator.
- No Chiral Anomaly on the lattice for the naive fermions.

Introduction

- The Nielsen-Ninomiya Theorem (1981): For each set of quantum numbers, there are an equal number of *left*-handed and *right*-handed particles in the lattice fermion propagator.
- No Chiral Anomaly on the lattice for the naive fermions.
- Canonical local fermion formulations (Wilson, Kogut-Susskind, Twisted mass, Creutz-Boriçi..) break the flavour singlet axial U(1).
- Overlap fermions, which are nonlocal, do better. Have an index theorem as well. (Hasenfratz, Laliena & Niedermeyer, PLB 1998; Luscher PLB 1998.)

QCD Phase diagram

- \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.
- ♡ In particular, two light flavours of quark are crucial for it, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.

QCD Phase diagram

- \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.
- ♡ In particular, two light flavours of quark are crucial for it, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.
- ♠ The oft-used staggered fermions have (some) chiral symmetry but a not so well defined flavour number. Use of Overlap fermions seem desirable.
- \heartsuit Note that chemical potential, μ , has to be introduced without violating the symmetries in order to investigate the entire T- μ_B plane.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).

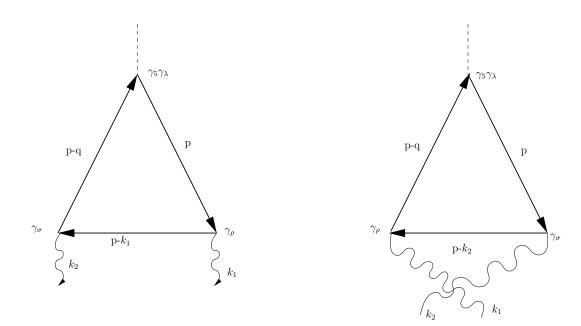
Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes this difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal: Use the same prescription as above.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes this difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal: Use the same prescription as above.
- We (Banerjee, Gavai, Sharma, PRD 2008; PoS Lattice 2008) showed that the resultant overlap fermion action has no chiral invariance for nonzero μ .

Anomaly for $\mu \neq 0$: Continuum results



• Perturbatively we need to compute $\langle \partial_{\mu} j_{\mu}^5 \rangle$, i.e., the triangle diagrams for $\mu \neq 0$.

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$q_{\lambda} \Delta^{\lambda \rho \sigma} = -i g^{2} \operatorname{tr}[T^{a} T^{b}] \int \frac{d^{4} p}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma^{5} \frac{1}{\not p - \not q - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} \right.$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{\not p - q - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma}$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma} \right] .$$

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$q_{\lambda}\Delta^{\lambda\rho\sigma} = -i g^{2} \operatorname{tr}[T^{a}T^{b}] \int \frac{d^{4}p}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma^{5} \frac{1}{\not p - \not q - i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i\mu\gamma^{4}} \gamma^{\rho} \right.$$

$$- \gamma^{5} \frac{1}{\not p - i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i\mu\gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{\not p - q - i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i\mu\gamma^{4}} \gamma^{\sigma}$$

$$- \gamma^{5} \frac{1}{\not p - i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i\mu\gamma^{4}} \gamma^{\sigma} \right] .$$

 Quadratic Divergent integrals; need cut-off which should be gauge invariant since

$$k_{1\rho}\Delta^{\lambda\rho\sigma}(k_1,k_2) = k_{2\sigma}\Delta^{\lambda\rho\sigma}(k_1,k_2) = 0.$$

• Can be done as for $\mu = 0$ by writing $q_{\lambda} \Delta^{\lambda \rho \sigma} = (-i) \operatorname{tr} [T^a T^b] g^2 \int \frac{d^4 p}{(2\pi)^4} [f(p-k_1,k_2) - f(p,k_2) + f(p-k_2,k_1) - f(p,k_1)].$

- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \to ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $\left[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho\right]\sim\epsilon^{4\sigma4\rho}$, they vanish.

- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \to ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $\left[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho\right]\sim\epsilon^{4\sigma4\rho}$, they vanish.
- ullet The final result is $\propto f$ due to the structure above.
- Scaling the integration variable by the cut-off Λ , the μ -dependent terms appear with Λ^{-1} , leading to μ independence as $\Lambda \to \infty$: The same anomaly relation as for $\mu = 0$.
- In agreement with earlier calculations in real time (Qian, Su & Yu ZPC 1994; Gupta-Nayak 1997) or Minkowski space-time (Hsu, Sannino & Schwetz MPLA 2001).

