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Introduction
♠ Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC.
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• Transition temperature, Critical energy density, Order of Phase Transition?

• What are the properties of QGP (EoS, Excitations, Screening..) ?
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• Transition temperature, Critical energy density, Order of Phase Transition?

• What are the properties of QGP (EoS, Excitations, Screening..) ?

• QCD defined on a space time lattice – Best and Most Reliable way to extract
non-perturbative physics : ‘Iconic Results’ - Wilczek, hep-ph/0512187.

Need Ns � Nt for thermodynamic limit and large Nt for continuum limit.
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• The Transition Temperature Tc ∼ 170 MeV (Bielefeld & CP-PACS, Tsukuba 2001) and
Equation of State (EOS), have been predicted by lattice QCD.
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• The Transition Temperature Tc ∼ 170 MeV (Bielefeld & CP-PACS, Tsukuba 2001) and
Equation of State (EOS), have been predicted by lattice QCD. OLD results on
order parameters & EoS from Bielefeld 2001 (Coarse Nt =4 lattices) .

• Other quantities, notably strangeness enhancement in Heavy Ion Physics, the
Wróblewski Parameter λs (RVG & Sourendu Gupta PR D 2002) have also been predicted by
lattice QCD.
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• Thrust of new results now on

– continuum limit, lighter quarks,
– T -µ phase diagram and
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• Thrust of new results now on

– continuum limit, lighter quarks,
– T -µ phase diagram and
– more complex observables, speed of sound, transport coefficients,
– Fluctuations, J/ψ-dissolution/persistence, dileptons ... etc.

• An interesting theoretical issue – Conformal Invariance and AdS/CFT
predictions.

• Lot of activity in Model Building to explain Lattice QCD results: Quasiparticle
models, Hadron Resonance Gas, Quarkonia from Lattice QQ̄ potential, sQGP
and coloured states...
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EoS, Speed of Sound

• Recent results for EoS : Nt=6, Smaller quark masses.

Bernard et al., MILC hep-lat/0509053; Aoki et al., hep-lat/0510084.
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Small differences; ε(Tc) ∼ 6T 4
c still.

Too small volumes =⇒ Thermodynamic Limit ?
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• Cv – Event-by-event temperature/pT fluctuations.
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Too small volumes =⇒ Thermodynamic Limit ?

• Cs – Crucial for elliptic flow, hydrodynamical studies ...

• Cv – Event-by-event temperature/pT fluctuations.

• Can be obtained from lnZ by taking appropriate derivatives which relate it to
the temperature derivative of anomaly measure ∆/ε.
(RVG, S. Gupta and S. Mukherjee, PR D71 (2005) )

• New method to obtain these differentially without getting negative pressure.
Introduced an improved operator than used in earlier Bielefeld studies.
(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)
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Small differences; ε(Tc) ∼ 6T 4
c still.

Too small volumes =⇒ Thermodynamic Limit ?

• Cs – Crucial for elliptic flow, hydrodynamical studies ...

• Cv – Event-by-event temperature/pT fluctuations.

• Can be obtained from lnZ by taking appropriate derivatives which relate it to
the temperature derivative of anomaly measure ∆/ε.
(RVG, S. Gupta and S. Mukherjee, PR D71 (2005) )

• New method to obtain these differentially without getting negative pressure.
Introduced an improved operator than used in earlier Bielefeld studies.
(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

• Using lattices with 8, 10, and 12 temporal sites (383 × 12 and 384 lattices) and
with statistics of 0.5-1 million iterations, ε, P , s, C2

s and Cv obtained in
continuum.
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(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

♠ Cv ∼ 4ε for 2Tc but No Ideal Gas limit.

♠ Specific heat ⇐⇒ fluctuations in pT ?

♠ C2
s closer to Ideal Gas limit; Any structure near Tc ??
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• Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB ’98, 202)

for T = 2− 3Tc but fails at lower T , as do various weak coupling schemes :
s
s0

= f(g2Nc), where f(x) = 3
4 + 45

32ζ(3)x−3/2 + · · · and s0 = 2
3π

2N2
cT

3.
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QGP - (Almost) Perfect Liquid
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Γs =
4
3η

sT
, (1)

where η is Shear Viscosity and s is
entropy density; τ =

√
t2 − z2 is the

time scale of expansion.
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Elliptic flow consistent with Ideal
Hydrodynamics  bound on Shear
viscosity. (D. Teaney, nucl-th/03010099; PRC 2003)

Γs =
4
3η

sT
, (1)

where η is Shear Viscosity and s is
entropy density; τ =

√
t2 − z2 is the

time scale of expansion.

