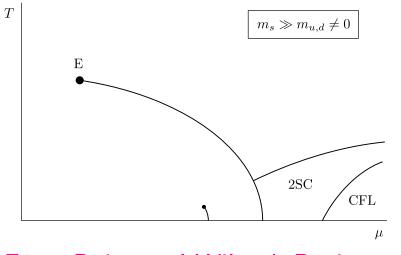
QCD Critical Point : Synergy of Lattice & Experiments

Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction

Lattice QCD Results

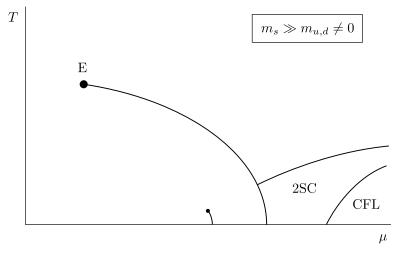
Searching Experimentally


Summary

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

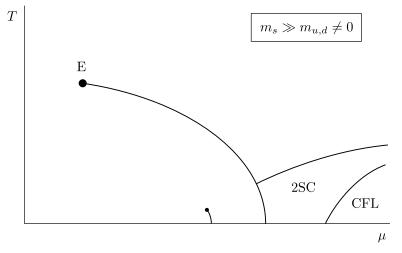
- Many models & Approaches for QCD Phase Diagram
- \blacklozenge QCD Critical Point in $T\text{-}\mu_B$ plane.

Many models & Approaches for QCD Phase Diagram


 \blacklozenge QCD Critical Point in $T\text{-}\mu_B$ plane.

From Rajagopal-Wilczek Review

Many models & Approaches for QCD Phase Diagram


 \blacklozenge QCD Critical Point in $T\text{-}\mu_B$ plane.

From Rajagopal-Wilczek Review

- Search for its location using *ab initio* methods
- Search for it in the experiments RHIC, FAIR,...

- Many models & Approaches for QCD Phase Diagram
- \blacklozenge QCD Critical Point in $T\text{-}\mu_B$ plane.

From Rajagopal-Wilczek Review

- Search for its location using *ab initio* methods
- Search for it in the experiments RHIC, FAIR,...
- What hints can Lattice QCD investigations provide ?

The $\mu \neq 0$ problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f = 2$ and anomaly to persist by T_c .

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f = 2$ and anomaly to persist by T_c .
- Domain Wall or Overlap Fermions better, although computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007).

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice. Moreover, NO flavour singlet $U_A(1)$ symmetry or anomaly. Critical point needs $N_f = 2$ and anomaly to persist by T_c .
- Domain Wall or Overlap Fermions better, although computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007).
- Unfortunately BW-prescription breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008; PoS (Lattice 2008); PRD 2009) Furthermore, anomaly for it depends on μ unlike in continuum QCD (Gavai & Sharma PRD 2010).
- Good News : Action with Continuum-like (flavour & spin) symmetries for quarks at nonzero μ and T proposed. (Gavai & Sharma , arXiv : 1111.5944).

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

$\mu \neq 0$ for Overlap Quarks

• Key Idea : Note that the massless continuum QCD action for nonzero μ can be written explicitly as sum over right and left chiral modes of quarks, thus exhibiting manifest chiral symmetry at nonzero μ as well.

$\mu \neq 0$ for Overlap Quarks

- Key Idea : Note that the massless continuum QCD action for nonzero μ can be written explicitly as sum over right and left chiral modes of quarks, thus exhibiting manifest chiral symmetry at nonzero μ as well.
- Such chiral projections can be defined for the Overlap quarks. Use them to construct the action at nonzero μ. It does have the exact chiral invariance on the lattice ! Thus order parameter exists for the entire T-μ phase diagram. (Gavai & Sharma, arXiv : 1111.5944).
- We also showed why this is physically the right thing to do. Using Domain Wall formalism, we showed this action counts only the physical (wall) modes.

The $\mu \neq 0$ problem : The Measure

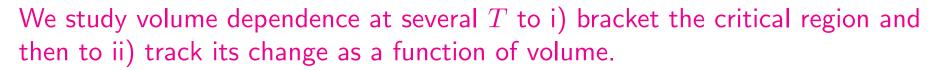
det M is a complex number for any $\mu \neq 0$: The Phase/sign problem Lattice Approaches in the past decade —

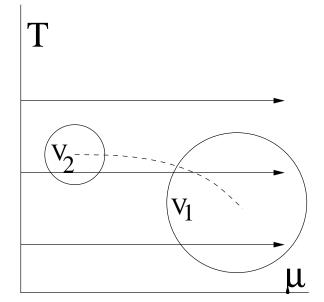
The $\mu \neq 0$ problem : The Measure

det M is a complex number for any $\mu \neq 0$: The Phase/sign problem Lattice Approaches in the past decade —

- Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, PoS LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

Why Taylor series expansion?


- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.


Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

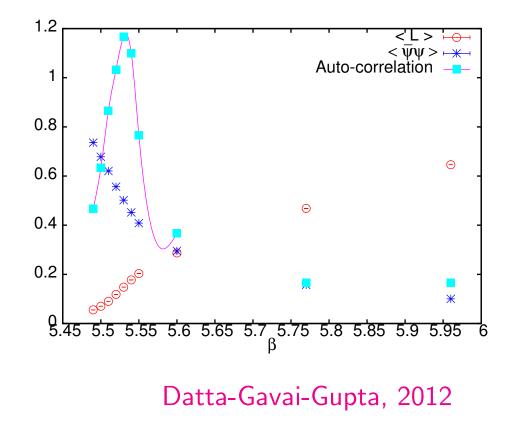
- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

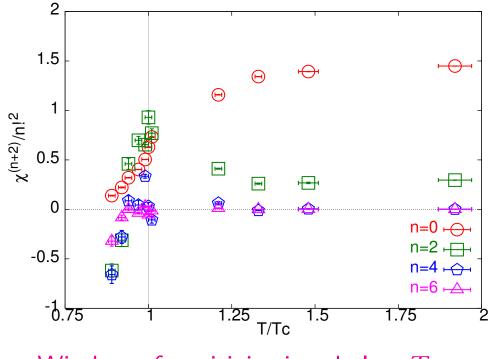
- We (Gavai-Gupta '05, '09) construct the series for baryonic susceptibility from this expansion. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^n}\right)^{1/n}$. We use both these definitions.
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We use up to 8^{th} order. Need 20 inversions of (D+m) on \sim 500 vectors for a single measurement.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

Lattice QCD Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- $m_{\pi}=230~{
 m MeV}$ (Gavai-Gupta, PRD 2005, 2009).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

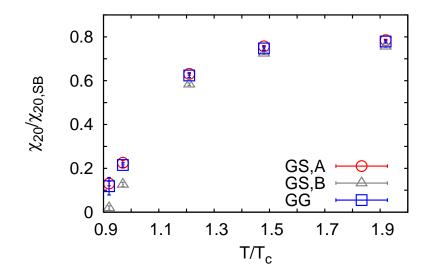

Lattice QCD Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- $m_{\pi}=230~{
 m MeV}$ (Gavai-Gupta, PRD 2005, 2009).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
- Finer Lattice : 6 × N_s^3 , $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009). We determined β_c . Our result ($\beta_c = 5.425(5)$) well bracketed by MILC for $m/T_c = 0.075$ and 0.15.
- Our Simulations made for $0.89 \le T/T_c \le 1.92$. Typical stat. 50-200 in autocorrelation units.

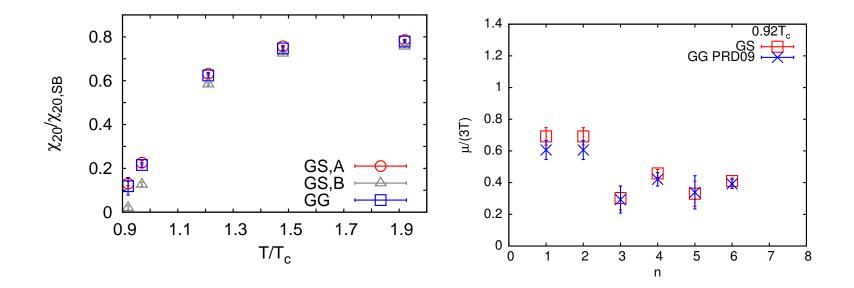

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

- The same configurations being used for our new proposal of μN term.
- Even finer Lattice : 8 $\times 32^3$ going on.

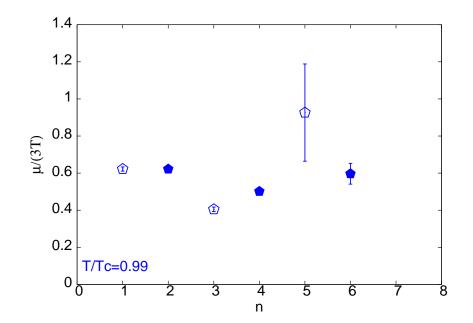
- The same configurations being used for our new proposal of μN term.
- Even finer Lattice : 8 $\times 32^3$ going on.