Anomaly for $\mu \neq 0$: Fujikawa method

Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (1)

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| = \exp(-2i\alpha\int d^4x \operatorname{Tr}\gamma_5) . \tag{2}$$

Anomaly for $\mu \neq 0$: Fujikawa method

Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (1)

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| = \exp(-2i\alpha\int d^4x \operatorname{Tr}\gamma_5) . \tag{2}$$

- Evaluate the trace using the eigenvectors of the operator \mathcal{D} for $\mu = 0$.
- Since $\{\gamma_5, \not D\} = 0$, for each finite λ_n , $\phi_n^{\pm} = \phi_n \pm \gamma_5 \phi_n$, eigenvectors of γ_5 with ± 1 eigenvalues, can be used, leading to zero.

• Zero eigenmodes of ${\cal D}$ have definite chirality, leading to Tr $\gamma_5=n_+-n_-.$

- Zero eigenmodes of \mathcal{D} have definite chirality, leading to Tr $\gamma_5 = n_+ n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.

- Zero eigenmodes of ${\cal D}$ have definite chirality, leading to Tr $\gamma_5=n_+-n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.
- ullet Define two new vectors, ζ_m and υ_m

$$\zeta_m(\mathbf{x},\tau) = e^{\mu\tau} \phi_m(\mathbf{x},\tau) , \quad \psi_m^{\dagger}(\mathbf{x},\tau) = \phi_m^{\dagger}(\mathbf{x},\tau) e^{-\mu\tau} .$$
 (3)

• Easy to show that ζ_m (υ_m^{\dagger}) is the eigenvector of $\mathcal{D}(\mu)$ ($\mathcal{D}(\mu)^{\dagger}$) with the same (purely imaginary) eigenvalue λ_m (- λ_m).

- Further, one can show $\sum_{m} \int \zeta_{m}(\mathbf{x}, \tau) \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \ d^{4}x = \mathbf{I}$ and $\int \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \zeta_{m}(\mathbf{x}, \tau) \ d^{4}x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.

- Further, one can show $\sum_{m} \int \zeta_{m}(\mathbf{x}, \tau) \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \ d^{4}x = \mathbf{I}$ and $\int \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \zeta_{m}(\mathbf{x}, \tau) \ d^{4}x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.
- If chiral transformation on lattice is chosen to depend on μ , so that Bloch-Wettig proposal has chiral invariance for $\mu \neq 0$, then the resulting index theorem has μ -dependent zero modes which determine the anomaly, unlike in the continuum.
- It is undesirable for other reasons we pointed out in Lattice 2008.

A "Gauge-like" Symmetry

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x},\tau) = \mathrm{e}^{\mu\tau}\psi(\mathbf{x},\tau)$, $\bar{\psi}'(\mathbf{x},\tau) = \bar{\psi}(\mathbf{x},\tau)\mathrm{e}^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S_F'(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.

A "Gauge-like" Symmetry

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x},\tau) = \mathrm{e}^{\mu\tau}\psi(\mathbf{x},\tau)$, $\bar{\psi}'(\mathbf{x},\tau) = \bar{\psi}(\mathbf{x},\tau)\mathrm{e}^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S_F'(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.
- Easy to see that it works for any local fermion action, including for the lattice action, with $\mu\tau$ generalized $f(\mu a_4)*n_4$.
- Generalization for non-local cases, Overlap fermions? not possible?

Two simple ideas for Lattice

 Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4)U_4(y)\delta_{x,y-\hat{4}} + (\gamma_4 + 1)U_4^{\dagger}(x)\delta_{x,y+\hat{4}} \right] . \tag{4}$$

Two simple ideas for Lattice

 Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4)U_4(y)\delta_{x,y-\hat{4}} + (\gamma_4 + 1)U_4^{\dagger}(x)\delta_{x,y+\hat{4}} \right] . \tag{4}$$

- As the Bloch-Wettig proposal, this too breaks chiral invariance but D_{ov} is defined by the usual sign-function. But clearly Simpler!
- Expect a^{-2} -divergences as $a \to 0$. Follow the same prescription used for the Pressure computation (which diverges at zero temperature as Λ^4). Use Large N_{τ} and the same lattice spacing a for subtraction.

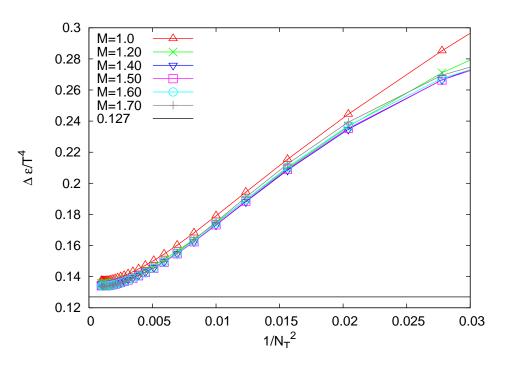
• Consider two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) - \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.

