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• Known Interactions and Particles
a century ago: Electromagnetism,
Gravity and Electrons, Atoms.
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• Known Interactions and Particles
a century ago: Electromagnetism,
Gravity and Electrons, Atoms.

• Rutherford’s Scattering Experiment
→ various layers that have since been
discovered.

• Quarks and Leptons – Basic building
blocks : Proton (uud), Neutron
(udd), Pion (ud̄)....

• A Variety of Vector Bosons : Carriers
of forces.
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Strengths in a ratio 10−39 : 10−5 : 10−2 : 1
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Strengths in a ratio 10−39 : 10−5 : 10−2 : 1

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.
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Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).
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Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).

• Many more “photons” (Eight) which carry colour charge & hence interact
amongst themselves.

• Unlike QED, the coupling is usually very large.

• Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..

• Very high interaction (binding) energies. E.g., MProton � (2mu +md), by a
factor of 100 → Understanding it is knowing where the Visible mass of
Universe comes from.
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Basic Lattice Gauge Theory
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• Discrete space-time : Lattice
spacing a UV Cut-off.
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• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)

• Gauge transform Vx ∈ SU(3)
⇒ ψ′(x) = Vxψ(x),
U ′

µ(x) = VxUµ(x)V −1
x+µ̂ .

• Gauge invariance : Actions
from Closed Wilson loops,
e.g., plaquette.

• Fermion Actions : Staggered,
Wilson, Overlap..
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Typically, we need to evaluate

〈Θ(mv)〉 =

∫
DU exp(−SG)Θ(mv) Det M(ms)∫

DU exp(−SG) Det M(ms)
, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.
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where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
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Typically, we need to evaluate

〈Θ(mv)〉 =

∫
DU exp(−SG)Θ(mv) Det M(ms)∫

DU exp(−SG) Det M(ms)
, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.

Lattice scaffolding must be removed : Continuum limit a→ 0.
 Computer Simulations, 〈Θ〉 is computed by averaging over a set of
configurations {Uµ(x)} which occur with probability ∝ exp(−SG) ·Det M .

Complexity of evaluation of Det M =⇒ approximations : Quenched ( ms = ∞
limit) and Full ( low ms = mu = md ).

Q → Full  Computer time ↑ and Precision ↓.
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♥ Baryon mass comes
out (almost) right.
(From CP-PACS Collaboration, Japan)
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♥ Baryon mass comes
out (almost) right.
(From CP-PACS Collaboration, Japan)

♥ Massless quarks
acquire mass
dynamically :
Vacuum breaks
Chiral Symmetry,
i.e, 〈ψ̄ψ〉 6= 0.

♥ Goldstone nature of
Pion established:
m2

π ∝ mq.
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QCD Phase Diagram

QCD defined on a space time lattice – Best and Most Reliable way to extract
Predictions for non-perturbative physics.
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QCD Phase Diagram

QCD defined on a space time lattice – Best and Most Reliable way to extract
Predictions for non-perturbative physics.

• New States at High
Temperatures/Density expected
on basis of models.

• Lattice ideal tool to establish the
phase diagram and properties of
the phases.

• Quark-Gluon Plasma, such a new
phase, expected in Heavy ion
Collisions.
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• The Transition Temperature Tc and Equation of State (EOS) have been
predicted by lattice QCD.
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• The Transition Temperature Tc and Equation of State (EOS) have been
predicted by lattice QCD.

Bernard et al., MILC hep-lat/0509053.
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• Other quantities: notably the Wróblewski Parameter λs and other correlations
for Heavy Ion Physics.
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• λs — Measure of Production of strange quark-antiquark pairs; Expts agree
with estimates from the new state Quark-Gluon Plasma.
— Lattice QCD suggests that strangeness carried by quark-like objects
— Robust correlations like BQ are better observables.
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• Host of new results now on T -µ phase diagram and more complex observables
such as J/ψ-dissolution/persistence, dileptons, speed of sound, transport
coefficients... etc.
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• New conceptual problems at nonzero µB : Fermion determinant becomes
complex, known analytical/numerical methods fail.

• Fermion Sign (Phase) Problem.
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• Tremendous progress recently, discussed below. BUT, still unable to address
the very high density and low temperature regions of colour superconductivity.

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
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• New conceptual problems at nonzero µB : Fermion determinant becomes
complex, known analytical/numerical methods fail.

• Fermion Sign (Phase) Problem.

• Tremendous progress recently, discussed below. BUT, still unable to address
the very high density and low temperature regions of colour superconductivity.

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68

(2003) 034506 ).
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting
and imaginary µ needs analytic
continuation.

• Better control of systematic errors.

T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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How Do We Do This Expansion?

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫

DU exp(−SG)
Q

f Det M(mf,µf ) .

Canonical definitions then yield various number densities and susceptibilities :

ni = T
V

∂ lnZ
∂µi

and χij = T
V

∂2 lnZ
∂µi∂µj

.

Denoting higher order susceptibilities by χnu,nd
, the pressure P has the expansion

in µ:

∆P
T 4

≡ P (µ, T )
T 4

− P (0, T )
T 4

=
∑

nu,nd

χnu,nd

1
nu!

