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Heavy lon Collisions.
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Introduction : What is Big Bang Theory ?

e Hubble's Expansion Law. —
Past : Universe was Denser, although
Now : It is Rarer
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e Born in Hot Big Bang; Cooled by
Expansion
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Introduction : What is Big Bang Theory ?

e Hubble's Expansion Law. —
Past : Universe was Denser, although
Now : It is Rarer

CosmiC MICROWAVE BACKGROUND SPECTRUM FROM COBE

THEORY AND OBSERVATION AGREE

e Born in Hot Big Bang; Cooled by
Expansion

e Cosmic  Microwave Background
Radiation (CMBR) — Strongest
Evidence.
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— Most perfect black body radiation
spectrum.

— T ~ 3000° K, redshifted due to
expansion 1" ~ 2.726° K.

10

Waves / centimeter
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Earliest WMAP-snap of Universe:
Our Universe at the age of 380,000 years.
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Why Supercompute the Early Universe & How ?
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Strong Interactions

e Known Interactions and Particles
a century ago: Electromagnetism,
Gravity and Electrons, Atoms.
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e Rutherford’s Scattering Experiment
— various layers that have since been
discovered.
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Strong Interactions

e Known Interactions and Particles
a century ago: Electromagnetism,
Gravity and Electrons, Atoms. 1

e Rutherford's Scattering Experiment
— various layers that have since been

discovered. 1
;10,000
e Quarks and Leptons — Basic building
blocks :  Proton (uud), Neutron e
(udd), Pion (ud).... 100,000

1 A
e A Variety of Vector Bosons : Carriers 100,000,000
of forces.

2 -18
eﬂ 10
A (at largest)

Physics Department Seminar, IIT, Delhi, January 12, 2009, R. V. Gavai Top 6



Graviton wtw z? Photon Gluon

(mot yet observed)

Quarks and Quarks and Quarks

Charged Leptons
L -
eptons and W' W and Gluons

Strengths in a ratio 107°% : 107> : 1072 : 1
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Carried
By Graviton Photon

(mot yet observed)

Quarks and

All and Gluons

Strengths in a ratio 1073Y : 10™°: 1072 : 1

Color

Anti-Quarks

Anti-Color

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.

Physics Department Seminar, [IT, Delhi, January 12, 2009, R. V. Gavai Top



Phase Diagram of Strong Matter

e Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of
quarks-gluons.
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Phase Diagram of Strong Matter

e Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of
quarks-gluons.

e Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..

e New States at High Temperatures/Density expected on basis of models.
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Phase Diagram of Strong Matter

e Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of
quarks-gluons.

e Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..
e New States at High Temperatures/Density expected on basis of models.

e Quark-Gluon Plasma, such a new phase, expected in Relativistic Heavy lon
Collisions & filled our Universe a few microseconds after the Big Bang.

e Color Superconductivity another phase, may exist in very dense stars.
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FIRST ORDER SECOND ORDER
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FIRST ORDER SECOND ORDER

e Discontinuous € — Nonzero
Latent Heat— & finite C,
— First order PT.

v
v

v

v
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FIRST ORDER SECOND ORDER

_——
E E e Discontinuous € — Nonzero
/ Latent Heat— & finite C,
— First order PT.
T Tc _ ] ]
e Continuous ¢, & diverging
(', — Second order PT.
e In(Finite) Correleation
! Length at 2nd (1st) Order
% transition.
Cv Cv
T ' Tc :
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FIRST ORDER
—
_/
- >
Cv E

SECOND ORDER

A

v

v

Tc

Discontinuous € — Nonzero
Latent Heat— & finite C,
— First order PT.

Continuous €, & diverging
(', — Second order PT.

In(Finite) Correleation
Length at 2nd (1st) Order
transition.

