for QCD Critical Point

Rajiv V. Gavai
T. I. F. R., Mumbai, India

Importance of Being Critical
Lattice QCD Results
Searching Experimentally
Summary
Importance of Being Critical

Phase Diagram of Water
Importance of Being Critical

Phase Diagram of Water

- One, possibly two, critical points
Importance of Being Critical

Phase Diagram of Water

- One, possibly two, critical points
- Extreme density fluctuations \(\implies\) Opalescent turbidity
Importance of Being Critical

Phase Diagram of Water

- One, possibly two, critical points
- Extreme density fluctuations \implies Opalescent turbidity
- Dielectric constant & Viscosity \downarrow.
Importance of Being Critical

Phase Diagram of Water

- One, possibly two, critical points
- Extreme density fluctuations \Rightarrow Opalescent turbidity
- Dielectric constant & Viscosity \downarrow.
- Many liquid fueled engines exploit such supercritical transitions.
• Discontinuous ϵ – Nonzero Latent Heat – & finite C_v → First order PT.
• Discontinuous ϵ – Nonzero Latent Heat– & finite C_v → First order PT.

• Continuous ϵ, & diverging C_v → Second order PT.

• In(Finite) Correlation Length at 2nd (1st) Order transition.
• Discontinuous ϵ – Nonzero Latent Heat – & finite C_v → First order PT.

• Continuous ϵ, & diverging C_v → Second order PT.

• In(Finite) Correlation Length at 2nd (1st) Order transition.

• “Cross-over” – mere rapid change in ϵ, with maybe a sharp peaked C_v.
QCD Phase diagram

♣ A fundamental aspect – Critical Point in $T-\mu_B$ plane;
QCD Phase diagram

♠ A fundamental aspect – Critical Point in T-μ_B plane; Based on symmetries and models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review
QCD Phase diagram

♠ A fundamental aspect – Critical Point in $T-\mu_B$ plane; Based on symmetries and models, Expected QCD Phase Diagram … but could, however, be …

From Rajagopal-Wilczek Review
A fundamental aspect – Critical Point in $T-\mu_B$ plane; Based on symmetries and models,
Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review
QCD Phase diagram

♠ A fundamental aspect – Critical Point in T-μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram

... but could, however, be ... McLerran-Pisarski 2007

From Rajagopal-Wilczek Review
From M. Stephanov, Lattice 2007 Plenary.
Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract non-perturbative physics.
Lattice QCD Results

- QCD defined on a space time lattice – Best and Most Reliable way to extract non-perturbative physics.

- The Transition Temperature T_c, the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.
Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract non-perturbative physics.

• The Transition Temperature T_c, the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.

• Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice $\implies N_f = 2$ simulations may be fine in $a \to 0$ limit but 3 or 2 +1 problematic.
Lattice QCD Results

- QCD defined on a space time lattice – Best and Most Reliable way to extract non-perturbative physics.

- The Transition Temperature T_c, the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice $\Rightarrow N_f = 2$ simulations may be fine in $a \to 0$ limit but 3 or 2 +1 problematic.

- Domain Wall or Overlap Fermions better. BUT Computationally expensive and introduction of μ unfortunately breaks chiral symmetry! (Banerjee, Gavai & Sharma PRD 2008; arXiv:0809.4535 & arXiv:0811.3026)
The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_f \text{Det} M(m_f, \mu_f),$$

and the thermal expectation value of an observable \mathcal{O} is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \mathcal{O} \prod_f \text{Det} M(m_f, \mu_f)}{Z}. $$
The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_f \text{Det} M(m_f,\mu_f),$$

and the thermal expectation value of an observable \mathcal{O} is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \mathcal{O} \prod_f \text{Det} M(m_f,\mu_f)}{Z}.$$

Simulations can be done IF $\text{Det} M > 0$ for any set of $\{U\}$ as probabilistic methods are used to evaluate $\langle \mathcal{O} \rangle$.
The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_f \text{Det} M(m_f,\mu_f),$$

and the thermal expectation value of an observable O is

$$\langle O \rangle = \frac{\int DU \exp(-S_G) O \prod_f \text{Det} M(m_f,\mu_f)}{Z}.$$

Simulations can be done IF $\text{Det} M > 0$ for any set of $\{U\}$ as probabilistic methods are used to evaluate $\langle O \rangle$.

