High Energy Physics

• HEP – A Strong Component of Theoretical Physics here since inception.

High Energy Physics

- HEP A Strong Component of Theoretical Physics here since inception.
- Several Noteworthy Results :
 - Unitarity Bounds on Cross Sections
 - Roy equations for π - π scattering (Still being used in ChPT)
 - A new two photon sum-rule
 - Regge Phenomenology

High Energy Physics

- HEP A Strong Component of Theoretical Physics here since inception.
- Several Noteworthy Results :
 - Unitarity Bounds on Cross Sections
 - Roy equations for π - π scattering (Still being used in ChPT)
 - A new two photon sum-rule
 - Regge Phenomenology
 - perturbative QCD :
 - * Scheme independence
 - * Charmonium production
 - * Hard Probes for QGP (Jets, Drell-Yan, ..)

- Search Criteria in discovery of Top quark
- Electroweak Precision parameters
- Chiral Phase Transition, Debye Screening
- Unitarity upper bound on gaugino-gravitino mass ratio

- Search Criteria in discovery of Top quark
- Electroweak Precision parameters
- Chiral Phase Transition, Debye Screening
- Unitarity upper bound on gaugino-gravitino mass ratio
- Research in HEP subarea *spurred* by experimental data and has many times also *impacted* the experimental analysis.

- Search Criteria in discovery of Top quark
- Electroweak Precision parameters
- Chiral Phase Transition, Debye Screening
- Unitarity upper bound on gaugino-gravitino mass ratio
- Research in HEP subarea *spurred* by experimental data and has many times also *impacted* the experimental analysis.
- Some examples from here:
 - τ -polarisation in Charged Higgs search
 - J/ψ -suppression : normal vs. anomalous
 - Angular Distributions in $B \to VV$ decays
 - HERA large Q^2 -events

- Current and Future Experimental Facilities :
 - RHIC at BNL, Tevatron, B-Factories, LHC at CERN, ILC...
 - J-PARC at Tokai, Japan, FAIR at GSI, Germany
 - Neutrino : Super-Kamiokande, SNO, NoνA, T2K, INO, ...
 - Jefferson Lab, USA, EIC at BNL, Cosmic Ray Expts..

3

- Current and Future Experimental Facilities :
 - RHIC at BNL, Tevatron, B-Factories, LHC at CERN, ILC...
 - J-PARC at Tokai, Japan, FAIR at GSI, Germany
 - Neutrino : Super-Kamiokande, SNO, NoνA, T2K, INO, ...
 - Jefferson Lab, USA, EIC at BNL, Cosmic Ray Expts...
- Current Faculty: A Rajeev S. Bhalerao
 - Amol Dighe
 - Rajiv V. Gavai
 - Sourendu Gupta
 - Sridhar K.
 - Probir Roy

- Current and Future Experimental Facilities :
 - RHIC at BNL, Tevatron, B-Factories, LHC at CERN, ILC...
 - J-PARC at Tokai, Japan, FAIR at GSI, Germany
 - Neutrino : Super-Kamiokande, SNO, NoνA, T2K, INO, ...
 - Jefferson Lab, USA, EIC at BNL, Cosmic Ray Expts..
- Current Faculty : 🐥 Rajeev S. Bhalerao
 - Amol Dighe
 - Rajiv V. Gavai
 - Sourendu Gupta
 - Sridhar K.
 - Probir Roy
- Retired D. P. Roy (July 2006); To Join Saumen Datta (Oct. 2006)

• Neutrinos & Flavour Physics (Amol, Probir)

- Neutrinos & Flavour Physics (Amol, Probir)
 - Dirac/Majorana, CP-Violation, Hierarchy, ...
 - Neutrino flavour conversion in Sun and Supernovae.
 - INO Physics studies
 - Seesaw, Leptogenesis, ..
 - Search for New Physics in B decays

- Neutrinos & Flavour Physics (Amol, Probir)
 - Dirac/Majorana, CP-Violation, Hierarchy, ...
 - Neutrino flavour conversion in Sun and Supernovae.
 - INO Physics studies
 - Seesaw, Leptogenesis, ..
 - Search for New Physics in B decays

Physics Beyond Standard Model (Sridhar, Probir)