Perturbation theory ⇒ Large η/s
Small η/s −→ Strongly Coupled Liquid.
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• Kubo’s Linear Response
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Coefficients in terms of
equilibrium correlation
functions.
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• Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

• Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

• Continue them to get
Retarded ones  Shear,
Bulk Viscosities.
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• Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

• Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

• Continue them to get
Retarded ones  Shear,
Bulk Viscosities.

• Larger lattices and inclusion
of dynamical quarks in
future.
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Anomalous J/ψ Suppression : CERN NA50 results

♠ Matsui-Satz idea — J/ψ suppression as a signal of QGP.
♠ Deconfinement  Screening of coloured quarks,
which cannot bind.
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J/ψ Suppression
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J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.
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• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.
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J/ψ Suppression or Not ?

• Original Matsui-Satz idea — Based on Quarkonium potential model
calculations and an Ansatz for temperature dependence  dissolution of J/ψ
and χc by 1.1Tc.

• Impressive NA50 results from CERN and now PHENIX at RHIC.

• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.

• Caution : nonzero temperature obtained by making temporal lattices shorter :
483 × 12 to 643 × 24 Lattices used. (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)
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♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.
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♠ Since about 30-40 % observed J/ψ come through χ and ψ′ decays, expect
changes of suppression patterns as a function of T or

√
s.
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♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Since about 30-40 % observed J/ψ come through χ and ψ′ decays, expect
changes of suppression patterns as a function of T or

√
s.

♠ No Significant Effect of inclusion of dynamical fermions ?
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Quarkonia moving in the Heat Bath

♠ Should see more energetic gluons. More Dissociation at the same T as
momentum of J/ψ increases ? Datta et al. SEWM 2004, PANIC 2005.
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Quarkonia moving in the Heat Bath

♠ Should see more energetic gluons. More Dissociation at the same T as
momentum of J/ψ increases ? Datta et al. SEWM 2004, PANIC 2005.
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♠ Both J/ψ and ηc do show this trend.

♠ The effect is significant at both 0.75 and 1.1Tc.
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QCD Phase Diagram

Expected QCD Phase Diagram and Lattice Approaches to unravel it.
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).
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QCD Phase Diagram

Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).

• Imaginary Chemical Potential (Ph. de

Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D’Elia PR D67 (2003) 014505 ).
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QCD Phase Diagram

Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).

• Imaginary Chemical Potential (Ph. de

Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002)

074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR

D68 (2003) 034506 ).
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Reweighting reasonable for only small
µ ? (Ejiri 2004)

T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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How Do We Do This Expansion?

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫

DU exp(−SG)
Q

f Det M(mf,µf ) .

Canonical definitions then yield various number densities and susceptibilities :

ni = T
V

∂ lnZ
∂µi

and χij = T
V

∂2 lnZ
∂µi∂µj

.

Denoting higher order susceptibilities by χnu,nd
, the pressure P has the expansion

in µ:

∆P
T 4

≡ P (µ, T )
T 4

− P (0, T )
T 4

=
∑

nu,nd

χnu,nd

1
nu!

(µu

T

)nu 1
nd!

(µd

T

)nd

(2)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√∣∣∣ χn
B

χn+2
B

∣∣∣ or
[∣∣∣χ0

B
χn

B

∣∣∣]1
n
. We use terms up to 8th order in µ, i.e., estimates

from 2/4, 4/6 and 6/8 terms.

• Coefficients for the off-diagonal susceptibility, χ11, can be constructed similarly.

• The ratio χ11/χ20 can be shown to yield the ratio of widths of the measure in
the imaginary and real directions at µ = 0.

• Can be generalized to nonzero µ with some care.
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How Do We Do This Expansion?
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Our Simulations & Results

• Lattice used : 4 ×N3
s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

WHEPP-9, Institute of Physics, Bhubaneswar, January 3, 2006 R. V. Gavai Top 22



Our Simulations & Results

• Lattice used : 4 ×N3
s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Simulations made at T/Tc = 0.75(2), 0.80(2), 0.85(1), 0.90(1), 0.95(1),
0.975(10), 1.00(1), 1.045(1), 1.15(1), 1.25(2), 1.65(6) and 2.15(10)

• Typical stat. 50-100 in max autocorrelation units.
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Wróblewski Parameter

• Fluctuation-Dissipation Theorem −→ Production of Strange quark-antiquark
pair ∼ imaginary part of generalized strange quark susceptibility.

