New Phases of Strongly Interacting Matter

Rajiv V. Gavai T. I. F. R., Mumbai, India

New Phases of Strongly Interacting Matter

Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction: What and Why

QCD Phase Diagram

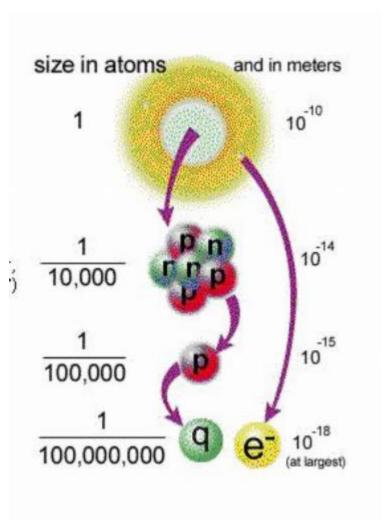
Heavy Ion Collisions

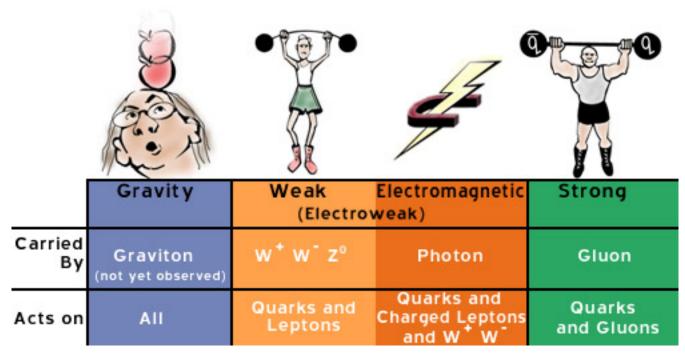
 J/ψ Suppression

Speed of Sound

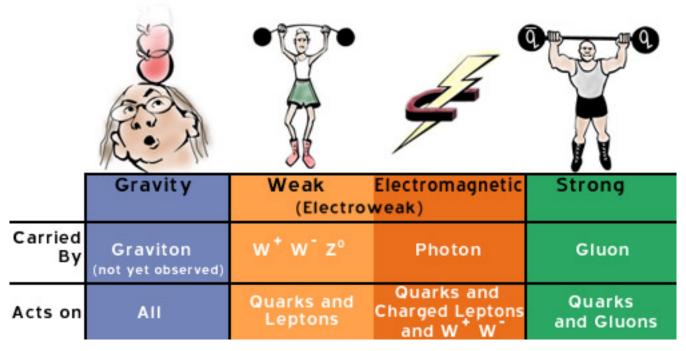
Summary

Introduction

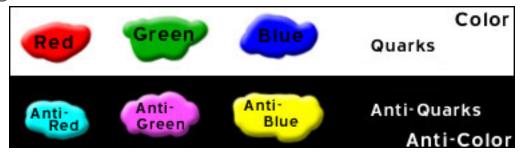

 Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.


- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment

 → various layers that have since been discovered.


- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment

 → various layers that have since been discovered.
- Quarks and Leptons Basic building blocks : Proton (uud), Neutron (udd), Pion $(u\bar{d})$
- A Variety of Vector Bosons : Carriers of forces.



Strengths in a ratio $10^{-39}:10^{-5}:10^{-2}:1$

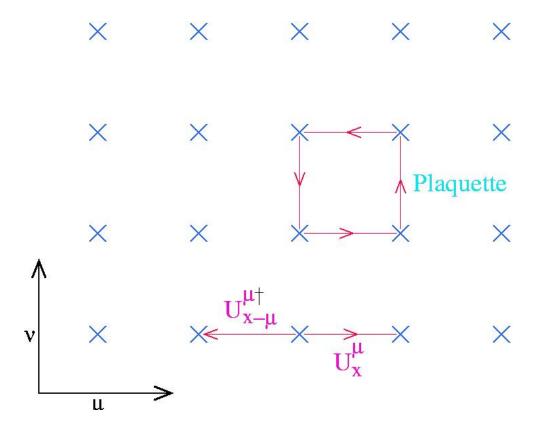
Strengths in a ratio $10^{-39}:10^{-5}:10^{-2}:1$

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.

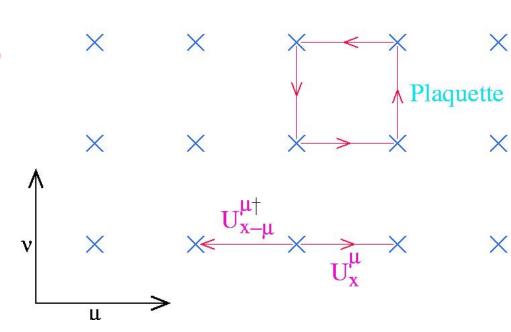
Quantum Chromo Dynamics (QCD)

- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).

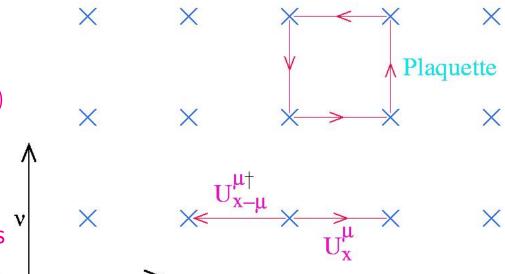
Quantum Chromo Dynamics (QCD)


- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.
- *Unlike QED*, the coupling is usually very large.

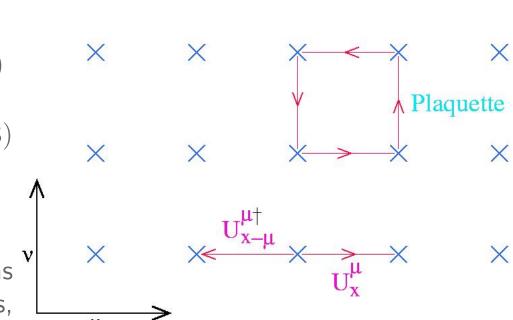
Quantum Chromo Dynamics (QCD)


- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.
- Unlike QED, the coupling is usually very large.
- Much richer structure: Quark Confinement, Dynamical Symmetry Breaking...
- Very high interaction (binding) energies. E.g., $M_{Proton} \gg (2m_u + m_d)$, by a factor of $100 \rightarrow$ Understanding it is knowing where the Visible mass of Universe comes from.

