Charm Flow at PHENIX : A New Milestone for Lattice QCD ?

Rajiv V. Gavai*
T. I. F. R., Mumbai & Universität Bielefeld

^{*} With Debasish Banerjee, Saumen Datta & Pushan Majumdar, arXiv:1109.5738 , submitted to Phys. Rev. D

Charm Flow at PHENIX : A New Milestone for Lattice QCD ?

Rajiv V. Gavai*
T. I. F. R., Mumbai & Universität Bielefeld

Introduction

Formalism

Our Lattice Results

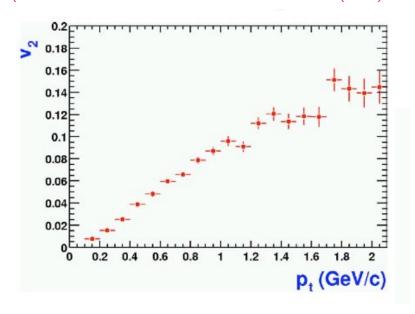
Summary

^{*} With Debasish Banerjee, Saumen Datta & Pushan Majumdar, arXiv:1109.5738 , submitted to Phys. Rev. D

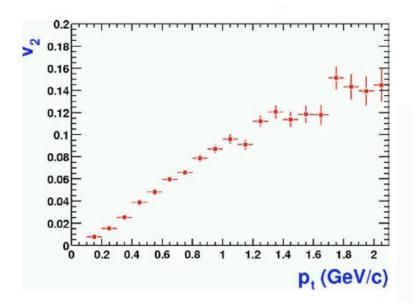
Introduction: Anisotropic Flow

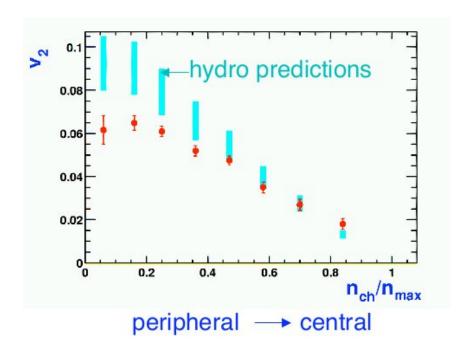
 Exciting results from RHIC on the elliptic flow, a measure of azimuthal anisotropy.

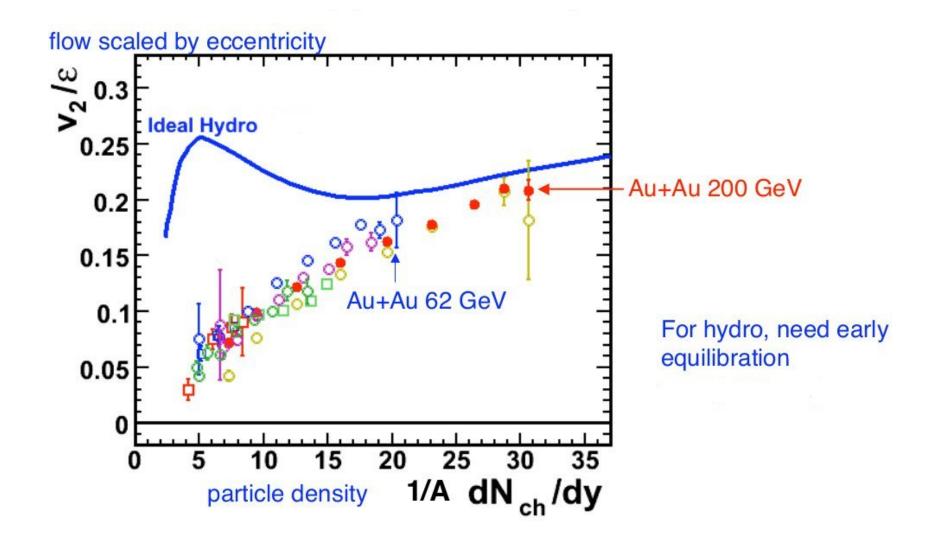
Introduction: Anisotropic Flow


- Exciting results from RHIC on the elliptic flow, a measure of azimuthal anisotropy.
- Obtained from asymmetric collisions of two nuclei, with their centres not aligned.