- Neutrinos & Flavour Physics (Amol, Probir)
 - Dirac/Majorana, CP-Violation, Hierarchy, ...
 - Neutrino flavour conversion in Sun and Supernovae.
 - INO Physics studies
 - Seesaw, Leptogenesis, ...
 - Search for New Physics in B decays

- Physics Beyond Standard Model (Sridhar, Probir)
 - Higgs at LHC and ILC: Signals for SM vs. MSSM, Invisible Higgs
 - SUSY Phenomenology at LHC and ILC: Sparticle properties, Dark Matter

- Extra Dimension Phenomenology and Braneworld models (ADD, RS)
- Signals to distinguish SUSY from LED
- Signals for AMSB at ILC

- Extra Dimension Phenomenology and Braneworld models (ADD, RS)
- Signals to distinguish SUSY from LED
- Signals for AMSB at ILC
- Lattice QCD (Saumen, Rajiv, Sourendu)

- Extra Dimension Phenomenology and Braneworld models (ADD, RS)
- Signals to distinguish SUSY from LED
- Signals for AMSB at ILC
- Lattice QCD (Saumen, Rajiv, Sourendu)
 - At Finite Temperature What are the properties of QGP (EoS, Excitations,
 Screening lengths, Hadronic properties, Transport Coefficients)?
 - At Finite T & μ Fermion Sign Problem and QCD Phase Diagram.
 - Weak Matrix Elements & Decay Constants, Hadron spectra, Form factors.
 - Chiral Fermions and Algorithms.

- Extra Dimension Phenomenology and Braneworld models (ADD, RS)
- Signals to distinguish SUSY from LED
- Signals for AMSB at ILC
- Lattice QCD (Saumen, Rajiv, Sourendu)
 - At Finite Temperature What are the properties of QGP (EoS, Excitations, Screening lengths, Hadronic properties, Transport Coefficients)?
 - At Finite T & μ Fermion Sign Problem and QCD Phase Diagram.
 - Weak Matrix Elements & Decay Constants, Hadron spectra, Form factors.
 - Chiral Fermions and Algorithms.

Perturbative QCD (Sridhar, Rajiv, Sourendu)

- Extra Dimension Phenomenology and Braneworld models (ADD, RS)
- Signals to distinguish SUSY from LED
- Signals for AMSB at ILC
- Lattice QCD (Saumen, Rajiv, Sourendu)
 - At Finite Temperature What are the properties of QGP (EoS, Excitations, Screening lengths, Hadronic properties, Transport Coefficients)?
 - At Finite T & μ Fermion Sign Problem and QCD Phase Diagram.
 - Weak Matrix Elements & Decay Constants, Hadron spectra, Form factors.
 - Chiral Fermions and Algorithms.

- Perturbative QCD (Sridhar, Rajiv, Sourendu)
 - LHC Physics Jets, Higher orders and resummations, QCD corrections for BSM processes...

- RHIC & LHC Physics Jets in QGP, Hard Probes such as Heavy Flavour, Quarkonia, Dileptons, Direct photons,...
- Spin Physics Polarised structure functions, Nucleon spin carriers,
 Transversity distributions,

6

- RHIC & LHC Physics Jets in QGP, Hard Probes such as Heavy Flavour, Quarkonia, Dileptons, Direct photons,...
- Spin Physics Polarised structure functions, Nucleon spin carriers,
 Transversity distributions,

Quark-Gluon Plasma (Rajeev, Rajiv, Saumen, Sourendu)

- RHIC & LHC Physics Jets in QGP, Hard Probes such as Heavy Flavour, Quarkonia, Dileptons, Direct photons,...
- Spin Physics Polarised structure functions, Nucleon spin carriers,
 Transversity distributions,
- Quark-Gluon Plasma (Rajeev, Rajiv, Saumen, Sourendu)
 - Formation, Thermalization and Expansion Transport Theory, Rel. Hydrodynamics (ideal or dissipative).
 - QGP Signals Elliptic Flow, Jet Quenching, Fluctuations, Strangeness, Quarkonium Suppression.
 - Equation of State at Large Baryon Density (Lattice, Models, Nuclear Matter..).
 - Simple Models as bridge between Lattice and Experimental Data– Quasiparticle models, Hadron Resonance Gas, Quarkonia from Lattice $Q\bar{Q}$ potential, sQGP and coloured states...