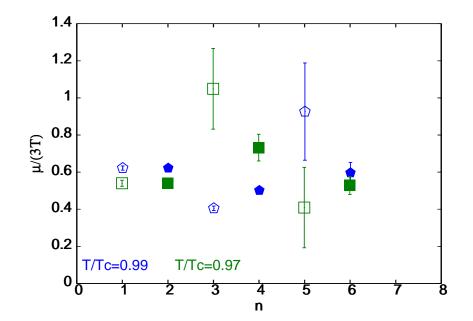

• Check for positivity: $N_t = 6$

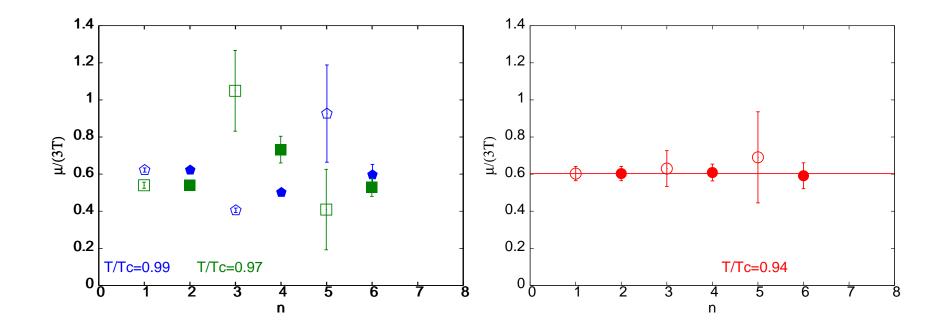
Window of positivity just below T_c

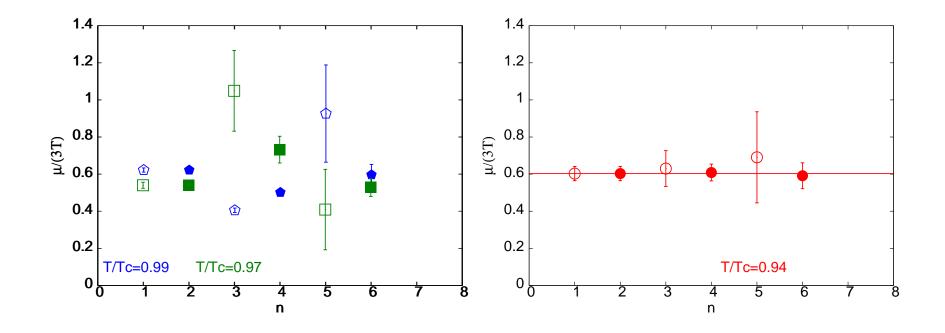

Results with μN -idea

• Using our proposed μN term (Gavai-Sharma PRD 2010) to evaluate (Gavai-Sharma, arXiv 1111.5428, PRD 2012) the baryon susceptibility at $\mu = 0$,

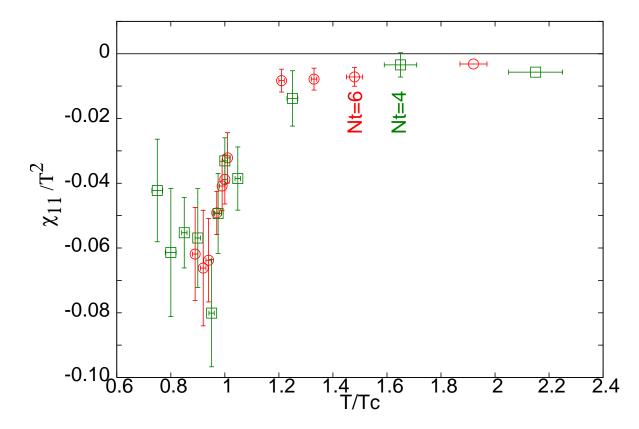



Results with μN -idea


• Using our proposed μN term (Gavai-Sharma PRD 2010) to evaluate (Gavai-Sharma, arXiv 1111.5428, PRD 2012) the baryon susceptibility at $\mu = 0$,

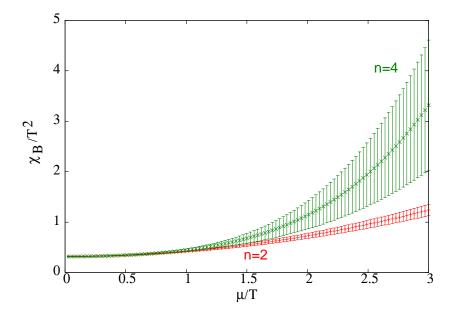


♡ ALL NLS Coefficients do have the same sign for the new method.♠ The estimates for radius of convergence are comparable as well.

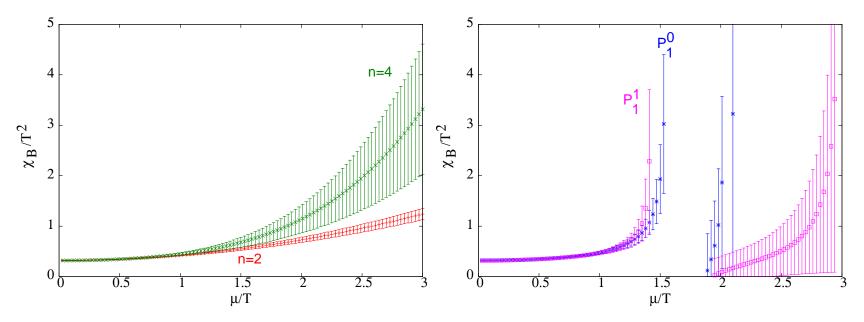


• $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)

• Critical point at $\mu_B/T \sim 1-2$.