“Cross-over’ — mere rapid
change in €, with maybe a
sharp peaked C,,.
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Putting QCD to Work

e A first-principles calculation of €('T") to look for phase transitions and phases
using the underlying theory QCD alone: NO free parameters and NO arbitrary
assumptions.
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Putting QCD to Work

e A first-principles calculation of €(7") to look for phase transitions and phases

using the underlying theory QCD alone: NO free parameters and NO arbitrary
assumptions.

e Price to pay : Functional integrations have to be done over quark and gluon
fields : [ dz F(z) — [ D¢ Flo(zx)].
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Putting QCD to Work

e A first-principles calculation of ¢('T") to look for phase transitions and phases
using the underlying theory QCD alone: NO free parameters and NO arbitrary
assumptions.

e Price to pay : Functional integrations have to be done over quark and gluon
fields : [ dz F(z) — [ D¢ Flop(zx)].

e Simpson integration trick : [ dx F(x) = limay—0y,, Az F(x;).
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Putting QCD to Work

e A first-principles calculation of €(7") to look for phase transitions and phases

using the underlying theory QCD alone: NO free parameters and NO arbitrary
assumptions.

e Price to pay : Functional integrations have to be done over quark and gluon
fields : [ dz F(z) — [ D¢ Flop(zx)].

e Simpson integration trick : [ dx F(x) =limay—0y,, Az F(x;).

e |ts analogue to perform functional intergarations needs discretizing the
space-time on which the fields are defined : Lattice Field Theory !
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Basic Lattice QCD
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e Discrete space-time : Lattice
spacing a UV Cut-off.

% X % % X
X X X—e—X X
X X XX X
A
pt
-l
v X X XX %
UX
= >
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e Discrete space-time : Lattice
spacing a UV Cut-off.

e Quark fields v (z), ¥(x) on X X X X X
lattice sites.
e Gluon Fields on links : U,(z) X X X—<—X X
Plaquette
X X X——X X
A
wt
-l
v X DS X m X X
UX
i >
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e Discrete space-time : Lattice
spacing a UV Cut-off.

e Quark fields (z), ¥(x) on X X X X X
lattice sites.

e Gluon Fields on links : U, () X X X—<—AK X

Plaquette

e Gauge transform V, € SU(3)

b X K—— b}
= V@) = Vab@),
-1l
. . . v X has X X X
e Gauge invariance : Actions o™
from Closed Wilson loops, > *
LL

e.g., plaquette.

e Fermion Actions : Staggered,
Wilson, Overlap..
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Typically, we need to evaluate

fDU@(mv) exp(—Sg) Det M(ms)

(©(my)) =

fDUeXp(—SG) Det M (mg)

Physics Department Seminar, [IT, Delhi, January 12, 2009,

R. V. Gavai

Top

13



Typically, we need to evaluate

fDU@(mfv) exp(—Sg) Det M(ms)

(O(my)) = : (1)

fDUeXp(—SG) Det M(msg)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, S 1s the gluonic action, and the observable ©® may contain fermion
propagators of mass m,,.

2.65 million dimensional integral (24° x 6 lattice)!
& + million dimensional M !!
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Typically, we need to evaluate

fDU@(mfv) exp(—Sg) Det M(ms)

(©(my)) = , (1)

fDUeXp(—SGv) Det M(msg)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, S 1s the gluonic action, and the observable ©® may contain fermion
propagators of mass m,,.

2.65 million dimensional integral (24° x 6 lattice)!
& + million dimensional M !!

Lattice scaffolding must be removed : Continuum limit a — 0.
~» Computer Simulations, (©) is computed by averaging over a set of
configurations {U,(z)} which occur with probability o< exp(—Sg) - Det M.
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Our Workhorse |

CRAY X1 of ILGT I, TIFR, Mumbai
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e The Transition Temperature T,. ~ 175 MeV (about 2 Trillion °K).

e 7., the Equation of State (EOS) and many other properties, notably the

Wrdblewski Parameter A; and other correlations for Heavy lon Physics have
been predicted theoretically.
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fo Quenched QCD (T;) 1.5 - - -
—0— RHIC Au-Au 1.251 |
o SpS S-S
1y =) - ]
—— SpS S-Ag
%)
o SpS Pb-Pb By 0.75 ¢ E%] .
—— AGS Au-Au 051l |
AGS Si-Au ; @ ' X=B
0.25} i
0.2 0.4 0.6 0.8 1
AS O 1 1 1
0.5 1 1.5 2 2.5
T/Tc