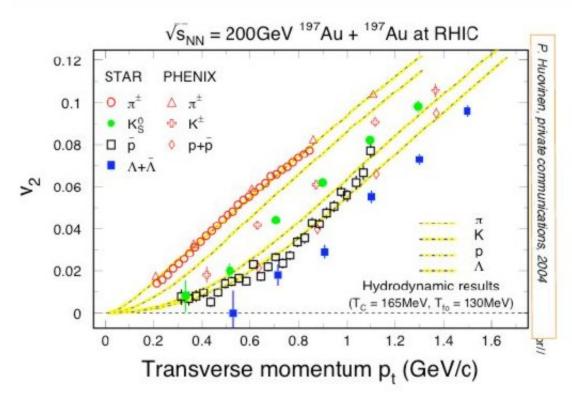
$$v_2(y, p_T) = \frac{\int d\phi \ dN/(p_T dP_T d\phi dy) \cos(2\phi)}{\int d\phi \ dN/(p_T dP_T d\phi dy)} \tag{1}$$


 $v_2(y, p_T) = \frac{\int d\phi \ dN/(p_T dP_T d\phi dy) \cos(2\phi)}{\int d\phi \ dN/(p_T dP_T d\phi dy)} \tag{1}$

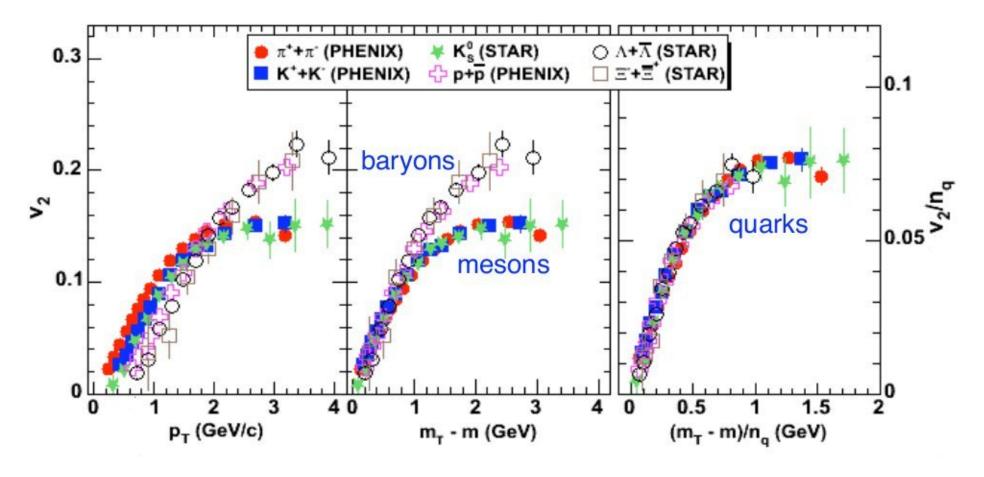

(STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.)


$$v_2(y, p_T) = \frac{\int d\phi \ dN/(p_T dP_T d\phi dy) \cos(2\phi)}{\int d\phi \ dN/(p_T dP_T d\phi dy)} \tag{1}$$

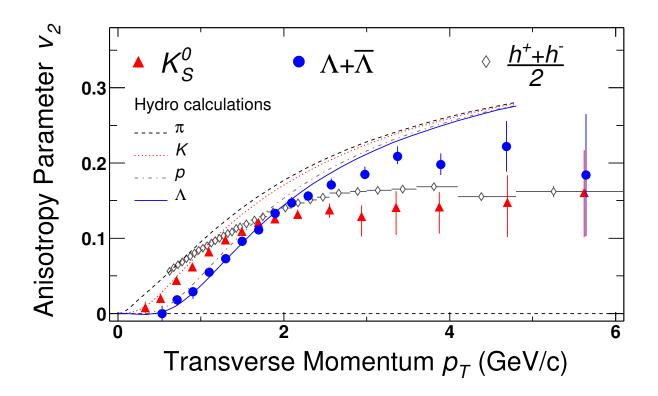
(STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.)



• Good agreement with ideal hydro: Suggesting early thermalization and perfect fluid and many more interesting things.

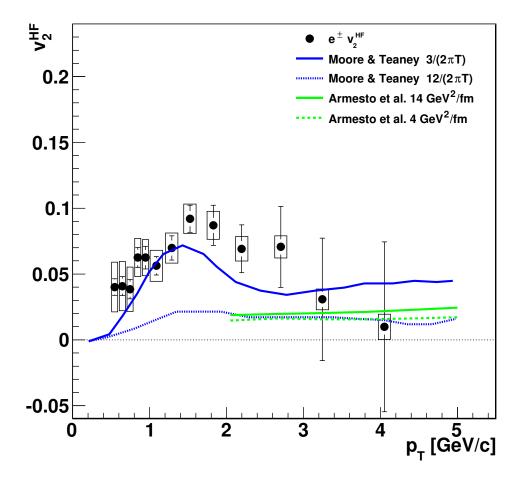

(S. Voloshin, QM06, JPG 31 (2007) S883 & Hydro Curve: Kolb-Sollfrank-Heinz, PRC 62 (2000) 054909.)