However, $\text{det} M$ is a complex number for any $\mu \neq 0$: The Phase/sign problem
Lattice Approaches

Several Approaches proposed in the past two decades: None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea!
Lattice Approaches

Several Approaches proposed in the past two decades: None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea!

Lattice Approaches

Several Approaches proposed in the past two decades: None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea!

Lattice Approaches

Several Approaches proposed in the past two decades: None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea!

Lattice Approaches

Several Approaches proposed in the past two decades: None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea!

Why Taylor series expansion?

• Ease of taking continuum and thermodynamic limit.
Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.

- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.

- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

- Discretization errors propagate in an unknown manner in re-weighting.
Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.

- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

- Discretization errors propagate in an unknown manner in re-weighting.

- Better control of systematic errors.
Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

We study volume dependence at several T to i) bracket the critical region and then to ii) track its change as a function of volume.
How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities:

\[n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i} \quad \text{and} \quad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}. \]

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, \(\lambda_s \ldots \))

Denoting higher order susceptibilities by \(\chi_{n_u,n_d} \), the pressure \(P \) has the expansion in \(\mu \):

\[
\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u,n_d} \chi_{n_u,n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T} \right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T} \right)^{n_d} \quad (1)
\]
How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities:

\[n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i} \quad \text{and} \quad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j} . \]

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, \(\lambda_s \ldots \))

Denoting higher order susceptibilities by \(\chi_{n_u,n_d} \), the pressure \(P \) has the expansion in \(\mu \):

\[
\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u,n_d} \chi_{n_u,n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T} \right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T} \right)^{n_d}
\]

(1)
How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities:

\[n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i} \quad \text{and} \quad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j} . \]

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, \(\lambda_s \ldots \))

Denoting higher order susceptibilities by \(\chi_{n_u,n_d} \), the pressure \(P \) has the expansion in \(\mu \):

\[
\frac{\Delta P}{T^4} = \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u,n_d} \chi_{n_u,n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T} \right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T} \right)^{n_d} \quad \text{(1)}
\]
● From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

● Successive estimates for the radius of convergence can be obtained from these using
\[\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}} \text{ or } \left(n! \frac{\chi_B^{(2)}}{\chi_B^{(n+2)}} \right)^{1/n} \]. We use both and terms up to 8th order in \(\mu \).

● All coefficients of the series must be POSITIVE for the critical point to be at real \(\mu \), and thus physical.

● Coefficients for the off-diagonal susceptibility, \(\chi_{11} \), can be constructed similarly.

● The ratio \(\chi_{11}/\chi_{20} \) can be shown to yield the ratio of widths of the measure in the imaginary and real directions at \(\mu = 0 \).
From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

Successive estimates for the radius of convergence can be obtained from these using

\[\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}} \text{ or } \left(n! \frac{\chi_B^{(2)}}{\chi_B^{(n+2)}} \right)^{1/n} \]

We use both and terms up to 8th order in \(\mu \).

All coefficients of the series must be POSITIVE for the critical point to be at real \(\mu \), and thus physical.

Coefficients for the off-diagonal susceptibility, \(\chi_{11} \), can be constructed similarly.

The ratio \(\chi_{11}/\chi_{20} \) can be shown to yield the ratio of widths of the measure in the imaginary and real directions at \(\mu = 0 \).
• From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these using
\[\sqrt{n(n+1)\chi_B^{(n+1)}} \right) \left(n! \frac{\chi_B^{(2)}}{\chi_B^{(n+2)}} \right)^{1/n} \]

• All coefficients of the series must be POSITIVE for the critical point to be at real \(\mu \), and thus physical.