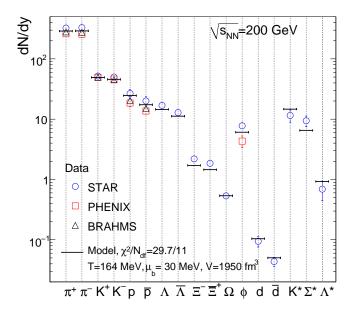

More Details

Measure of the seriousness of sign problem : χ_{11} ; $N_t = 4$ & 6 agree.

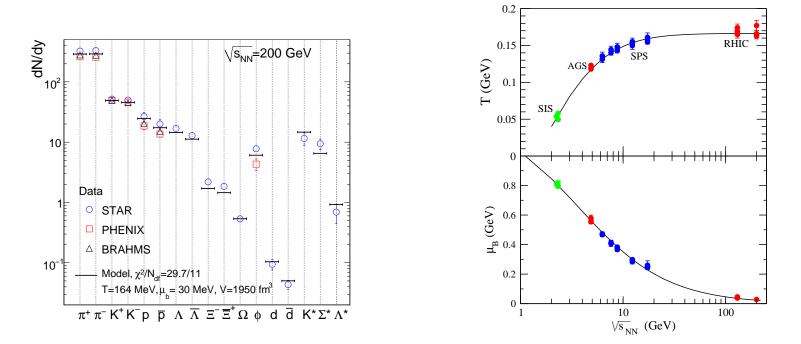

Cross Check on μ^E/T^E

• Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

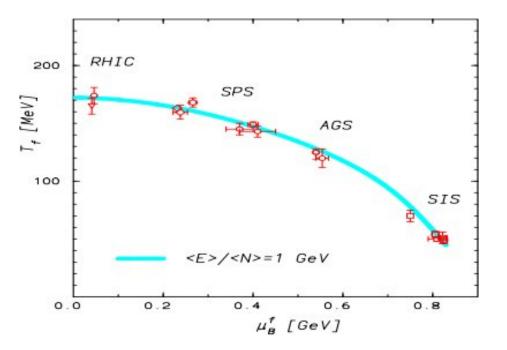
Cross Check on μ^E/T^E


• Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

Use Padé approximants for the series to estimate the radius of convergence.
 Consistent Window with our other estimates.

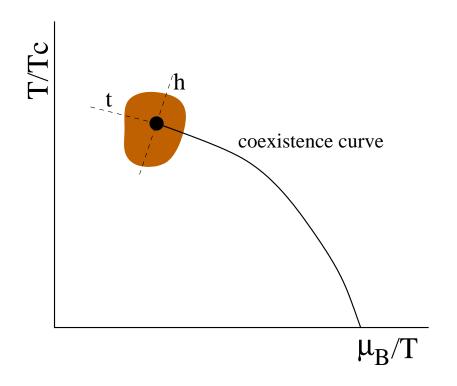

Lattice predictions along the freezeout curve

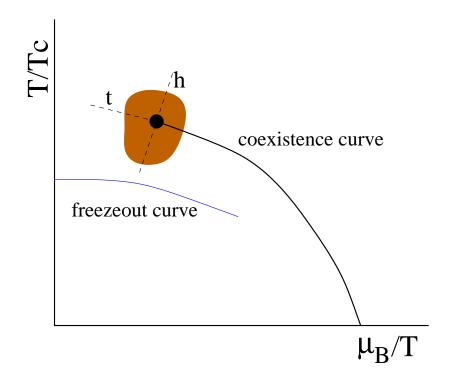
• Hadron yields well described using Thermodynamical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

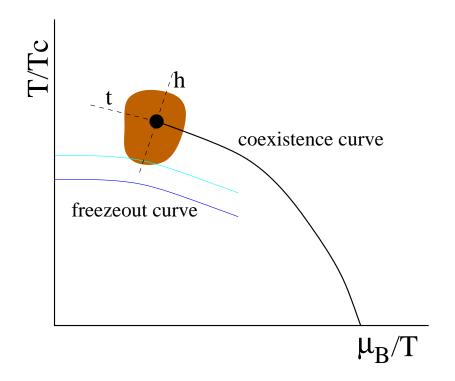


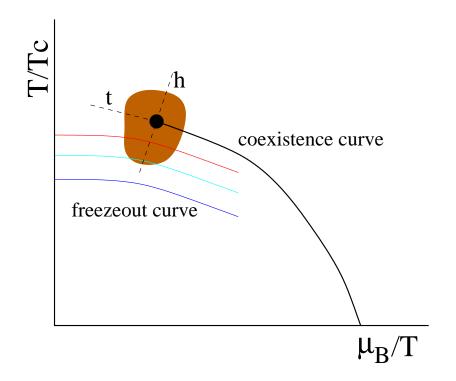
Lattice predictions along the freezeout curve