Gavai and Gupta, Phys Rev D65, 2002 and Phys.Rev. D73, 2006.
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Quenched QCD (T,) 1.5

}_._{
—— RHIC Au-Au 1.251
o SpS S-S
1t gt —=—
— . SpS S-Ag
o SpS Pb-Pb OQ 0.75 ¢ E%]
—— AGS Au-Au 051l
AGS Si-Au : ® | X=B
0.25}
0.2 0.4 0.6 0.8 1
As 0 - -
0.5 1 1.5 2 2.5
T/Tc
Gavai and Gupta, Phys Rev D65, 2002 and Phys.Rev. D73, 2006.
e )\, — Measure of Production of strange quark-antiquark pairs; Expts agree
with estimates from the new state Quark-Gluon Plasma.
— Lattice QCD suggests that strangeness carried by quark-like objects
— Generally flavour shows quasi-quark behaviour.
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QCD Ciritical Point

o We (RVG & S. Gupta, PRD 2005, arXiv:0806.2233) find
the Critical Point at smaller ug /T ~
1 (a =1/4T) and ug/T ~ 2 (a =

1.1

1/6T).
1 B . . .
e Our estimate consistent with Fodor
T xoe & Katz (2002) [ m,/m, = 0.31 and
= 20 GeV 10 GeV Nom, ~ 3_4]_
18 GeV (CE ]
0.8} 1 . .
Freezeout curve | e Strong finite size effects for small Nj.
A strong change around Ngm, ~ 6.
0.7 i o 3 4
ig
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QCD Ciritical Point

o We (RVG & S. Gupta, PRD 2005, arXiv:0806.2233) find
the Critical Point at smaller ug /T ~
1 (a =1/4T) and ug/T ~ 2 (a =

1.1

1/6T).
1 B . . .
e Our estimate consistent with Fodor
T xoe & Katz (2002) [ m,/m, = 0.31 and
= 20 GeV 10 GeV Nom, ~ 3_4]_
18 GeV (CE ]
0.8} 1 . .
Freezeout curve | e Strong finite size effects for small V.
A strong change around Ngm, ~ 6.
0.7 i o 3 4
ig

e RHIC, if run at lower energy, can
potentially discover it.
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Heavy lon Collisions

e Where does one find these new phases ? Can they be produced in laboratory ?
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Heavy lon Collisions

e Where does one find these new phases ? Can they be produced in laboratory ?

e Early Universe — About 10 — 20us after the Big Bang and in Cores of Dense
Neutron Stars
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Heavy lon Collisions

e Where does one find these new phases ? Can they be produced in laboratory ?

e Early Universe — About 10 — 20us after the Big Bang and in Cores of Dense
Neutron Stars

e Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy
lon Collisions in CERN, Geneva and BNL, New York.
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Heavy lon Collisions

e Where does one find these new phases ? Can they be produced in laboratory ?

e Early Universe — About 10 — 20us after the Big Bang and in Cores of Dense
Neutron Stars

e Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy
lon Collisions in CERN, Geneva and BNL, New York.

e Necessary Conditions for QGP production :

— High Energy Density, ~ 1-3 GeV/fm? ~ 1.8 — 5.4 x 10> gm/cc?.
— Large System Size, L > AééD ~ 1 fm.
— Many particles
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—> Heavy lon Collisions at 99.5-99.995 % Velocity of Light.
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— Heavy lon Collisions at 99.5-99.995 % Velocity of Light.

When heavy nuclei collide ...

... and then freeze out
into particles ...
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— Heavy lon Collisions at 99.5-99.995 % Velocity of Light.

When heavy nuclei collide ...

LL

... and then freeze out
into particles ...

Little Bang at LHC

Temperature

Freestreaming Particles - qp0-Mev

200 MeV
Jet

500 MeV
P = 300 000 xT,,

... thatt reweal the propertie
of QGP.
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— Heavy lon Collisions at 99.5-99.995 % Velocity of Light.