Basic Lattice Gauge Theory


• Discrete space-time : Lattice spacing *a* UV Cut-off.

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$



- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$
- Gauge transform $V_x \in SU(3)$ $\Rightarrow \psi'(x) = V_x \psi(x)$, $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}$.
- Gauge invariance : Actions from Closed Wilson loops, e.g., plaquette.

X

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$
- Gauge transform $V_x \in SU(3)$ $\Rightarrow \psi'(x) = V_x \psi(x),$ $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}.$
- Gauge invariance: Actions from Closed Wilson loops, e.g., plaquette.
- Fermion Actions : Staggered,
 Wilson, Overlap..

X

Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

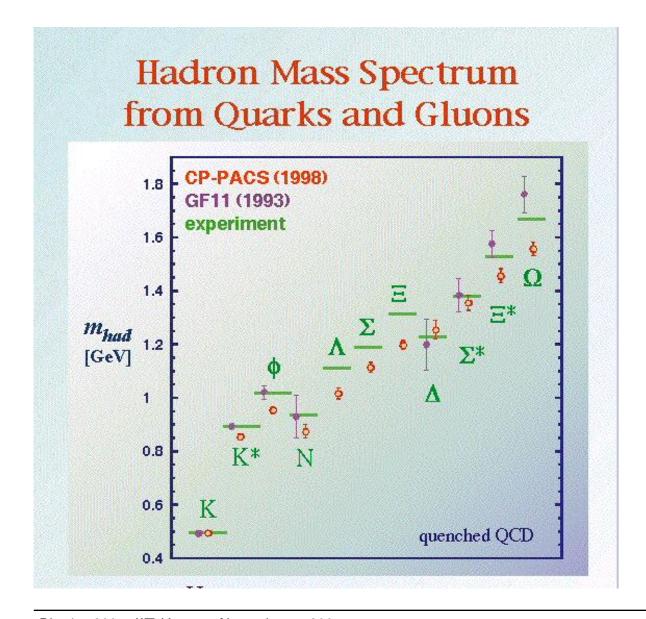
where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v .

Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

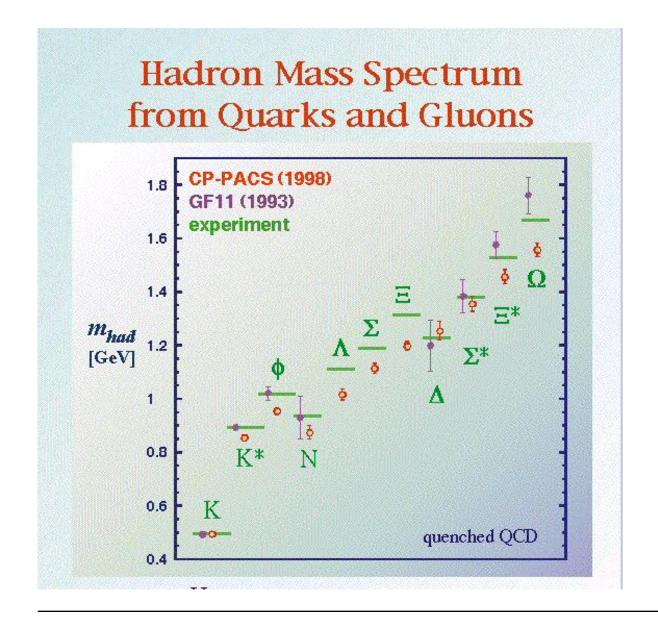
where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v .

Lattice scaffolding must be removed : Continuum limit $a \to 0$. \sim Computer Simulations, $\langle \Theta \rangle$ is computed by averaging over a set of configurations $\{U_{\mu}(x)\}$ which occur with probability $\propto \exp(-S_G) \cdot \mathrm{Det}\ M$. Typically, we need to evaluate


$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v .

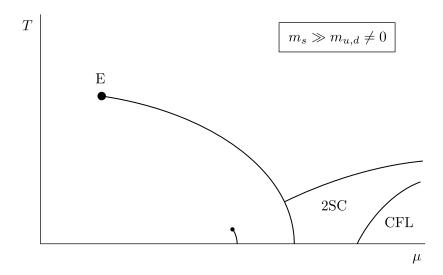
Lattice scaffolding must be removed : Continuum limit $a \to 0$. \leadsto Computer Simulations, $\langle \Theta \rangle$ is computed by averaging over a set of configurations $\{U_{\mu}(x)\}$ which occur with probability $\propto \exp(-S_G) \cdot \mathrm{Det}\ M$.


Complexity of evaluation of Det $M\Longrightarrow$ approximations : Quenched ($m_s=\infty$ limit) and Full (low $m_s=m_u=m_d$).

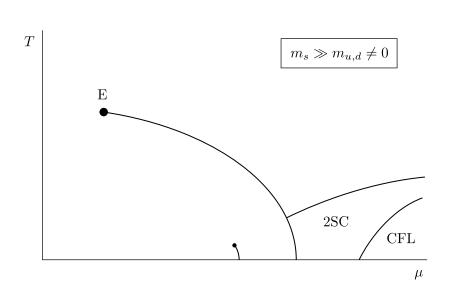
 $Q \rightarrow Full \rightsquigarrow Computer time \uparrow and Precision \downarrow$.

♥ Baryon mass comes out (almost) right.

(From CP-PACS Collaboration, Japan)

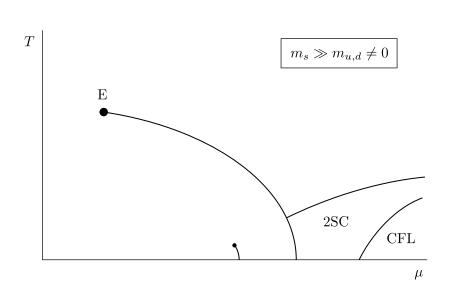

♥ Baryon mass comes out (almost) right.