v₂ at Low p_T Region

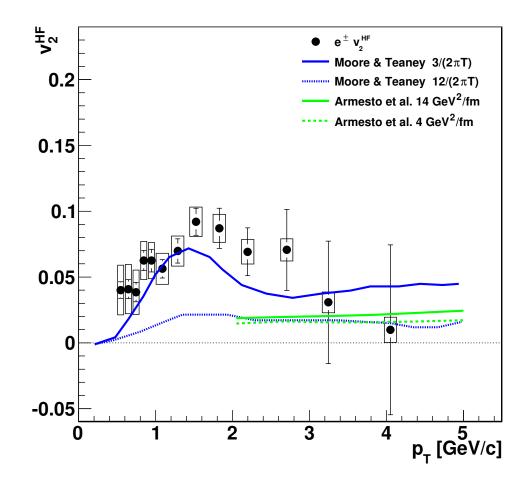

(STAR Collaboration, JPG 31 (2005) S437 & P. Huovinen.)

 Mass Pattern as expected by Hydrodynamics Models. Quantitative agreement depends on the equation of state.

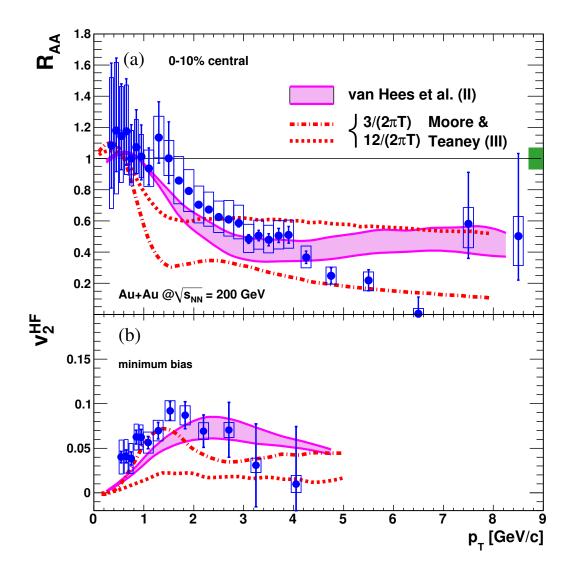
(S. Voloshin, QM02, STAR PRL 95 (2005) & PHENIX PRL 98 (2007))


ullet v_2 scales as number of quarks. Thus, hadrons appear to follow the 'underlying' quark flow as Recombination Model would suggest.

(STAR Collaboration, Adams et al., PRL 92 (2004) 052302.)


 \heartsuit Minimum Bias Au+Au Collisions at 200 GeV/c : Strangeness flows like normal hadrons.

• Naively expect heavy quark relaxation time to be M/T times larger, leading to the expectation of small/zero flow for charm quarks.



(PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)

- Naively expect heavy quark relaxation time to be M/T times larger, leading to the expectation of small/zero flow for charm quarks.
- In models (Moore-Teaney, PRC 71, 2005), heavy quark diffusion coefficients governs its elliptic flow and suppression.

(PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)

(PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)

- Denoting by D the heavy quark diffusion coefficient, $D=12/2\pi T$, a 'perturbative' estimate, seems to under-predict v_2 substantially.
- Smaller $D \simeq 3/2\pi T$ seems required by data.
- Similar value also explains the suppression in the PHENIX R_{AA} for heavy quarks at RHIC.

- Denoting by D the heavy quark diffusion coefficient, $D=12/2\pi T$, a 'perturbative' estimate, seems to under-predict v_2 substantially.
- Smaller $D \simeq 3/2\pi T$ seems required by data.
- Similar value also explains the suppression in the PHENIX R_{AA} for heavy quarks at RHIC.
- Other models, e.g. van Hees-Greco-Rapp, seem to suggest the same: Heavy Quark Diffusion coefficient is much smaller than perturbative estimates.
- Is it non-perturbative?

- Denoting by D the heavy quark diffusion coefficient, $D=12/2\pi T$, a 'perturbative' estimate, seems to under-predict v_2 substantially.
- Smaller $D \simeq 3/2\pi T$ seems required by data.
- Similar value also explains the suppression in the PHENIX R_{AA} for heavy quarks at RHIC.
- Other models, e.g. van Hees-Greco-Rapp, seem to suggest the same: Heavy Quark Diffusion coefficient is much smaller than perturbative estimates.
- Is it non-perturbative? Strong coupling models AdS/CFT based do lead to values in the desired range under "suitable" assumptions [Casalderrey-Solana & Teaney (2006), Gubser(2007)]
- Can Lattice QCD shed some light on the Charm Flow ?