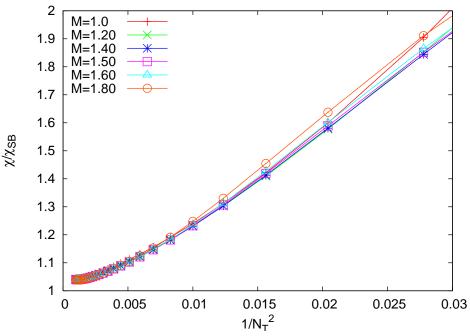
• Consider two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) - \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.

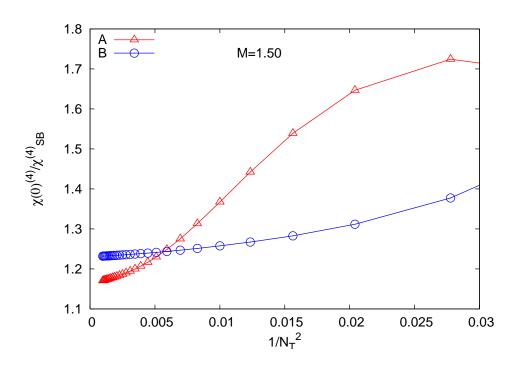
• Former computed for $r=\mu/T=0.5$ while latter for $\mu=0.$

• Consider two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) - \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.

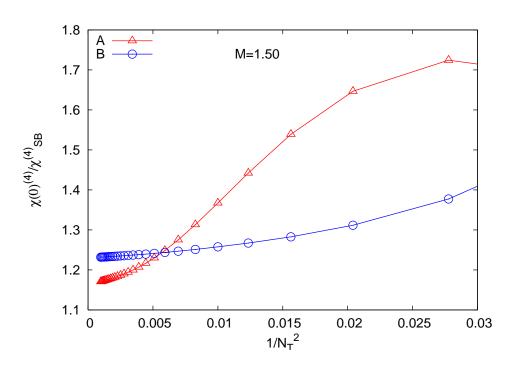
• Former computed for $r = \mu/T = 0.5$ while latter for $\mu = 0$.







4th Order Susceptibility : A) $\,\hat{\mu}/s$ and B) $\hat{\mu}/M$



4th Order Susceptibility : A) $\hat{\mu}/s$ and B) $\hat{\mu}/M$

- ullet Divergences can be eliminated; M-dependence milder.
- Slow convergence to the expected continuum value; Can be improved by using higher-link derivatives, or even variations of the coefficients of the $\hat{\mu}$ -term.

Extending to Local Fermions

• Propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y) = \sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

Extending to Local Fermions

• Propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y) = \sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

• This leads to $M'=\sum_{x,y}N(x,y)$, and M''=M'''=M''''...=0, in contrast to the popular $\exp(\pm a\mu)$ -prescription where all derivatives are nonzero: $M'=M'''...=\sum_{x,y}N(x,y)$ and $M''=M''''=M'''''...\neq 0$.

Extending to Local Fermions

• Propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y) = \sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

- This leads to $M'=\sum_{x,y}N(x,y)$, and M''=M'''=M''''...=0, in contrast to the popular $\exp(\pm a\mu)$ -prescription where all derivatives are nonzero: $M'=M'''...=\sum_{x,y}N(x,y)$ and $M''=M''''=M'''''...\neq 0$.
- Lot fewer terms in the Taylor coefficients, especially as the order increases. E.g., in the 4th (8th) order susceptibility, the \mathcal{O}_4 (\mathcal{O}_8) has one (one) term in contrast to 5 (18) in the usual case.
- Number of M^{-1} computations needed are lesser.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu=0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu=0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.
- Overlap fermions at finite density could be studied by simply adding the μ -term linearly. The chiral symmetry breaking is similar but the inverse propagator simpler.
- Extending to staggered fermions, it may be less costly to implement this idea and may permit extensions to higher orders.

 \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$?

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.
- Moreover, symmetry groups different at each μ . Recall we wish to investigate $\langle \bar{\psi}\psi \rangle(a\mu)$ to explore if chiral symmetry is restored.
- The symmetry group remains same at each T with $\mu=0$ $\Longrightarrow \langle \bar{\psi}\psi \rangle (am=0,T)$ is an order parameter for the chiral transition.