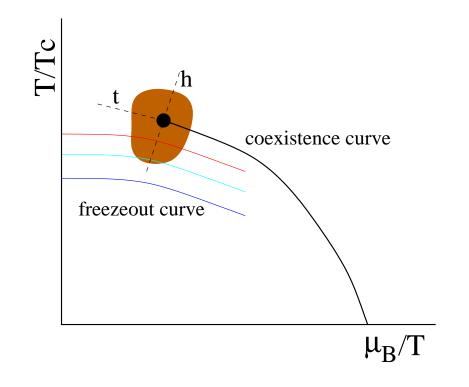
• Hadron yields well described using Thermodynamical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

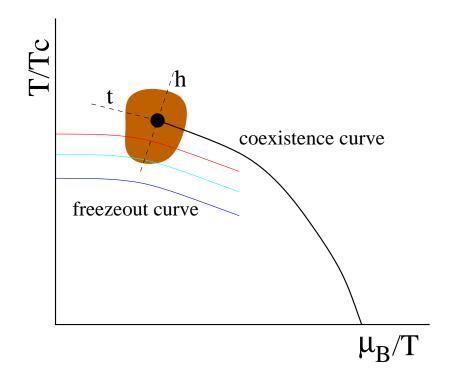



• Plotting these results in the T- μ_B plane, one has the freezeout curve, which was shown to correspond the $\langle E \rangle / \langle N \rangle \simeq 1$. (Cleymans and Redlich, PRL 1998)




(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)


• Our Key Proposal : Use this freezeout curve to relate (T, μ_B) to \sqrt{s} and employ lattice QCD predictions for fluctuations along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

