
Happy Birthday, Guys!

Dear Jean-Paul, and Dear Larry,

May You Live a Hundred Autumns !
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One more step towards the QCD Critical Point

Rajiv V. Gavai
T. I. F. R., Mumbai, India
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Introduction : QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane;
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Introduction : QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007
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Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract
non-perturbative physics.
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non-perturbative physics.

• The Transition Temperature Tc, the Equation of State, Flavour Correlations
(CBS) and the Wróblewski Parameter λs are some examples for Heavy Ion
Physics.

• Mostly staggered quarks used in these simulations.
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Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract
non-perturbative physics.

• The Transition Temperature Tc, the Equation of State, Flavour Correlations
(CBS) and the Wróblewski Parameter λs are some examples for Heavy Ion
Physics.

• Mostly staggered quarks used in these simulations.

– exact chiral symmetry for all lattice spacings.
– Broken flavour and spin symmetry on lattice
– Nf = 4 or multiples straightforward but need “rooting trick” for other Nf

=⇒ Nf = 2 simulations may be fine in a→ 0 limit but 3 or 2 +1 maybe
problematic (Creutz, arXiv:0901.0150[hep-ph]).
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• Domain Wall or Overlap Fermions better, in principle.

– exact chiral symmetry for all lattice spacings
(χSBreaking ∝ exp(−L5a5) for Domain Wall),

– Flavour and spin symmetry preserved on lattice,
– BUT Computationally expensive – very few full theory simulations –, and
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• Domain Wall or Overlap Fermions better, in principle.

– exact chiral symmetry for all lattice spacings
(χSBreaking ∝ exp(−L5a5) for Domain Wall),

– Flavour and spin symmetry preserved on lattice,
– BUT Computationally expensive – very few full theory simulations –, and
– µ 6= 0 unfortunately breaks chiral symmetry for both Overlap and Domain

Wall Fermions !
(Banerjee, Gavai & Sharma PRD 2008; PoS (Lat2008) & Gavai-Sharma PRD 2009)

– No order parameter to explore the T − µ phase diagram.
– Thorny technical issues : Non-Hermiticity, Valid for a limited range of µa,
. . .
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• Domain Wall or Overlap Fermions better, in principle.

– exact chiral symmetry for all lattice spacings
(χSBreaking ∝ exp(−L5a5) for Domain Wall),

– Flavour and spin symmetry preserved on lattice,
– BUT Computationally expensive – very few full theory simulations –, and
– µ 6= 0 unfortunately breaks chiral symmetry for both Overlap and Domain

Wall Fermions !
(Banerjee, Gavai & Sharma PRD 2008; PoS (Lat2008) & Gavai-Sharma PRD 2009)

– No order parameter to explore the T − µ phase diagram.
– Thorny technical issues : Non-Hermiticity, Valid for a limited range of µa,
. . .

• Staggered Fermions, howsoever problem-ridden they may be, appear to be our
best bet so far.

• Graphene-inspired fermions (Creutz JHEP 2008, Boriçi PRD 2008) could be better ?
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The Phase Problem for µ 6= 0

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .
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and the thermal expectation value of an observable O is
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R
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Q
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Z .

Simulations can be done IF Det M > 0 for any set of {U} as probabilisitc
methods are used to evaluate 〈O〉.
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The Phase Problem for µ 6= 0

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .

Simulations can be done IF Det M > 0 for any set of {U} as probabilisitc
methods are used to evaluate 〈O〉.

However, det M is a complex number for any µ 6= 0 : The Phase/sign problem.
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Lattice Approaches

Several Approaches proposed in the past : None as satisfactory as the usual T 6= 0
simulations. Still scope for a good/great idea !
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Lattice Approaches

Several Approaches proposed in the past : None as satisfactory as the usual T 6= 0
simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).
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Several Approaches proposed in the past : None as satisfactory as the usual T 6= 0
simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).

• Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

• Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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Why Taylor series expansion?

• Ease of taking continuum and thermodynamic limit, necesary for determining
the true critical point.

• E.g., exp[∆S] factor makes this exponentially tough for re-weighting.
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• Ease of taking continuum and thermodynamic limit, necesary for determining
the true critical point.

• E.g., exp[∆S] factor makes this exponentially tough for re-weighting.

• Discretization errors propagate in an unknown manner in re-weighting.

• Better control of systematic errors.

• ‘Rooting’ problem not aggravated (Golterman-Shamir-Svetitsky, PRD 2006)

• Can perhaps be extended to higher orders as well (RVG-Sharma, in prepration)
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Why Taylor series expansion?

• Ease of taking continuum and thermodynamic limit, necesary for determining
the true critical point.

• E.g., exp[∆S] factor makes this exponentially tough for re-weighting.

• Discretization errors propagate in an unknown manner in re-weighting.

• Better control of systematic errors.

• ‘Rooting’ problem not aggravated (Golterman-Shamir-Svetitsky, PRD 2006)

• Can perhaps be extended to higher orders as well (RVG-Sharma, in prepration)

Our Strategy : i) Study volume dependence at several T to bracket the critical
region and then to ii) track its change as a function of volume.
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Taylor Expansion

Canonical definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P
T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1
nu!

(µu
T

)nu 1
nd!

(µd
T

)nd
(1)
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Physical Review D36, 3291 (1987).
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Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :
(Blaizot, Iancu & Rebhan, PLB ’01 )

(Gavai-Gupta, PRD 2001 & Gavai-Gupta-Majumdar PRD 2002)

Our results (•) above were for Nt = 4  Lattice artifacts ?
Continuum limit from Larger Nt and improved actions agrees better.