When heavy nuclei collide ... bl Litﬂl_E' Bang at LHC .

|

Temperature

Freestreaming Particles - qp0-Mev

drongas. - ..
. 200 MeV
18y Jet

N 500 MeV
) - 200 000 xT,

L

E.'“:' thent_irleeze aus ... thatt reweal the propertie
INto particies ... g of OGP,

Fireball of QGP condenses into hadrons in =~ 10723 seconds.
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How to look for QGP

e Jet Quenching :
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How to look for QGP

g

Au Au
e Jet Quenching :

— Rare, Highly Energetic Scatterings produce jets of particles: g +g9g — g+ g.
— Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it
to lose energy — Jet Quenching.
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How to look for QGP

g

Au Au
e Jet Quenching :

— Rare, Highly Energetic Scatterings produce jets of particles: g +g9g — g+ g.

— Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it
to lose energy — Jet Quenching.

— On-Off test possible — Compare Collisions of Heavy-Heavy nuclei with
Light-Heavy or Light-Light.
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Azimuthal distributions
I NN N (N DN RN AN AN N EL L NN AN LA N NN NN T O N TN LI O

e d+Au FTPC-Au 0-20%

—~ 0.2~ —
a3 F —— p+p min. bias n .
5 - i
= - * Au+Au Central -
"'c - -

% 0.1 :- -:

= , i
< - o
= I . $

A T Hic: ;***;,*
| pedestlal and ﬂolw subtraf:ted |

= 0 1 2 3 4
A ¢ (radians)

5 1‘_' -

Near- side: p+p, d+Au, Aut+Au similar
Back- to- back: Au+Au strongly suppressed relative to p+p and d+Au
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Azimuthal distributions

[T 1 T L S L O . O O L.
- * d+Au FTPC-Au 0-20%

—~ 0.2

3 i k- —— p+p min. bias

35 L

= - * Au+Au Central

"c L

g 0.1

9 R

o L

< i

- | ; *'r

g. e A_ 4 *****

o pedestlal and ﬂolw subtralcted |

T i I T T T

S8pn

ool S T |

-1 0 1 2

Near- side: p+p, d+Au, Aut+Au similar

Back- to- back: Au+Au strongly suppressed relative to p+p and d+Au

e Debye Screening of Quarks = No binding to Hadrons — Anomalous .J /v

Suppression

3 4
A ¢ (radians)
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Elliptic Flow

@ For asymmetric collisions of two nuclei, with their centres not aligned :

Coordinate space: Collective interaction Momentum space;
initial asymmetry pPressure final asymmetry
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Elliptic Flow

@ For asymmetric collisions of two nuclei, with their centres not aligned :

Coordinate space: Collective interaction Momentum space;
initial asymmetry pPressure final asymmetry

> Anisotropic Flow & QGP as Perfect Liquid
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Summary

o Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.

e Our results on correlations of quantum
numbers suggest QGP to have
quarklike excitations.
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Summary

o Lattice QCD predicts new states of
strongly interacting matter and is able 11
to shed light on the properties of the
Quark-Gluon plasma phase. 1]

09| 30 GeV
20 GeV 10 GeV

T/Tc

e Our results on correlations of quantum

numbers suggest QGP to have : 18 GeV (CE
quarklike excitations. 0.8|
Freezeout curve
e Phase diagram in T' — up plane has 07 i 5 3 i

begun to emerge: Our estimate for the
critical point is up/T ~ 1 — 2.
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Summary

o Lattice QCD predicts new states of
strongly interacting matter and is able 11
to shed light on the properties of the
Quark-Gluon plasma phase. 1]

0.9} 30 GeV

T/Tc

e Our results on correlations of quantum

20 GeV 10 GeV
numbers suggest QGP to have - 18 GeV (CE
quarklike excitations. 0.8|
Freezeout curve
e Phase diagram in T'— up plane has 07 i 5 3 i

begun to emerge: Our estimate for the
critical point is up/T ~ 1 — 2.

Heavy lon Collisions in CERN Geneva, and BNL, New York, have seen tell-tale
signs of QGP : Many surprises already and more excitement likely to come.
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