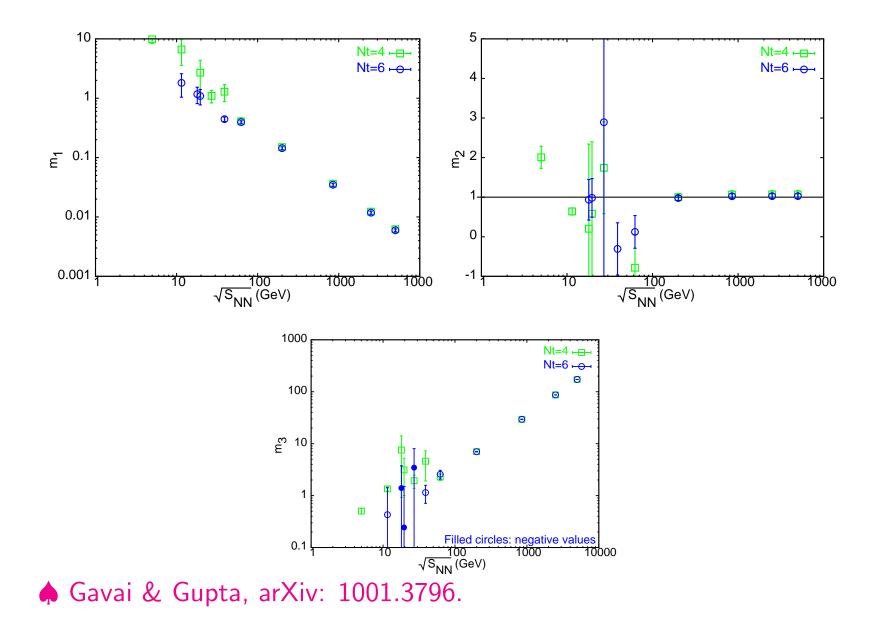


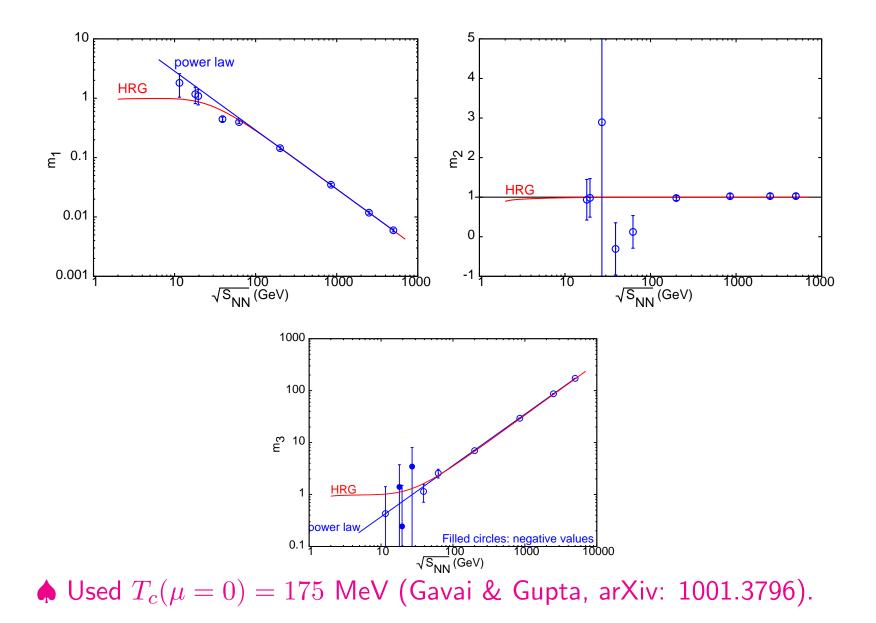
• Define $m_1 = \frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3 = \frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2 = m_1m_3$ (Gupta, arXiv : 0909.4630) and use the Padè method to construct them.

- Define $m_1 = \frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3 = \frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2 = m_1m_3$ (Gupta, arXiv : 0909.4630) and use the Padè method to construct them.
- Near the critical point, $\chi_B \sim |\mu \mu_E|^{\delta}$. Thus the ratios, m_i , should diverge in the critical region as well.

- m_i are dimensionless, and are computed as functions of T/T_c . \implies expect small lattice spacing corrections.
- Spatial Volume cancels out in these ratios => Suitable for experiments who can use their favourite proxy for it.

- m_i are dimensionless, and are computed as functions of T/T_c . \implies expect small lattice spacing corrections.
- Spatial Volume cancels out in these ratios ⇒ Suitable for experiments who can use their favourite proxy for it.
- Defining $z = \mu_B/T$, and denoting by r_{ij} the estimate for radius of convergence using χ_i , χ_j , one has

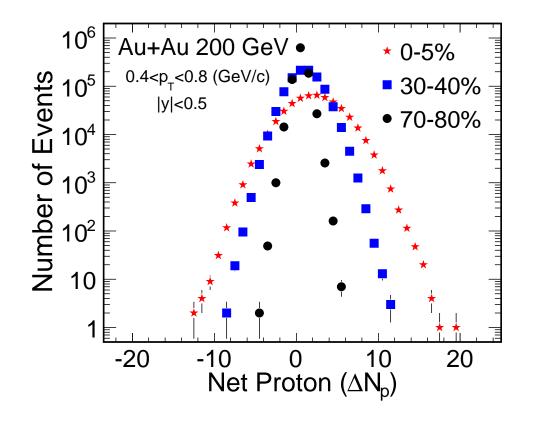

$$m_1 = \frac{2z}{r_{24}^2} \Big[1 + \Big(\frac{2r_{24}^2}{r_{46}^2} - 1 \Big) z^2 + \Big(\frac{3r_{24}^2}{r_{46}^2 r_{68}^2} - \frac{3r_{24}^2}{r_{46}^2} + 1 \Big) z^4 + \mathcal{O}(z^6) \Big] .$$


• Similar series expressions for m_2 and m_3 . Resum these by Padè ansatz :

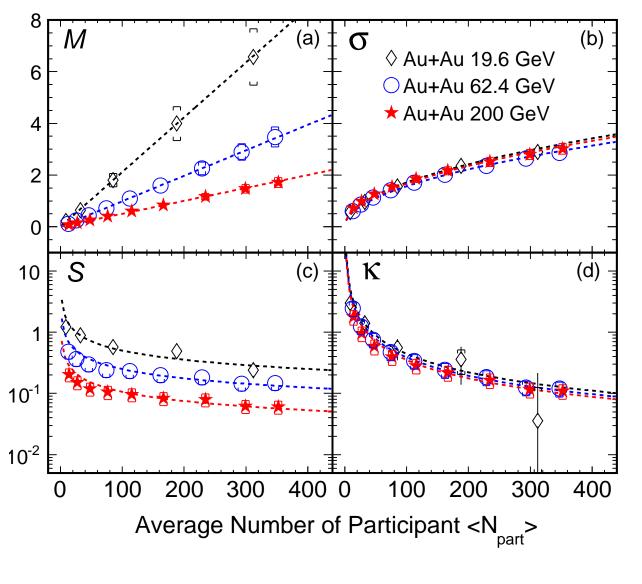
$$m_1 = zP_1^1(z^2; a, b), \qquad m_3 = \frac{1}{z}P_1^1(z^2; a', b')$$