• Coefficients for the off-diagonal susceptibility, \(\chi_{11} \), can be constructed similarly.

• The ratio \(\chi_{11}/\chi_{20} \) can be shown to yield the ratio of widths of the measure in the imaginary and real directions at \(\mu = 0 \).
How Do We Do This Expansion?

CRAY X1 of I L G T I , T I F R, Mumbai
Our Simulations & Results

• Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.

• $m_\rho/T_c = 5.4 \pm 0.2$ and $m_\pi/m_\rho = 0.31 \pm 0.01$ (MILC)

• Earlier Lattice : $4 \times N_s^3$, $N_s = 8, 10, 12, 16, 24$ (Gavai-Gupta, PRD 2005)

• Lattice used : $6 \times N_s^3$, $N_s = 12, 18, 24$ (Gavai-Gupta, arXiv:0806.2233, PRD in press). Needed to determine β_c. Our result ($\beta_c = 5.425(5)$) well bracketed by MILC for $m/T_c = 0.075$ and 0.15.
Our Simulations & Results

- Staggered fermions with \(N_f = 2 \) of \(m/T_c = 0.1 \); R-algorithm used.

- \(m_\rho/T_c = 5.4 \pm 0.2 \) and \(m_\pi/m_\rho = 0.31 \pm 0.01 \) (MILC)

- Earlier Lattice : \(4 \times N_s^3 \), \(N_s = 8, 10, 12, 16, 24 \) (Gavai-Gupta, PRD 2005)

- Lattice used : \(6 \times N_s^3 \), \(N_s = 12, 18, 24 \) (Gavai-Gupta, arXiv:0806.2233, PRD in press). Needed to determine \(\beta_c \). Our result (\(\beta_c = 5.425(5) \)) well bracketed by MILC for \(m/T_c = 0.075 \) and 0.15.

- New Simulations made at \(T/T_c = 0.89(1), 0.92(1), 0.94(1), 0.97(1), 0.99(1) \), 1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)

- Typical stat. 50-200 in max autocorrelation units.
$m_πN_S$

μ_B/T

$T/T_c=0.95 : 6/8 4/6$

$T/T_c=0.99$

$\mu/(3T)$

QGP Meet 2008, VECC, Kolkata, November 25, 2008
• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ.

• Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho = 0.31$ and $N_s m_\pi \sim 3-4$].
• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ.

• Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho = 0.31$ and $N_s m_\pi \sim 3-4$].

• Strong finite size effects for small N_s. A strong change around $N_s m_\pi \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)
• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ.

• Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho = 0.31$ and $N_s m_\pi \sim 3-4$].

• Strong finite size effects for small N_s. A strong change around $N_s m_\pi \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)

• $T^E_c = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\frac{\mu_B^E}{T^E} = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)
• We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ.

• Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho = 0.31$ and $N_s m_\pi \sim 3-4$].

• Strong finite size effects for small N_s. A strong change around $N_s m_\pi \sim 6$.
 (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)

• $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: ↓ to 1.1(1)

• Critical point shifted to smaller $\mu_B/T \sim 1 - 2$.

QGP Meet 2008, VECC, Kolkata, November 25, 2008

R. V. Gavai
Measure of the seriousness of sign problem: χ_{11}; $N_t = 4$ & 6 agree.
Cross Check on μ^E/T^E

♠ Use Padé approximants for the series to estimate the radius of convergence.
Cross Check on μ^E/T^E

Use Padé approximants for the series to estimate the radius of convergence.
Cross Check on μ^E/T^E

♠ Use Padé approximants for the series to estimate the radius of convergence.