(From CP-PACS Collaboration, Japan)

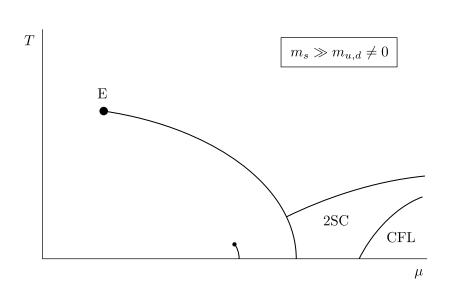

- \heartsuit Massless quarks acquire mass dynamically : Vacuum breaks Chiral Symmetry, i.e, $\langle \bar{\psi}\psi \rangle \neq 0$.
- \heartsuit Goldstone nature of Pion established: $m_\pi^2 \propto m_q.$

QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.

QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.



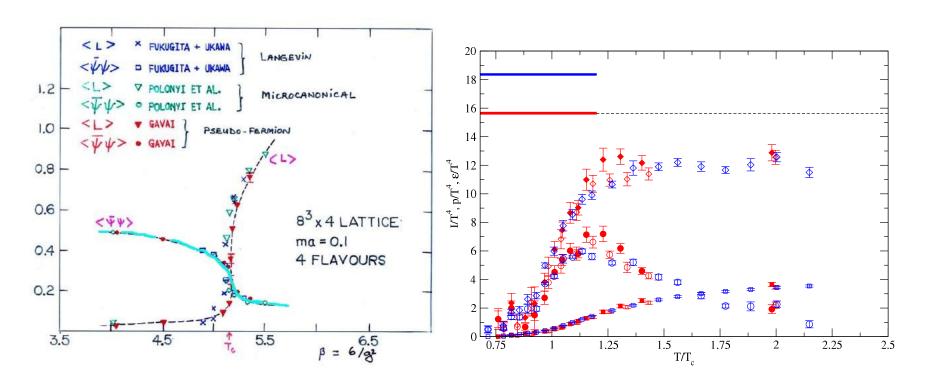
QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.


 New States at High Temperatures/Density expected on basis of models.

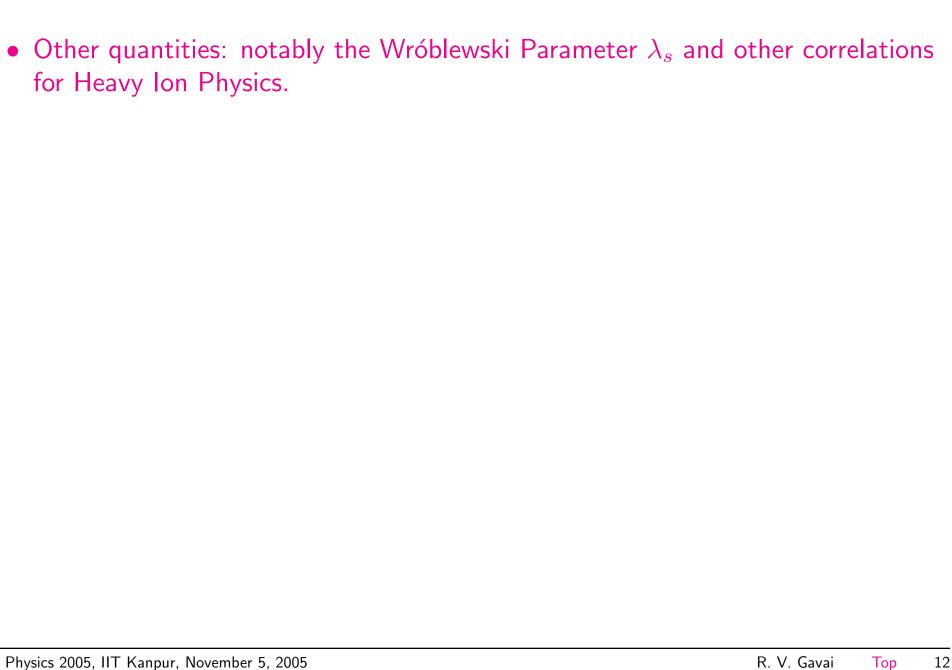
QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.

- New States at High Temperatures/Density expected on basis of models.
- Lattice ideal tool to establish the phase diagram and properties of the phases.

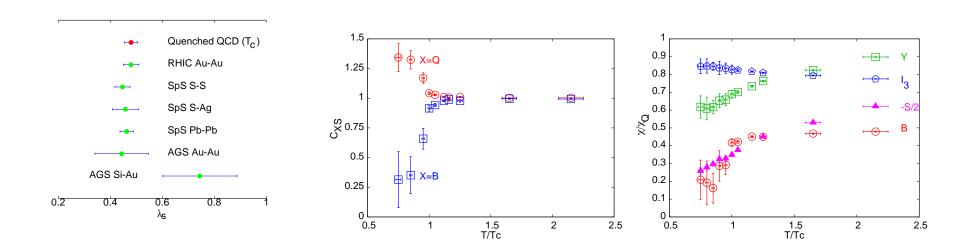
QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.


- New States at High Temperatures/Density expected on basis of models.
- Lattice ideal tool to establish the phase diagram and properties of the phases.
- Quark-Gluon Plasma, such a new phase, expected in Heavy ion Collisions.

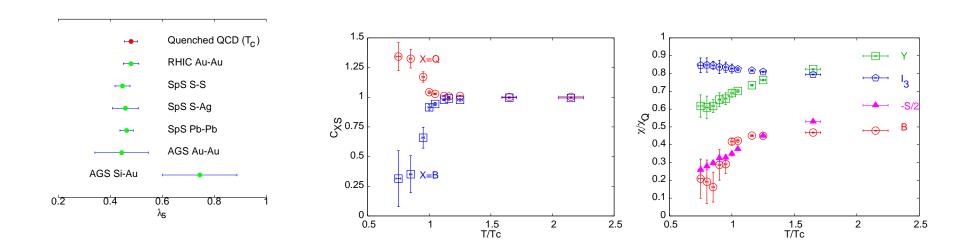
Expected QCD Phase Diagram and Lattice Approaches to unravel it.


• The Transition Temperature T_c and Equation of State (EOS) have been predicted by lattice QCD.

Expected QCD Phase Diagram and Lattice Approaches to unravel it.


• The Transition Temperature T_c and Equation of State (EOS) have been predicted by lattice QCD.