Theory Seminar (T-2), Los Alamos National Laboratory, USA, May 22, 2012

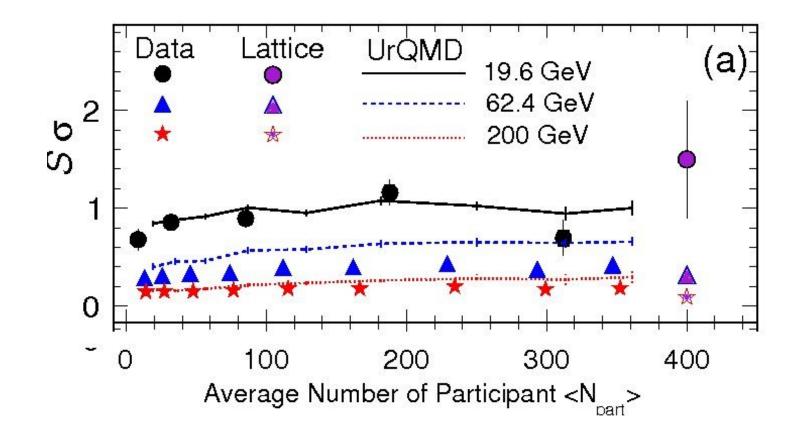
.



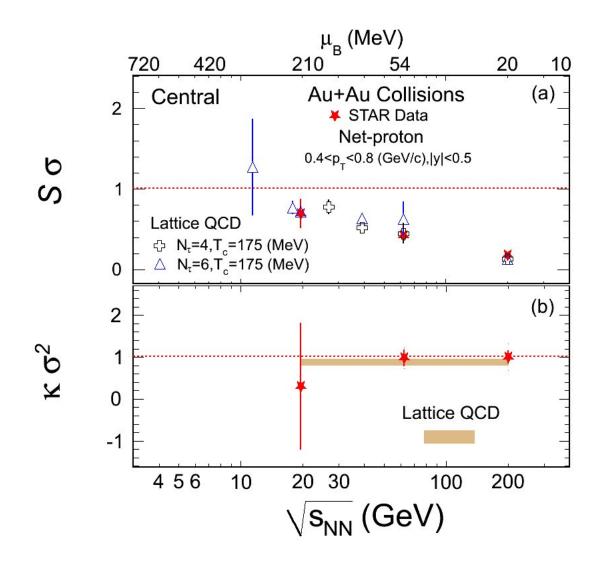
- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.


- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which would be accessible to the low energy scan of RHIC BNL !

- Smooth & monotonic behaviour for large \sqrt{s} .
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which would be accessible to the low energy scan of RHIC BNL !
- Proton number fluctuations suffice (Hatta-Stephenov, PRL 2003).
- These are linked directly to the baryonic susceptibility which ought to diverge at the critical point.
- Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B = 1:0:4$


• STAR has recently used this idea and constructed the ratios m_1 and m_2 from net proton distributions : (Aggarwal et al., arXiv : 1004.4959).

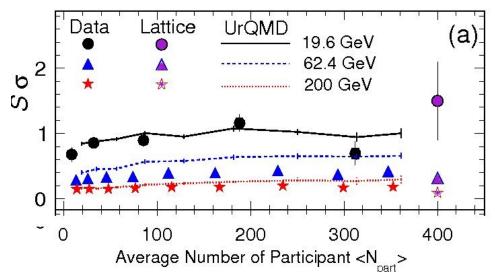
Aggarwal et al., STAR Collaboration, arXiv : 1004.4959



Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

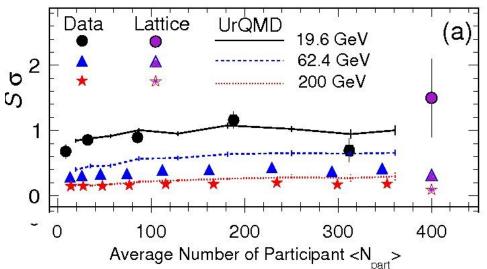
• Reasonable agreement with our lattice results. Where is the critical point ?