(µu

T

)nu 1
nd!

(µd

T

)nd

(2)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
χn

B

χn+2
B

or

√
χ0

B
χn

B
. We use terms up to 8th order in µ, i.e., estimates from

2/4, 4/6 and 6/8 terms.
R. V. Gavai and Sourendu Gupta, Phys Rev. D 71, 114014 (2005).
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How Do We Do This Expansion?

CRAY X1 of I L G T I , T I F R, Mumbai
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More on our Results
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up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].
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• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.

• Critical point shifted to smaller
µB/T ∼ 1− 2.
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• We (RVG & S. Gupta, hep-lat/0412035) use terms
up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.

• Critical point shifted to smaller
µB/T ∼ 1− 2.

• Bielefeld-Swansea results (hep-lat/0501030)

up to 6th order. They use Nsmπ ∼
15 but have a large mπ/mρ ∼ 0.7.
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Heavy Ion Collisions

• Where does one find these new phases ? Can they be produced in laboratory ?
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Heavy Ion Collisions

• Where does one find these new phases ? Can they be produced in laboratory ?

• Early Universe — About 10− 20µs after the Big Bang and in Cores of Dense
Neutron Stars

• Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy
Ion Collisions in CERN, Geneva and BNL, New York.

• Necessary Conditions for QGP production :

– High Energy Density, ≈ 1-3 GeV/fm3.
– Large System Size, L� Λ−1

QCD.
– Many particles
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=⇒ Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.
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=⇒ Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.

Fireball of QGP condenses into hadrons in ≈ 10−23 seconds.
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• Rare, Highly Energetic Scatterings produce jets of particles : g + g → g + g.

• Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to
lose energy – Jet Quenching.
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• On-Off test possible – Compare Collisions of Heavy-Heavy nuclei with
Light-Heavy or Light-Light.
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• On-Off test possible – Compare Collisions of Heavy-Heavy nuclei with
Light-Heavy or Light-Light.

Physics 2005, IIT Kanpur, November 5, 2005 R. V. Gavai Top 24



Anomalous J/ψ Suppression : CERN NA50 results

♠ Matsui-Satz idea — J/ψ suppression as a signal of QGP.
♠ Deconfinement  Screening of coloured quarks,
which cannot bind.
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J/ψ Suppression
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J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.

Physics 2005, IIT Kanpur, November 5, 2005 R. V. Gavai Top 26



J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.

• Impressive NA50 results from CERN.

Physics 2005, IIT Kanpur, November 5, 2005 R. V. Gavai Top 26



J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.

• Impressive NA50 results from CERN.

• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.
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J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.

• Impressive NA50 results from CERN.

• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.

• Caution : nonzero temperature obtained by making temporal lattices shorter.
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♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.
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♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Since about 30 % observed J/ψ come through χ decays, expect changes of
suppression patterns as a function of T or

√
s.
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♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Since about 30 % observed J/ψ come through χ decays, expect changes of
suppression patterns as a function of T or

√
s.

♠ Effect of inclusion of dynamical fermions ?
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Speed of Sound

• Cs – Crucial for elliptic flow, hydrodynamical studies ...

• Cv – Event-by-event temperature/pT fluctuations.
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Speed of Sound

• Cs – Crucial for elliptic flow, hydrodynamical studies ...

• Cv – Event-by-event temperature/pT fluctuations.

• Can be obtained from lnZ by taking appropriate derivatives which relate it to
the temperature derivative of anomaly measure ∆/ε.
(RVG, S. Gupta and S. Mukherjee, hep-lat/0412036 )

• New method to obtain these differentially without getting negative pressure.
Introducing a parameter ‘t’, t=1 used in earlier Bielefeld studies, we use t = 0.
(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015 )
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• Using lattices with 8, 10, and 12 temporal sites (383 × 12 and 384 lattices) and
with statistics of 0.5-1 million iterations, ε, P , s, C2

s and Cv obtained in
continuum.

Physics 2005, IIT Kanpur, November 5, 2005 R. V. Gavai Top 29



• Using lattices with 8, 10, and 12 temporal sites (383 × 12 and 384 lattices) and
with statistics of 0.5-1 million iterations, ε, P , s, C2

s and Cv obtained in
continuum.

• Entropy agrees with strong coupling SYM prediction
(Gubser, Klebanov & Tseytlin, NPB ’98, 202)

s

s0
= f(g2Nc), where

f(x) =
3
4

+
45
32
ζ(3)(2x−3/2) + · · · and (3)

s0 =
2
3
π2N2

cT
3,

for T = 3Tc but fails at 2Tc, as do various weak coupling schemes.
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Results for t = 1 and 0 respectively:
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Summary

• Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.
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• Phase diagram in T − µB plane has
begun to emerge: Our estimate for the
critical point is µB/T ∼ 1− 2.
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Heavy Ion Collisions in CERN Geneva, and BNL, New York, have seen tell-tale
signs of QGP : Many surprises already and more excitement likely to come.
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