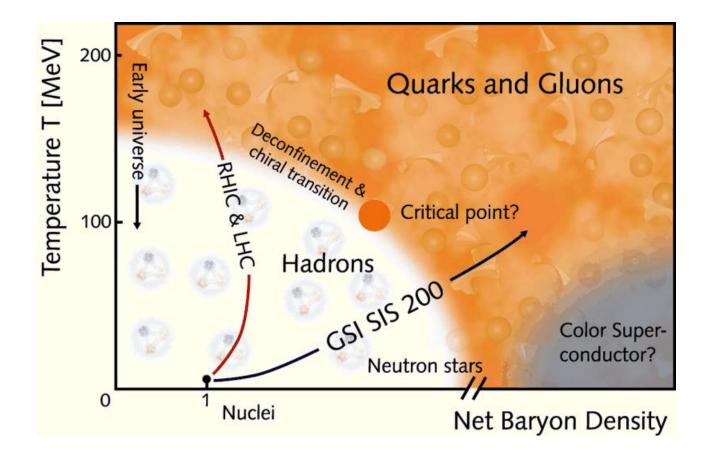
Bernard et al., MILC hep-lat/0509053.



ullet Other quantities: notably the Wróblewski Parameter λ_s and other correlations for Heavy Ion Physics.

Gavai and Gupta, Phys Rev D65, 2002 and hep-lat/0510044.

• Other quantities: notably the Wróblewski Parameter λ_s and other correlations for Heavy Ion Physics.



Gavai and Gupta, Phys Rev D65, 2002 and hep-lat/0510044.

- λ_s Measure of Production of strange quark-antiquark pairs; Expts agree with estimates from the new state Quark-Gluon Plasma.
 - Lattice QCD suggests that strangeness carried by quark-like objects
 - Robust correlations like BQ are better observables.

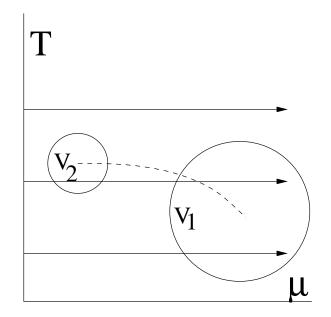
• Host of new results now on T- μ phase diagram and more complex observables such as J/ψ -dissolution/persistence, dileptons, speed of sound, transport coefficients... etc.

• Host of new results now on T- μ phase diagram and more complex observables such as J/ψ -dissolution/persistence, dileptons, speed of sound, transport coefficients... etc.

- New conceptual problems at nonzero μ_B : Fermion determinant becomes complex, known analytical/numerical methods fail.
- Fermion Sign (Phase) Problem.

- New conceptual problems at nonzero μ_B : Fermion determinant becomes complex, known analytical/numerical methods fail.
- Fermion Sign (Phase) Problem.
- Tremendous progress recently, discussed below. BUT, still unable to address the very high density and low temperature regions of colour superconductivity.
 - Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).

- New conceptual problems at nonzero μ_B : Fermion determinant becomes complex, known analytical/numerical methods fail.
- Fermion Sign (Phase) Problem.
- Tremendous progress recently, discussed below. BUT, still unable to address the very high density and low temperature regions of colour superconductivity.
 - Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
 - Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).


- New conceptual problems at nonzero μ_B : Fermion determinant becomes complex, known analytical/numerical methods fail.
- Fermion Sign (Phase) Problem.
- Tremendous progress recently, discussed below. BUT, still unable to address the very high density and low temperature regions of colour superconductivity.
 - Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
 - Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).
 - Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).

• Ease of taking continuum and thermodynamic limit.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting and imaginary μ needs analytic continuation.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting and imaginary μ needs analytic continuation.
- Better control of systematic errors.

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting and imaginary μ needs analytic continuation.
- Better control of systematic errors.

We study volume dependence at several T to i) bracket the critical region and then to ii) track its change as a function of volume.

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_f \operatorname{Det} M(m_f, \mu_f)$$
 .

Canonical definitions then yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{2}$$

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_f \operatorname{Det} M(m_f, \mu_f)$$
 .

Canonical definitions then yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

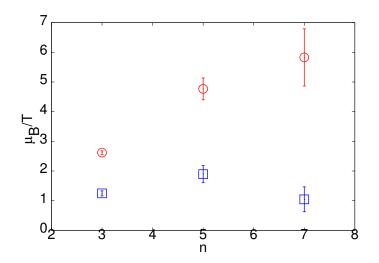
Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

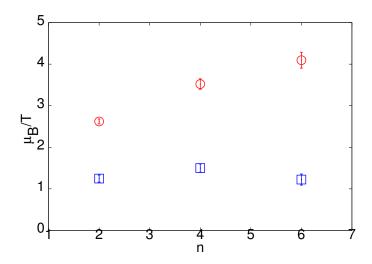
$$\frac{\Delta P}{T^4} = \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{2}$$

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_f \operatorname{Det} M(m_f, \mu_f)$$
 .

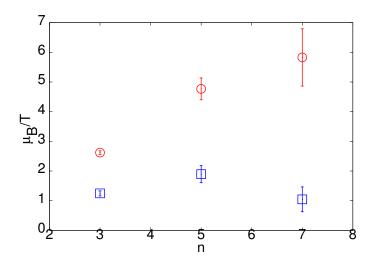
Canonical definitions then yield various number densities and susceptibilities :

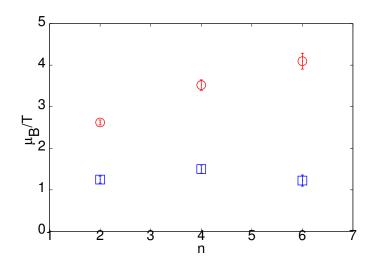

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.


Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{2}$$

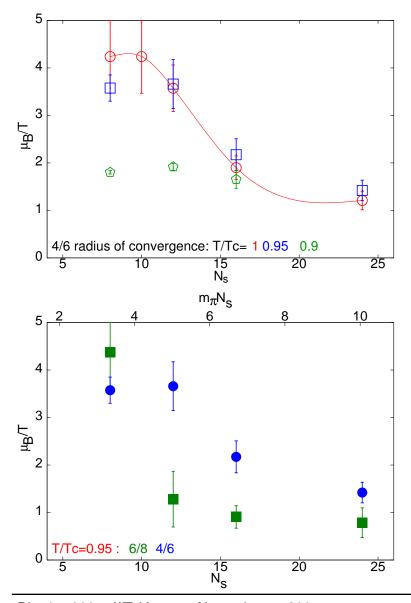
- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{\chi_B^n}{\chi_B^{n+2}}}$ or $\sqrt{\frac{\chi_B^0}{\chi_B^n}}$. We use terms up to 8th order in μ , i.e., estimates from 2/4, 4/6 and 6/8 terms.