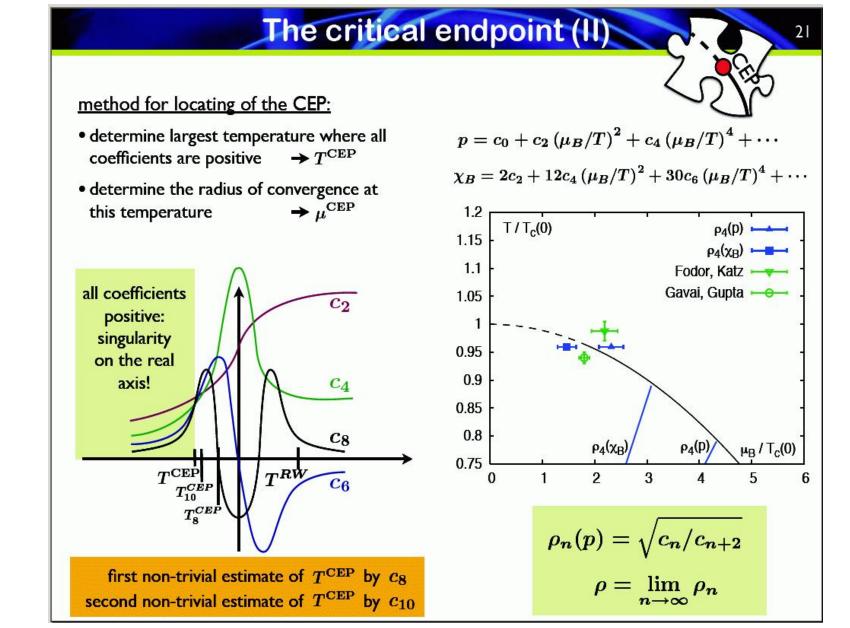

Private communication from STAR Collaboration

Summary

• Phase diagram in $T - \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1 - 2$.

Summary

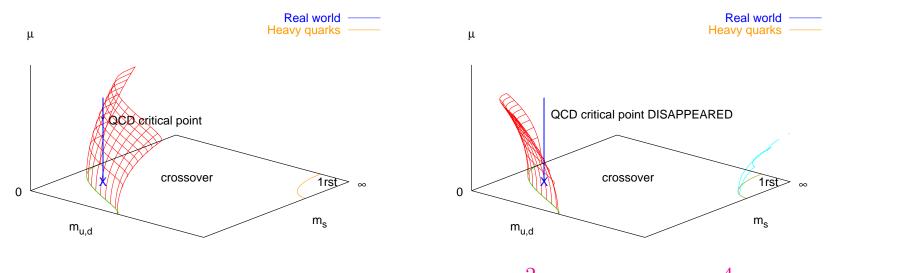

- Phase diagram in $T \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1 - 2$.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.
- STAR results appear to agree with our Lattice QCD predictions.



Summary

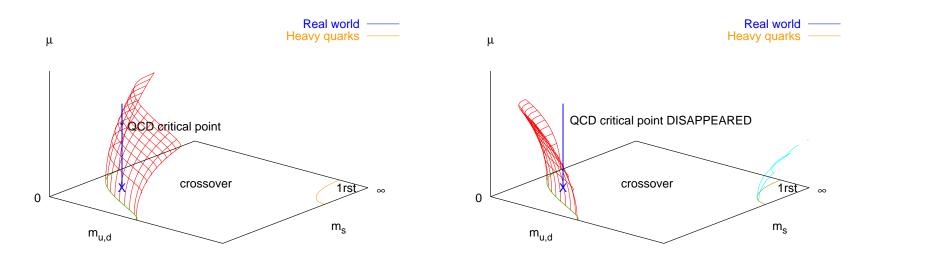
- Phase diagram in $T \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1 - 2$.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.
- STAR results appear to agree with our Lattice QCD predictions.

So far no signs of a critical point in the experimental results at CERN. Will RHIC energy scan deliver it for us ? and/or Will it be FAIR ?



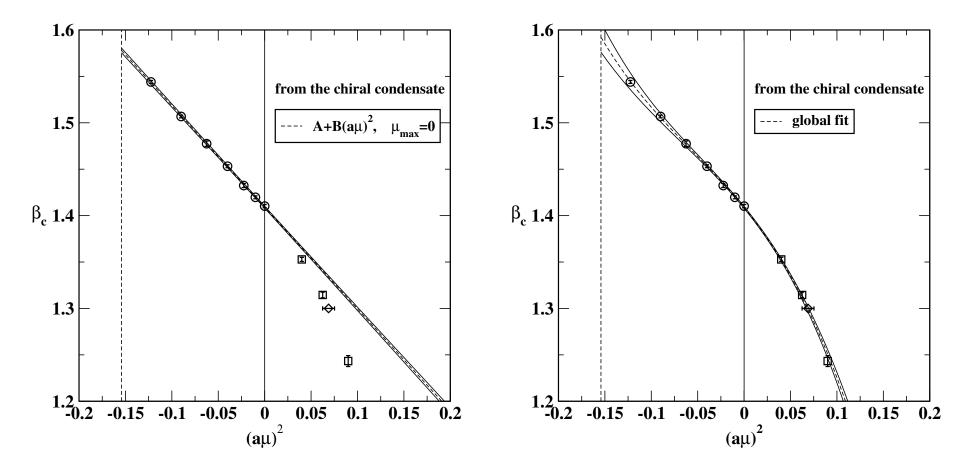
(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)

Imaginary Chemical Potential


deForcrand-Philpsen JHEP 0811

For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Imaginary Chemical Potential


deForcrand-Philpsen JHEP 0811

For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii) Known examples where shapes are different in real/imaginary μ ,

"The Critical line from imaginary to real baryonic chemical potentials in two-color QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

