
The QCD Phase Diagram

Rajiv V. Gavai and Sourendu Gupta
T. I. F. R., Mumbai

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 1



The QCD Phase Diagram

Rajiv V. Gavai and Sourendu Gupta
T. I. F. R., Mumbai

Introduction

Methodology

Results

Summary

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 1



Introduction

Expected QCD Phase Diagram

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 2



Introduction

Expected QCD Phase Diagram ... but could, however, be ...

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 2



Introduction

Expected QCD Phase Diagram ... but could, however, be ...

Τ

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 2



Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫

DU exp(−SG)
Q

f Det M(mf,µf ) .
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit
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• Reweighting reasonable for only small
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T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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Methodology

From the QCD partition function

Z =
∫

DU exp(−SG)
Q

f Det M(mf,µf ) ,

various number densities and susceptibilities are obtained using canonical
definitions :

ni = T
V

∂ lnZ
∂µi

and χij = T
V

∂2 lnZ
∂µi∂µj

.

Higher order susceptibilities are defined by

χfg··· =
T

V

∂n log Z

∂µf∂µg · · ·
=

∂nP

∂µf∂µg · · ·
. (1)
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These are Taylor coefficients of the pressure P in its expansion in µ.

∆P

T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=

∑
nu,nd

χnu,nd

1
nu!

(µu

T

)nu 1
nd!

(µd

T

)nd

(2)

From this a series for baryonic susceptibility can be constructed. Its radius of
convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6th order in µB/3 = µu = µd are

χ0
B = χ20, χ4

B =
1
4!

[χ60 + 4χ51 + 7χ42 + 4χ33] ,

χ2
B =

1
2!

[χ40 + 2χ31 + χ22] , χ6
B =

1
6!

[χ80 + 6χ71 + 16χ62 + 26χ53 + 15χ44] .

(3)
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Successive estimates for the radius of convergence can be obtained from these
using

ρn =
[∣∣∣χ0

B
χn

B

∣∣∣]1
n

or r2n+2 =
√∣∣∣ χ2n

B

χ2n+2
B

∣∣∣.
Similar coefficients for the off-diagonal susceptibility are

χ0
B

= χ11, χ2
B

=
1
2!

[2χ31 + 2χ22] ,

χ4
B

=
1
4!

[2χ51 + 8χ42 + 6χ33] , χ6
B

=
1
6!

[2χ71 + 12χ62 + 30χ53 + 20χ44] .(4)

♥ The ratio χ11/χ20 can be shown to yield the ratio of widths of the measure in
the imaginary and real directions at µ = 0.

♥ Can be generalized to nonzero µ with some care and the coefficients above.
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The Susceptibilities

All susceptibilities can be written as traces of products of M−1 and various
derivatives of M .
Two steps for getting NLS : 1) Writing down in terms of derivatives of Z and 2)
obtaining these derivatives in terms of traces.

Setting µi = 0, χ’s are nontrivial for only even N = nu + nd. Thus at leading
order,

χ20 =
(

T

V

)
Z20

Z
χ11 =

(
T

V

)
Z11

Z
(5)

Here Z20 = Z[〈O2 +O11〉] , Z11 = Z[〈O11〉], O1 = Tr M−1M ′,
O2 = O′

1 = Tr M−1M ′′ − Tr M−1M ′M−1M ′, and
O11 = O1 · O1 = (Tr M−1M ′)2.
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Higher order NLS are more involved since higher derivatives of O with more quark
propagators come into play; systematic evaluation procedure helpful to optimize
the number of M -inversions.

At the next, 4th, order we have

χ40 =
(

T

V

) [
Z40

Z
− 3

(
Z20

Z

)2
]

,

χ31 =
(

T

V

) [
Z31

Z
− 3

(
Z20

Z

) (
Z11

Z

)]
,

χ22 =
(

T

V

) [
Z22

Z
−

(
Z20

Z

)2

− 2
(

Z11

Z

)2
]

, (6)
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with

Z40 = Z

〈
O1111 + 6O112 + 4O13 + 3O22 +O4

〉
,

Z31 = Z

〈
O1111 + 3O112 +O13

〉
,

Z22 = Z

〈
O1111 + 2O112 +O22

〉
. (7)

The 8th order, involves operators up to O8 which in turn have terms up to 8
quark propagators. In fact, the entire evaluation of the χ80 needs 20 inversions of
Dirac matrix.
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• Problem of finding the minimum number inversions for a given order — Akin to
Steiner Problem in Computer Science  our algorithm

• The traces are estimated by a stochastic method: Tr A =
∑Nv

i=1 R†
iARi/2Nv ,

and (Tr A)2 = 2
∑L

i>j=1(Tr A)i(Tr A)j/L(L− 1) , where Ri is a complex
vector from an Gaussian ensemble of Nv which is further subdivided in L
independent sets.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140 160 180 200

T 
   

   
   

  /
(n

-2
)!

n-
4 χ n0

Nv

3Tc/4, 4.10^3 lattice, Gaussian noise

n=4
n=6
n=8

Higher NLS need larger Nv : Up
to 500 used as Ns increased to
24.
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Our Simulations & Results