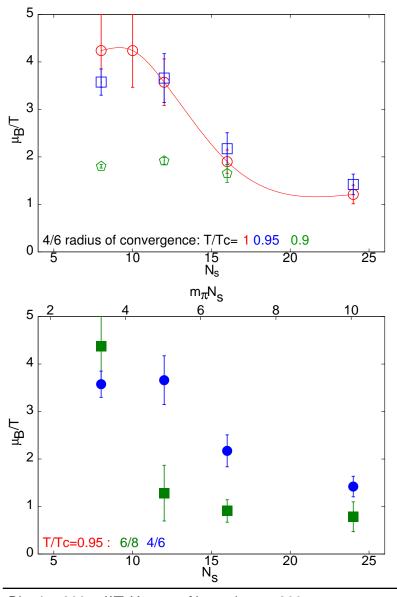

R. V. Gavai and Sourendu Gupta, Phys Rev. D 71, 114014 (2005).

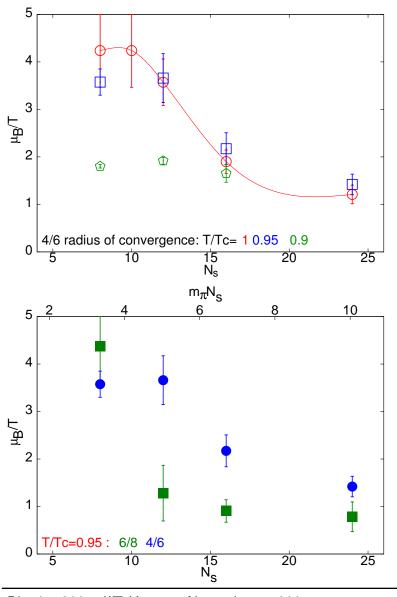


- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{\chi_B^n}{\chi_B^{n+2}}}$ or $\sqrt{\frac{\chi_B^0}{\chi_B^n}}$. We use terms up to 8th order in μ , i.e., estimates from 2/4, 4/6 and 6/8 terms.

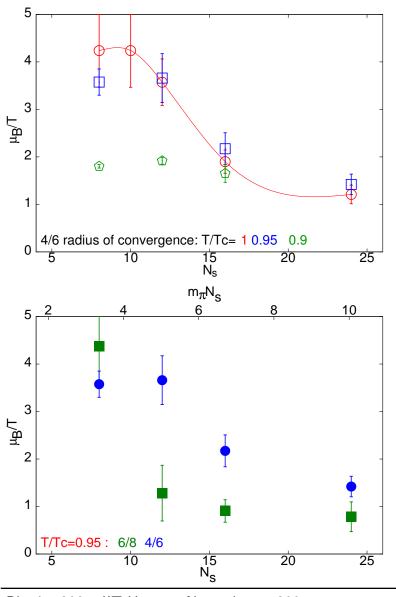
R. V. Gavai and Sourendu Gupta, Phys Rev. D 71, 114014 (2005).

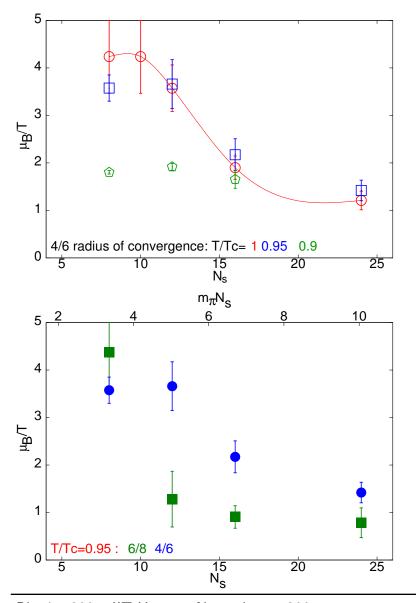





CRAY X1 of I L G T I, T I F R, Mumbai

More on our Results



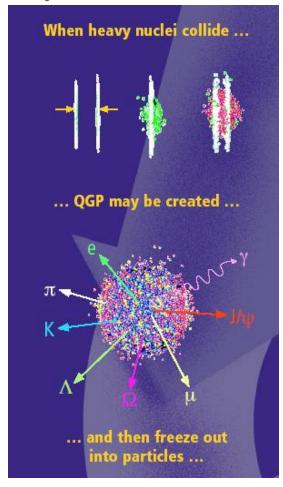

- We (RVG & S. Gupta, hep-lat/0412035) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].

- We (RVG & S. Gupta, hep-lat/0412035) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$.

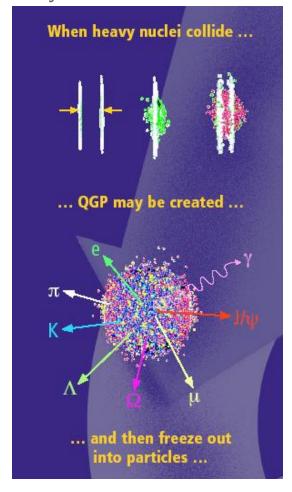
- We (RVG & S. Gupta, hep-lat/0412035) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$.
- Critical point shifted to smaller $\mu_B/T \sim 1-2.$

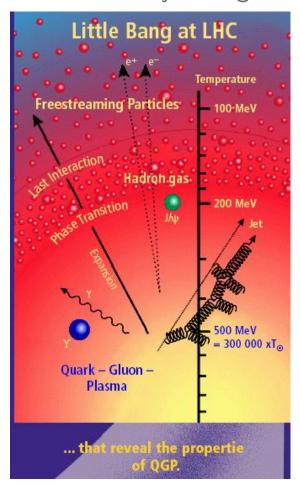
- We (RVG & S. Gupta, hep-lat/0412035) use terms up to 8th order in μ .
- Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_\rho=0.31$ and $N_sm_\pi\sim$ 3-4].
- Strong finite size effects for small N_s . A strong change around $N_s m_\pi \sim 6$.
- Critical point shifted to smaller $\mu_B/T \sim 1-2$.
- Bielefeld-Swansea results (hep-lat/0501030) up to 6th order. They use $N_s m_\pi \sim 15$ but have a large $m_\pi/m_\rho \sim 0.7$.

