

Rajiv V. Gavai T. I. F. R., Mumbai, India

Importance of Being Critical

Lattice QCD Results

Searching Experimentally

Summary

Phase Diagram of Water

 One, possibly two, critical points

- One, possibly two, critical points
- Extreme density fluctuations
 Opalescent turbidity

- One, possibly two, critical points
- Extreme density fluctuations
 Opalescent turbidity
- Dielectric constant
 & Viscosity \(\psi \).

- One, possibly two, critical points
- Extreme density fluctuations
 Opalescent turbidity
- Dielectric constant
 & Viscosity \(\psi \).
- Many liquid fueled engines exploit such supercritical transitions.

SECOND ORDER

3

SECOND ORDER

• Discontinuous ϵ - Nonzero Latent Heat- & finite C_v \rightarrow First order PT.

SECOND ORDER

- Discontinuous ϵ Nonzero Latent Heat– & finite C_v \rightarrow First order PT.
- Continuous ϵ , & diverging $C_v \to \mathsf{Second}$ order PT.

• In(Finite) Correleation Length at 2nd (1st) Order transition.

SECOND ORDER

- Discontinuous ϵ Nonzero Latent Heat- & finite C_v \rightarrow First order PT.
- Continuous ϵ , & diverging $C_v \to \mathsf{Second}$ order PT.

- In(Finite) Correleation Length at 2nd (1st) Order transition.
- "Cross-over" mere rapid change in ϵ , with maybe a sharp peaked C_v .

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane;

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ... McLerran-Pisarski 2007

From Rajagopal-Wilczek Review

From M. Stephanov, Lattice 2007 Plenary.

 QCD defined on a space time lattice – Best and Most Reliable way to extract non-perturbative physics.

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- The Transition Temperature T_c , the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- The Transition Temperature T_c , the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.
- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice $\Longrightarrow N_f=2$ simulations may be fine in $a\to 0$ limit but 3 or 2+1 problematic.

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- The Transition Temperature T_c , the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.
- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice $\Longrightarrow N_f=2$ simulations may be fine in $a\to 0$ limit but 3 or 2+1 problematic.
- Domain Wall or Overlap Fermions better. BUT Computationally expensive and introduction of μ unfortunately breaks chiral symmetry! (Banerjee, Gavai & Sharma PRD 2008; arXiv:0809.4535 & arXiv:0811.3026)

The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {\it D} U \exp(-S_G) \prod_f {
m Det} \ M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\mathcal O$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \ \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {\it D} U \exp(-S_G) \prod_f {
m Det} \ M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\mathcal O$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \ \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

Simulations can be done IF Det M>0 for any set of $\{U\}$ as probabilisitc methods are used to evaluate $\langle \mathcal{O} \rangle$.

The $\mu \neq 0$ problem

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {\it D} U \exp(-S_G) \prod_f {
m Det} \ M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\mathcal O$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \ \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

Simulations can be done IF Det M>0 for any set of $\{U\}$ as probabilisitc methods are used to evaluate $\langle \mathcal{O} \rangle$.

However, det M is a complex number for any $\mu \neq 0$: The Phase/sign problem

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

 Ease of taking continuum and thermodynamic limit.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

- Ease of taking continuum and thermodynamic limit.
- ullet E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

We study volume dependence at several T to i) bracket the critical region and then to ii) track its change as a function of volume.

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- Coefficients for the off-diagonal susceptibility, χ_{11} , can be constructed similarly.
- The ratio χ_{11}/χ_{20} can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu = 0$.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- Coefficients for the off-diagonal susceptibility, χ_{11} , can be constructed similarly.
- The ratio χ_{11}/χ_{20} can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu = 0$.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- Coefficients for the off-diagonal susceptibility, χ_{11} , can be constructed similarly.
- The ratio χ_{11}/χ_{20} can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu = 0$.

How Do We Do This Expansion?

CRAY X1 of I L G T I, T I F R, Mumbai

Our Simulations & Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- Earlier Lattice : $4 \times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
- Lattice used : $6 \times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, arXiv:0806.2233, PRD in press). Needed to determine β_c . Our result $(\beta_c = 5.425(5))$ well bracketed by MILC for $m/T_c = 0.075$ and 0.15.