• Lattice used : 4 ×N3
s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)
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s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Simulations made at T/Tc = 0.75(2), 0.80(2), 0.85(1), 0.90(1), 0.95(1),
0.975(10), 1.00(1), 1.05(1), 1.25(1), 1.65(6) and 2.15(10)

• Typical stat. 50-100 in max autocorrelation units.
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Quark Number Susceptibility

• Proposed as a signal of light
quarks in QGP (McLerran ’87).
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♠ Fluctuations, Wroblewski Parameter ....
♠ Comparison with weak coupling.
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♠ Interesting to note that χ40 shows the same volume dependence at Tc as χL

which in turn comes from the 〈O22〉c.
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♠ Similar behaviour for higher order terms
as well: 〈O222〉c, 〈O2222〉c.....
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More Details

Measure of the seriousness of sign problem : Ratio χ11/χ20
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.

♠ We had earlier suggested to obtain more pairs of diverging terms by taking
larger Nf .

♠ E.g. T/V 〈O22〉c should be finite as it is a combination of Taylor Coeffs.
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4/6 radius of convergence: T/Tc= 1 0.95 0.9

• Strong finite size effects
for small Ns. A strong
change around Ns ∼ 14
or Nsmπ ∼ 6. ( Compatible

with arguments of Smilga & Leutwyler and

also seen for i) hadron masses by Gupta

& Ray and ii) DIS structure functions by

ZeRo Collaboration, Gaugnelli et al. PLB

’04)
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• Strong finite size effects
for small Ns. A strong
change around Ns ∼ 14
or Nsmπ ∼ 6. ( Compatible

with arguments of Smilga & Leutwyler and

also seen for i) hadron masses by Gupta

& Ray and ii) DIS structure functions by

ZeRo Collaboration, Gaugnelli et al. PLB

’04)

• Bielefeld results for
Nsmπ ∼ 15 but large
mπ/mρ ∼ 0.7.
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• Our estimate consistent
with Fodor & Katz
(2002) [ mπ/mρ = 0.31
and Nsmπ ∼ 3-4].
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T/Tc=0.95 : 6/8 4/6

• Our estimate consistent
with Fodor & Katz
(2002) [ mπ/mρ = 0.31
and Nsmπ ∼ 3-4].

• Critical point shifted to
smaller µB/T ∼ 1− 2.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).

♠ Left panel for ρn and right one for rn.
Extrapolation in n  µE/TE = 1.1± 0.2 at TE = 0.95Tc.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes).

♠ Left panel for ρn and right one for rn.
Extrapolation in n  µE/TE = 1.1± 0.2 at TE = 0.95Tc.

♠ Finite volume shift consistent with Ising Universality class.
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Summary

• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 20



Summary

• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.

• Volume independence provides check on the computation from cancellations in
connected terms
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Summary

• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.

• Volume independence provides check on the computation from cancellations in
connected terms

• Our results on volume dependence suggest Nsmπ > 6 in thermodynamic
volume limit. µB/T of critical end point shows a strong drop at that volume.
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Summary

• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.

• Volume independence provides check on the computation from cancellations in
connected terms

• Our results on volume dependence suggest Nsmπ > 6 in thermodynamic
volume limit. µB/T of critical end point shows a strong drop at that volume.

• µB/T ∼ 1− 2 is indicated for the critical point. Larger Nt would be
interesting.
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QCD Phase Diagram : 2005

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

T
/T

c�

/TB
�µ

Freezeout curve

10 GeV

18 GeV (CERN)

20 GeV
30 GeV

Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005 R. V. Gavai Top 21



QCD Phase Diagram : 2005

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

T
/T

c�

/TB
�µ

Freezeout curve

10 GeV

18 GeV (CERN)

20 GeV
30 GeV

• Our result shown by solid point; Fodor-Katz ’02 point (same quark mass) also
shown. Freezout Curves from Cleymans using Tc in our case.
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• Our result shown by solid point; Fodor-Katz ’02 point (same quark mass) also
shown. Freezout Curves from Cleymans using Tc in our case.

• References : RVG and Sourendu Gupta, PRD, 71, 114014 (2005) and PRD 72,
054006 (2005).
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mρ/Tc mπ/mρ mN/mρ Nsmπ flavours TE/Tc µE
B/TE

5.372 (5) 0.185 (2) — 1.9–3.0 2+1 0.99 (2) 2.2 (2)
5.12 (8) 0.307 (6) — 3.1–3.9 2+1 0.93 (3) 4.5 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3–10.0 2 0.95 (2) 1.1 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3 2 — —
5.5 (1) 0.70 (1) — 15.4 2 — —

Table 1: Summary of critical end point estimates— the lattice spacing is

a = 1/4T . Ns is the spatial size of the lattice and Nsmπ is the size in units of the

pion Compton wavelength, evaluated for T = µ = 0. The ratio mπ/mK sets the

scale of the strange quark mass.

Results are sequentially from Fodor-Katz ’04, Fodor-Katz ’02, Gavai-Gupta, de
Forcrand- Philipsen and Bielefeld-Swansea.
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