• Where does one find these new phases? Can they be produced in laboratory?

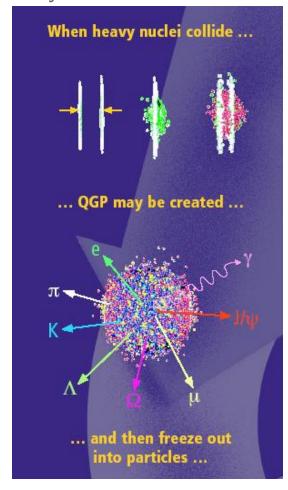

- Where does one find these new phases? Can they be produced in laboratory?
- \bullet Early Universe About $10-20\mu {\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars

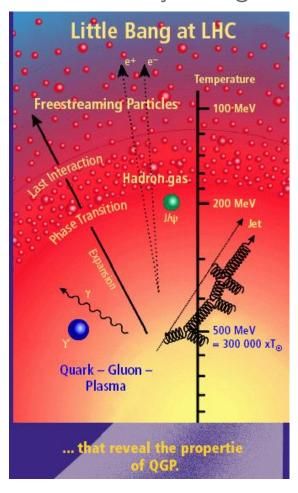
- Where does one find these new phases? Can they be produced in laboratory?
- Early Universe About $10-20\mu {\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars
- Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy Ion Collisions in CERN, Geneva and BNL, New York.

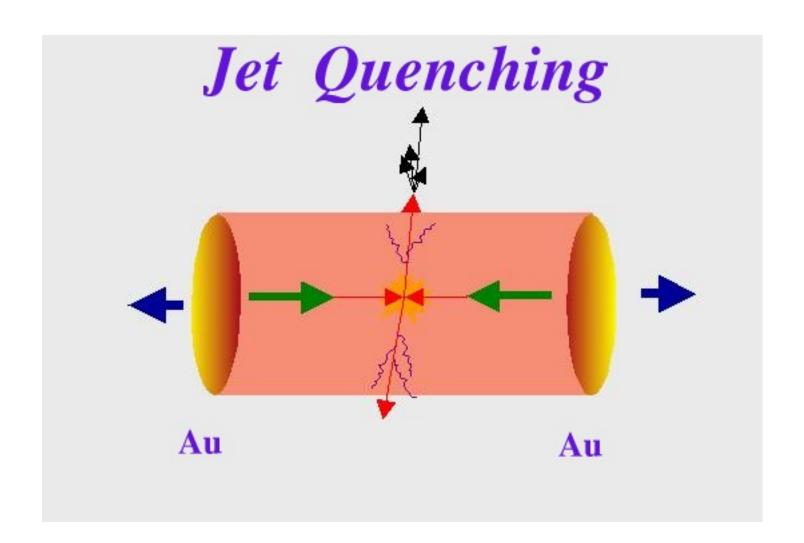

- Where does one find these new phases? Can they be produced in laboratory?
- Early Universe About $10-20\mu {\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars
- Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy Ion Collisions in CERN, Geneva and BNL, New York.
- Necessary Conditions for QGP production :
 - High Energy Density, \approx 1-3 GeV/fm³.
 - Large System Size, $L \gg \Lambda_{QCD}^{-1}$.
 - Many particles

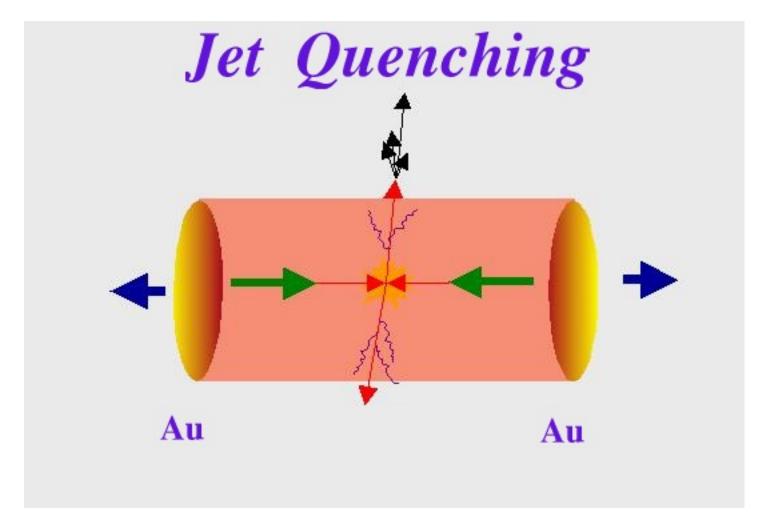

 \implies Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.

 \implies Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.

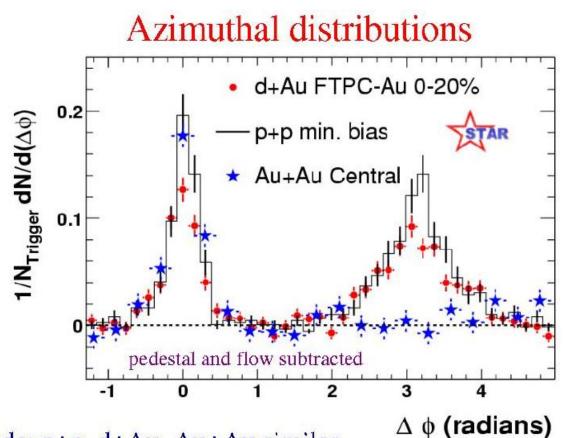



⇒ Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.




⇒ Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.

Fireball of QGP condenses into hadrons in $\approx 10^{-23}$ seconds.

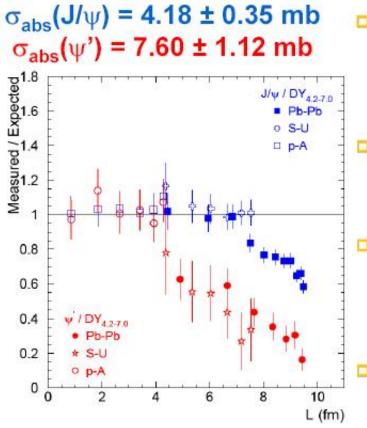


- Rare, Highly Energetic Scatterings produce jets of particles : $g + g \rightarrow g + g$.
- Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy – Jet Quenching.