♥ Consistent Window with our other estimates.
Estimating $T_c(\mu_c)$ and μ_c/T

Status of the RBC-BI project

- calculations for $N_\tau = 4$ and 6; $N_\sigma = 4N_\tau$
- uses an $O(a^2)$ improved staggered action (p4fat3)
- estimator for μ_c:
 $$\left(\frac{\mu_c(T)}{T_c(0)} \right)_n \equiv \rho_n = \frac{T}{T_c(0)} \sqrt{\frac{c_n}{c_{n+2}}}$$

- slight quark mass dependence
- weak cut-off dependence
- $O(\mu^8)$ requires more statistics
Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

QGP Meet 2008, VECC, Kolkata, November 25, 2008

R. V. Gavai

Top
For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c} \right)^2 - 47(20) \left(\frac{\mu}{\pi T_c} \right)^4$, i.e., m_c shrinks with μ.
For $N_f = 3$, they find $m_c(\mu) / m_c(0) = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c} \right)^2 - 47(20) \left(\frac{\mu}{\pi T_c} \right)^4$, i.e., m_c shrinks with μ.

Problems: i) $N_f = 3 \rightarrow$ Anomaly and Staggered quarks? ii) Known examples where shapes are different in real/imaginary μ,
Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)

- Look for nonmonotonic dependence of the event-by-event fluctuations with colliding energy.
Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)

Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)

• Fluctuations in mean p_T of low p_T pions.
• Fluctuations in mean p_T of low p_T pions. (K. Grebieszkow, CPOD workshop 2007, GSI, Darmstadt)

Fluctuations due to the critical point should be dominated by fluctuations of pions with $p_T \leq 500$ MeV/c

suggestion to do analysis with several upper p_T cuts

- $p_T < 750$ MeV/c
- $p_T < 500$ MeV/c
- $p_T < 250$ MeV/c

![Graphs showing energy dependence of Φ_{p_T} measure](image)

No significant energy dependence of Φ_{p_T} measure also when low transverse momenta are selected.

Remark: predicted fluctuations at the critical point should result in $\Phi_{p_T} \approx 20$ MeV/c, the effect of limited acceptance of NA49 reduces them to $\Phi_{p_T} \approx 10$ MeV/c
• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea: directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea: directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

• Leads to a ratio $\chi_Q:\chi_I:\chi_B = 1:0:4$

• Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.
• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea: directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

• Leads to a ratio $\chi_Q: \chi_I: \chi_B = 1:0:4$

• Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.

• Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).

• This leads to the emission of high p_T particles at earlier times. (Asakawa-Bass-Nonaka-Müller, INT 2008 workshop).

• Note this is NOT a fluctuations signal but model (EoS) dependent?
Focusing Effect

- Isentropic trajectories on T-μ_B plane

With QCD critical point

Bag Model + Excluded Volume Approximation (No Critical Point)

= Usual Hydro Calculation

Focused

Not Focused

Chiho NONAKA
QCD Critical Point?

steeper \bar{p} spectra at high P_T

NA49, PRC73,044910(2006)

Chiho NONAKA
Summary

- Phase diagram in $T - \mu$ on $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture.
Summary

• Phase diagram in $T - \mu$ on $N_t = 4$ has begun to emerge: Different methods, \sim similar qualitative picture.

• Our results for $N_t = 6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit?
Summary

- Phase diagram in $T - \mu$ on $N_t = 4$ has begun to emerge: Different methods, \sim similar qualitative picture.

- Our results for $N_t = 6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit?

- $\mu_B/T \sim 1 - 2$ is indicated for the critical point.
Summary

- Phase diagram in $T - \mu$ on $N_t = 4$ has begun to emerge: Different methods, \Rightarrow similar qualitative picture.

- Our results for $N_t = 6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit?

- $\mu_B/T \sim 1 - 2$ is indicated for the critical point.
Summary

- Phase diagram in $T - \mu$ on $N_t = 4$ has begun to emerge: Different methods, \Rightarrow similar qualitative picture.

- Our results for $N_t = 6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit?

- $\mu_B/T \sim 1 - 2$ is indicated for the critical point.

So far no signs of a critical point in the experimental results at CERN. Will RHIC deliver it for us?