Our Simulations & Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
- Lattice used : $6 \times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, arXiv:0806.2233, PRD in press). Needed to determine β_c . Our result ($\beta_c = 5.425(5)$) well bracketed by MILC for $m/T_c = 0.075$ and 0.15.
- New Simulations made at $T/T_c = 0.89(1)$, 0.92(1), 0.94(1), 0.97(1), 0.99(1) 1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)
- Typical stat. 50-200 in max autocorrelation units.

- We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].

- We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)

- We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)
- $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)

- We (RVG & S. Gupta, PRD 2005 and arXiv:0806.2233) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)
- $\frac{T^E}{T_c}=0.94\pm0.01$, and $\frac{\mu_B^E}{T^E}=1.8\pm0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E=1.3\pm0.3$. Infinite volume result: \downarrow to 1.1(1)
- Critical point shifted to smaller $\mu_B/T \sim 1-2.$

More Details

Measure of the seriousness of sign problem : χ_{11} ; $N_t=4$ & 6 agree.

Cross Check on μ^E/T^E

♠ Use Padé approximants for the series to estimate the radius of convergence.

Cross Check on μ^E/T^E

• Use Padé approximants for the series to estimate the radius of convergence.

Cross Check on μ^E/T^E

♠ Use Padé approximants for the series to estimate the radius of convergence.

○ Consistent Window with our other estimates.

Estimating $T_c(\mu_c)$ and μ_c/T

Status of the RBC-BI project

- $m ext{ iny }$ calculations for $N_ au=4$ and $6;\,N_\sigma=4N_ au$
- uses an $\mathcal{O}(a^2)$ improved staggered action (p4fat3)
- ullet estimator for μ_c :

$$\left(rac{\mu_c(T)}{T_c(0)}
ight)_n \equiv
ho_n = rac{T}{T_c(0)} \sqrt{rac{c_n}{c_{n+2}}}$$

- slight quark mass dependence
- weak cut-off dependence
 - $\mathcal{O}(\mu^6)$ requires more statistics

INT. Seattle 2008. F. Karsch - p. 20/3

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For
$$N_f = 3$$
, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For
$$N_f = 3$$
, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Problems : i) $N_f = 3 \rightarrow$ Anomaly and Staggered quarks ? ii) Known examples where shapes are different in real/imaginary μ ,

"The Critical line from imaginary to real baryonic chemical potentials in two-color QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy.

Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy. NA49 results (c. Roland NA49, J.Phys. G30 (2004) S1381-S1384)

Searching Experimentally

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy. NA49 results (c. Roland NA49, J.Phys. G30 (2004) S1381-S1384)

ullet Fluctuations in mean p_T of low p_T pions. (K. Grebieszkow, CPOD workshop 2007, GSI, Darmstadt)

Fluctuations due to the critical point should be dominated by fluctuations of pions with $p_r \le 500$ MeV/c

M. Stephanov, K. Rajagopal, E. V. Shuryak (Phys. Rev. **D60**, 114028, 1999): suggestion to do analysis with several upper $p_{_{\rm T}}$ cuts

Remark: predicted fluctuations at the critical point should result in $\Phi_{PT} \cong 20$ MeV/c, the effect of limited acceptance of NA49 reduces them to $\Phi_{PT} \cong 10$ MeV/c

- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B=1:0:4$
- Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.

- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B=1:0:4$
- Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.
- Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).
- This leads to the emission of high p_T particles at earlier times. (Asakawa-Bass-Nonaka-Müller, INT 2008 workshop).
- Note this is NOT a fluctuations signal but model (EoS) dependent?

Chiho NONAKA

Chiho NONAKA

• Phase diagram in $T-\mu$ on $N_t=4$ has begun to emerge: Different methods, \leadsto similar qualitative picture.

- Phase diagram in $T \mu$ on $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture.
- Our results for $N_t=6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit ?

- Phase diagram in $T \mu$ on $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture.
- Our results for $N_t=6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit ?
- \bullet $\mu_B/T \sim 1-2$ is indicated for the critical point.

- Phase diagram in $T \mu$ on $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture.
- Our results for $N_t=6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit?
- $\mu_B/T \sim 1-2$ is indicated for the critical point.

- Phase diagram in $T \mu$ on $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture.
- Our results for $N_t=6$ first to begin the crawling towards continuum limit. Will μ_B/T drop a bit in infinite volume limit ?
- \bullet $\mu_B/T \sim 1-2$ is indicated for the critical point.

So far no signs of a critical point in the experimental results at CERN. Will RHIC deliver it for us?