• On-Off test possible – Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light.

 On-Off test possible – Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light.

Near-side: p+p, d+Au, Au+Au similar


Back- to- back: Au+Au strongly suppressed relative to p+p and d+Au

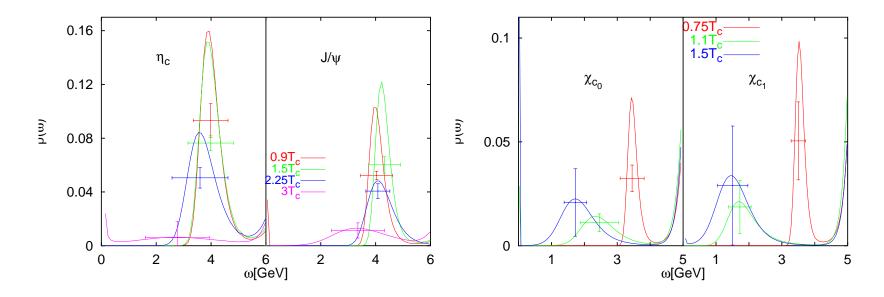
Anomalous J/ψ Suppression : CERN NA50 results

- \spadesuit Matsui-Satz idea J/ψ suppression as a signal of QGP.
- ♠ Deconfinement → Screening of coloured quarks, which cannot bind.

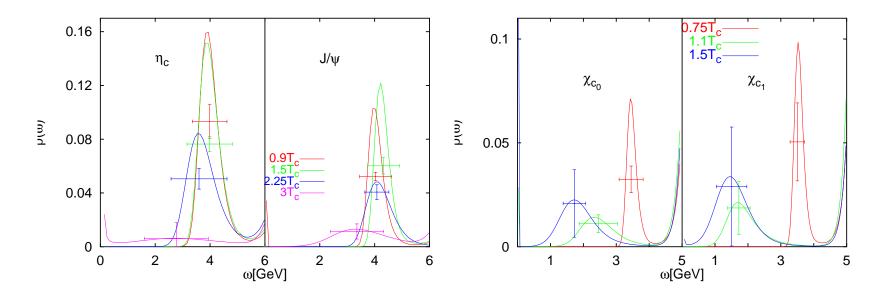
Anomalous J/ψ Suppression : CERN NA50 results

Expected = Glauber absorption model

- S-U and peripheral Pb-Pb (J/ψ)/DY results follow the absorption curve extrapolated from p-A measurements.
- Pb-Pb central collisions show an anomalous (J/ψ)/DY suppression with respect to p-A behaviour.
- ψ'/DY behaviour is the same in S-U and Pb-Pb interactions and not compatible with the one observed in p-A collisions.
- ψ ' anomalous suppression sets in earlier than the J/ ψ one.

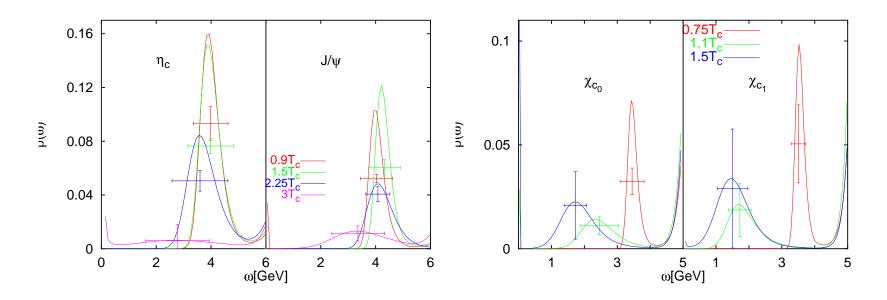

J/ψ Suppression

• Original Matsui-Satz idea — Based on Quarkonium potential model calculations and an Ansatz for temperature dependence \leadsto dissolution of J/ψ and χ_c by $1.1T_c$.

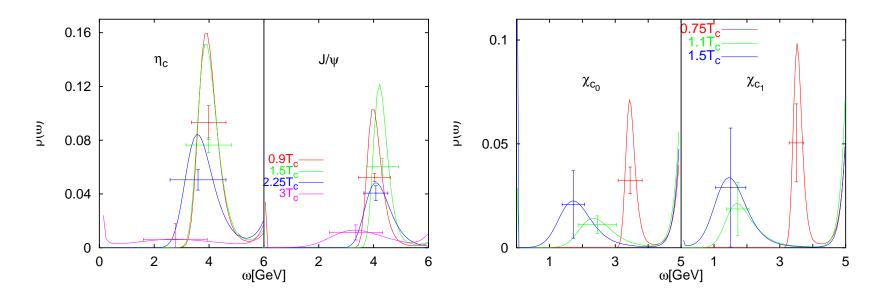

- Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence \leadsto dissolution of J/ψ and χ_c by $1.1T_c$.
- Impressive NA50 results from CERN.

- Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence \leadsto dissolution of J/ψ and χ_c by $1.1T_c$.
- Impressive NA50 results from CERN.
- A critical assessment of the original theoretical argument: Made feasible by the recognition of MEM technique as a tool to extract spectral functions from the temporal correlators computed on the Euclidean lattice.

- Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence \leadsto dissolution of J/ψ and χ_c by $1.1T_c$.
- Impressive NA50 results from CERN.
- A critical assessment of the original theoretical argument: Made feasible by the recognition of MEM technique as a tool to extract spectral functions from the temporal correlators computed on the Euclidean lattice.
- Caution: nonzero temperature obtained by making temporal lattices shorter.



 $48^3 \times 12$ to $64^3 \times 24$ Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)


 $48^3 imes 12$ to $64^3 imes 24$ Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

 \bigstar χ_c seems to indeed dissolve by $1.1T_c$, however, J/ψ and η_c persist up to 2.25 T_c and are gone at $3T_c$; Similar results by Asakawa-Hatsuda and Matsufuru.

 $48^3 imes 12$ to $64^3 imes 24$ Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

- \spadesuit χ_c seems to indeed dissolve by $1.1T_c$, however, J/ψ and η_c persist up to 2.25 T_c and are gone at $3T_c$; Similar results by Asakawa-Hatsuda and Matsufuru.
- \spadesuit Since about 30 % observed J/ψ come through χ decays, expect changes of suppression patterns as a function of T or \sqrt{s} .