WHEPP-9, Institute of Physics, Bhubaneswar, January 3, 2006 R. V. Gavai Top 23
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• Kramers - Krönig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.
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pair ∼ imaginary part of generalized strange quark susceptibility.
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susceptibility, which we obtain from lattice QCD simulations.

• Finally, make a relaxation time approximation (ωτ � 1)  ratio of real parts is
the same as the ratio of imaginary parts.
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Wróblewski Parameter

• Fluctuation-Dissipation Theorem −→ Production of Strange quark-antiquark
pair ∼ imaginary part of generalized strange quark susceptibility.

• Kramers - Krönig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.

• Finally, make a relaxation time approximation (ωτ � 1)  ratio of real parts is
the same as the ratio of imaginary parts.

• Using the strange and u-d susceptibilities, ratio χs/χu can be obtained.
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We use m/Tc = 0.03 for u, d and m/Tc = 1 for s quark;
At each T , ratio of χ’s → λs(T ).

Extrapolate it to Tc. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006)
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At each T , ratio of χ’s → λs(T ).
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Baryon-Strangeness Correlation

♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.
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♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.

♣ Baryon Number(Charge)–Strangeness correlation : C(BS)/S (C(QS)/S) (Koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006 ); u-d Correlation.
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• We (RVG & S. Gupta, PR D 71 2005) use terms
up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].
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• We (RVG & S. Gupta, PR D 71 2005) use terms
up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)
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• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)

• Critical point shifted to smaller
µB/T ∼ 1− 2.
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• We (RVG & S. Gupta, PR D 71 2005) use terms
up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)

• Critical point shifted to smaller
µB/T ∼ 1− 2.

• Bielefeld-Swansea results (hep-lat/0501030)

up to 6th order. They use Nsmπ ∼
15 but have a large mπ/mρ ∼ 0.7.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).

♠ Left panel for ρn and right one for rn.
Extrapolation in n  µE/TE = 1.1± 0.2 at TE = 0.95Tc.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).

♠ Left panel for ρn and right one for rn.
Extrapolation in n  µE/TE = 1.1± 0.2 at TE = 0.95Tc.

♠ Finite volume shift consistent with Ising Universality class.
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More Details

Measure of the seriousness of sign problem : Ratio χ11/χ20
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.

♠ We had earlier suggested to obtain more pairs of diverging terms by taking
larger Nf .

♠ E.g. T/V 〈O22〉c should be finite as it is a combination of Taylor Coeffs.
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♠ Interesting to note that χ40 shows the same volume dependence at Tc as χL

which in turn comes from the 〈O22〉c.

WHEPP-9, Institute of Physics, Bhubaneswar, January 3, 2006 R. V. Gavai Top 30



♠ Interesting to note that χ40 shows the same volume dependence at Tc as χL

which in turn comes from the 〈O22〉c.

0

0.25

0.5

0.75

1

1.25

1.5

5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55

χ 
 W

�

β
-4

-2

0

2

4

6

8

10

12

14

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

ch
i4

0
T/Tc

Ns=24 Ns=16 Ns=12

WHEPP-9, Institute of Physics, Bhubaneswar, January 3, 2006 R. V. Gavai Top 30



♠ Interesting to note that χ40 shows the same volume dependence at Tc as χL

which in turn comes from the 〈O22〉c.
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♠ Similar behaviour in higher order terms as well.
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Summary

• Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.
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Summary
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Heavy Ion Collisions in CERN Geneva, and BNL, New York, have seen tell-tale
signs of QGP : Many surprises already and more excitement likely to come.
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mρ/Tc mπ/mρ mN/mρ Nsmπ flavours TE/Tc µE
B/T

E

5.372 (5) 0.185 (2) — 1.9–3.0 2+1 0.99 (2) 2.2 (2)
5.12 (8) 0.307 (6) — 3.1–3.9 2+1 0.93 (3) 4.5 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3–10.0 2 0.95 (2) 1.1 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3 2 — —
5.5 (1) 0.70 (1) — 15.4 2 — —

Table 1: Summary of critical end point estimates— the lattice spacing is

a = 1/4T . Ns is the spatial size of the lattice and Nsmπ is the size in units of the

pion Compton wavelength, evaluated for T = µ = 0. The ratio mπ/mK sets the

scale of the strange quark mass.

Results are sequentially from Fodor-Katz ’04, Fodor-Katz ’02, Gavai-Gupta, de
Forcrand- Philipsen and Bielefeld-Swansea.
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