(Gavai & Gupta PRD 2002 & PRD 2003)
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χud

Our Nt = 4 & 6 agree for χud ⇒ Small lattice artifact effects.
Measure of the seriousness of sign problem.
Blaizot-Iancu-Rebhan result : χud = − 10

9π3α
3
s ln(1/αs).
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Towards the Critical Point
• From the expansion above, a series for baryonic susceptibility can be

constructed. Its radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

or

(
n! χ

(2)
B

χ
(n+2)
B

)1/n

. We use both the definitions and terms

up to 8th order in µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• In the window of positive coefficients, we locate the critical point by looking for
the independence of our estimates of the order n and the method.

• We further check for the finite size effects : Estimates of radius of convergence
increase with order for small volumes, becoming flat on our largest volume.
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How Do We Do This Expansion?

CRAY X1 of I L G T I , T I F R, Mumbai
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, arXiv:0806.2233, PRD in

press). Needed to determine βc. Our result (βc = 5.425(5)) well bracketed by
MILC for m/Tc = 0.075 and 0.15.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, arXiv:0806.2233, PRD in

press). Needed to determine βc. Our result (βc = 5.425(5)) well bracketed by
MILC for m/Tc = 0.075 and 0.15.

• New Simulations made at T/Tc = 0.89(1), 0.92(1), 0.94(1), 0.97(1), 0.99 (1)
1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)

• Typical stat. 50-200 in max autocorrelation units.
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Nt = 4 (Gavai & Gupta PRD 2005)
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• We (RVG & S. Gupta, PRD 2005 ) used terms up to 8th order in µ.

• Our estimate consistent with Fodor & Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].
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Nt = 4 (Gavai & Gupta PRD 2005)
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• We (RVG & S. Gupta, PRD 2005 ) used terms up to 8th order in µ.

• Our estimate consistent with Fodor & Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns. A strong change around Nsmπ ∼ 6.
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Nt = 6 (Gavai & Gupta PRD 2008)
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Nt = 6 (Gavai & Gupta PRD 2008)
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier result on the

coarser lattice for same volume was µEB/T
E = 1.3± 0.3. Infinite volume limit

brought it down to 1.1(1). Still to be done for Nt = 6.
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Nt = 6 (Gavai & Gupta PRD 2008)
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier result on the

coarser lattice for same volume was µEB/T
E = 1.3± 0.3. Infinite volume limit

brought it down to 1.1(1). Still to be done for Nt = 6.

• Critical point at µB/T ∼ 1− 2.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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♥ Consistent Window with our other estimates.

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 19



Comparison with Other Results
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Imaginary Chemical Potential
deForcrand-Philpsen JHEP 0811
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For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.
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For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.

Problems : i) Nf = 3 → Anomaly and Staggered quarks ? ii) Known examples
where shapes are different in real/imaginary µ,

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 22



“The Critical line from imaginary to real baryonic chemical potentials in two-color
QCD”, P. Cea, L. Cosmai, M. D’Elia, A. Papa, PR D77, 2008
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Summary

• Phase diagram in T −µ on Nt = 4 has
begun to emerge: Different methods,
 similar qualitative picture.

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 24



Summary

• Phase diagram in T −µ on Nt = 4 has
begun to emerge: Different methods,
 similar qualitative picture.

• Our results for Nt = 6 first to begin
the crawling towards continuum limit.
Will µB/T drop a bit in infinite volume
limit ?
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So far no signs of a critical point in the experimental results.
Will RHIC-scan deliver it for us ? or wait for CBM/FAIR ?
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The continuum susceptibility vs. T (in quenched QCD) agrees better
(Gavai & Gupta PRD 2002 & PRD 2003) :
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• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233)

use terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].
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• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233)

use terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)
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• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233)

use terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)

• TE

Tc
= 0.94±0.01, and

µEB
TE

= 1.8±0.1
for finer lattice: Our earlier coarser
lattice result was µEB/T

E = 1.3±0.3.
Infinite volume result: ↓ to 1.1(1)
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• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233)

use terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)

• TE

Tc
= 0.94±0.01, and

µEB
TE

= 1.8±0.1
for finer lattice: Our earlier coarser
lattice result was µEB/T

E = 1.3±0.3.
Infinite volume result: ↓ to 1.1(1)

• Critical point shifted to smaller
µB/T ∼ 1− 2.
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Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy.

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 27



Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384 )

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

0

2

4

6

8

10
)-π + +π)/(- + K+(K

Data
UrQMD v1.3 

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 27



Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384 )

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

0

2

4

6

8

10
)-π + +π)/(- + K+(K

Data
UrQMD v1.3 

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

-10

-8

-6

-4

-2

0
)-π + +π)/(p(p + 

Data
UrQMD v1.3 

QFT in Extreme Environments, Institut d’Astrophysique de Paris, April 25, 2009 R. V. Gavai Top 27



• Fluctuations in mean pT of low pT pions.
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• Fluctuations in mean pT of low pT pions. (K. Grebieszkow, CPOD workshop 2007, GSI, Darmstadt)
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.
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with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.

• Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).

• This leads to the emission of high pT particles at earlier times.
(Asakawa-Bass-Nonaka-Müller, INT 2008 workshop).

• Note this is NOT a fluctuations signal but model (EoS) dependent ?
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