 $48^3 imes 12$ to $64^3 imes 24$ Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

- \spadesuit χ_c seems to indeed dissolve by $1.1T_c$, however, J/ψ and η_c persist up to 2.25 T_c and are gone at $3T_c$; Similar results by Asakawa-Hatsuda and Matsufuru.
- \spadesuit Since about 30 % observed J/ψ come through χ decays, expect changes of suppression patterns as a function of T or \sqrt{s} .
- ♠ Effect of inclusion of dynamical fermions?

Speed of Sound

- C_s Crucial for elliptic flow, hydrodynamical studies ...
- C_v Event-by-event temperature/ p_T fluctuations.

Speed of Sound

- C_s Crucial for elliptic flow, hydrodynamical studies ...
- C_v Event-by-event temperature/ p_T fluctuations.
- Can be obtained from $\ln Z$ by taking appropriate derivatives which relate it to the temperature derivative of anomaly measure Δ/ϵ .

```
(RVG, S. Gupta and S. Mukherjee, hep-lat/0412036)
```

• New method to obtain these differentially without getting negative pressure. Introducing a parameter 't', t=1 used in earlier Bielefeld studies, we use t=0.

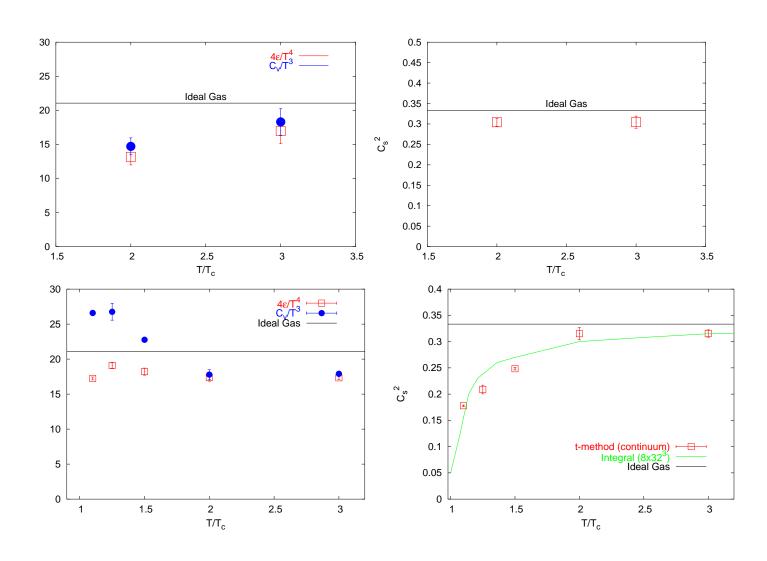
```
(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)
```

• Using lattices with 8, 10, and 12 temporal sites ($38^3 \times 12$ and 38^4 lattices) and with statistics of 0.5-1 million iterations, ϵ , P, s, C_s^2 and C_v obtained in continuum.

• Using lattices with 8, 10, and 12 temporal sites ($38^3 \times 12$ and 38^4 lattices) and with statistics of 0.5-1 million iterations, ϵ , P, s, C_s^2 and C_v obtained in continuum.

Entropy agrees with strong coupling SYM prediction

(Gubser, Klebanov & Tseytlin, NPB '98, 202)

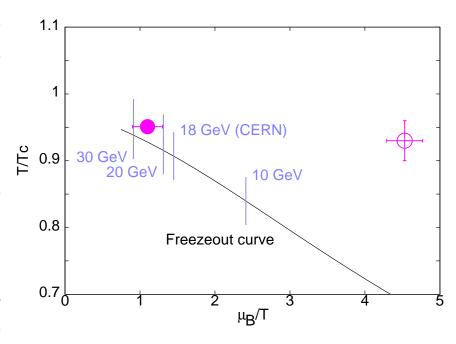

$$\frac{s}{s_0} = f(g^2 N_c), \text{ where}$$

$$f(x) = \frac{3}{4} + \frac{45}{32} \zeta(3)(2x^{-3/2}) + \cdots \text{ and}$$

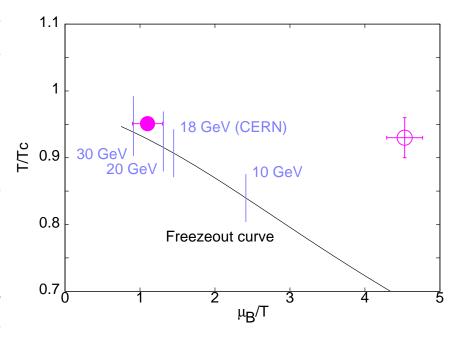
$$s_0 = \frac{2}{3} \pi^2 N_c^2 T^3,$$
(3)

for $T=3T_c$ but fails at $2T_c$, as do various weak coupling schemes.

Results for t = 1 and 0 respectively:



• Lattice QCD **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.


- Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum numbers suggest QGP to have quarklike excitations.

- Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum numbers suggest QGP to have quarklike excitations.
- Phase diagram in $T \mu_B$ plane has begun to emerge: Our estimate for the critical point is $\mu_B/T \sim 1-2$.

- Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum \$\beta^{0.9}\$ \$\frac{30 \text{ GeV}}{20 \text{ Correlations}}\$ on correlations of quantum \$\beta^{0.9}\$ \$\frac{30 \text{ GeV}}{20 \text{ Correlations}}\$ of quantum \$\beta^{0.9}\$ \$\frac{30 \text{ GeV}}{20 \text{ Correlations}}\$.
- Phase diagram in $T-\mu_B$ plane has begun to emerge: Our estimate for the critical point is $\mu_B/T\sim 1-2$.

- Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum $\stackrel{\sim}{E}$ 0.9 $\stackrel{\sim}{0.9}$ numbers suggest QGP to have quarklike excitations.
- Phase diagram in $T-\mu_B$ plane has begun to emerge: Our estimate for the critical point is $\mu_B/T\sim 1-2$.

Heavy Ion Collisions in CERN Geneva, and BNL, New York, have seen tell-tale signs of QGP: Many surprises already and more excitement likely to come.