Langevin Model for Heavy Q Thermalization

- Momentum transfer from a thermal gluon is $\sim T$ at most. It takes $\sim M/T$ collisions to change momentum of the heavy Q by $\mathcal{O}(1)$.
- Its interaction with the medium can be modelled as uncorrelated momentum kicks (Moore-Teaney, PRC 71 (2005) 064904): A Langevin Model.

Langevin Model for Heavy Q Thermalization

- Momentum transfer from a thermal gluon is $\sim T$ at most. It takes $\sim M/T$ collisions to change momentum of the heavy Q by $\mathcal{O}(1)$.
- Its interaction with the medium can be modelled as uncorrelated momentum kicks (Moore-Teaney, PRC 71 (2005) 064904): A Langevin Model.

$$\frac{dp_i}{dt} = -\eta_D \ p_i + \xi_i(t) \qquad \langle \xi_i(t)\xi_j(t')\rangle = \kappa \delta_{ij}\delta(t - t') \tag{2}$$

• η_D – momentum drag coefficient and 3κ is mean-squared momentum transfer per unit time, $\kappa = \frac{1}{3} \int_{-\infty}^{\infty} dt \sum_{i} \langle \xi_i(t) \xi_i(0) \rangle$.

Langevin Model for Heavy Q Thermalization

- Momentum transfer from a thermal gluon is $\sim T$ at most. It takes $\sim M/T$ collisions to change momentum of the heavy Q by $\mathcal{O}(1)$.
- Its interaction with the medium can be modelled as uncorrelated momentum kicks (Moore-Teaney, PRC 71 (2005) 064904): A Langevin Model.

$$\frac{dp_i}{dt} = -\eta_D \ p_i + \xi_i(t) \qquad \langle \xi_i(t)\xi_j(t')\rangle = \kappa \delta_{ij}\delta(t - t') \tag{2}$$

- η_D momentum drag coefficient and 3κ is mean-squared momentum transfer per unit time, $\kappa = \frac{1}{3} \int_{-\infty}^{\infty} dt \sum_{i} \langle \xi_i(t) \xi_i(0) \rangle$.
- Diffusion constant D can be found to be $2T^2/\kappa$ with $\eta_D=\kappa/2MT$.

- Moore-Teaney also showed that an initial power-law (LO pQCD) transverse momentum distribution of a heavy Q in an expanding QGP at $T_0=300$ MeV by $T_f=165$ MeV approximates a thermal one **provided** $D\leq 3/2\pi T$, assuming an ideal Bjorken expansion of the plasma.
- Their comparison, including a more realistic hydro-simulation, which I showed earlier, also supports such a conclusion.

- Moore-Teaney also showed that an initial power-law (LO pQCD) transverse momentum distribution of a heavy Q in an expanding QGP at $T_0=300$ MeV by $T_f=165$ MeV approximates a thermal one **provided** $D\leq 3/2\pi T$, assuming an ideal Bjorken expansion of the plasma.
- Their comparison, including a more realistic hydro-simulation, which I showed earlier, also supports such a conclusion.
- Casalderrey-Solana & Teaney (PRD 74 (2006) 085012) suggested to obtain κ from a correlator of the (colour) force exerted on a heavy Q by the (deconfined & coloured) medium.
- Caron-Huot, Laine & Moore (JHEP 0904, 053) provided a suitable definition for κ for a lattice evaluation: The force acting on the heavy quark is given by $M \ dJ^i/dt$, where $J^\mu(\vec{x},t) = \bar{\psi}(\vec{x},t)\gamma^\mu\psi(\vec{x},t)$ is the conserved current for the heavy quark.

Using Heavy Quark Effective Theory, they narrowed it down to studying

$$G_E^{\mathrm{Lat}}(\tau) = -\frac{1}{3L} \sum_{i=1}^3 \left\langle \operatorname{Re} \operatorname{tr} \left[U(\beta, \tau) \; E_i(\tau, \vec{0}) \; U(\tau, 0) \; E_i(0, \vec{0}) \right] \right\rangle$$
, where L is the Polyakov loop.

- Using Heavy Quark Effective Theory, they narrowed it down to studying $G_E^{\rm Lat}(\tau) = -\tfrac{1}{3L} \sum_{i=1}^3 \left\langle {\rm Re} \ {\rm tr} \ \left[U(\beta,\tau) \ E_i(\tau,\vec{0}) \ U(\tau,0) \ E_i(0,\vec{0}) \right] \right\rangle \text{, where } L \text{ is the Polyakov loop.}$
- ullet The spectral function, $ho(\omega),$ is obtained from the $G_E(au)$, as usual, by

$$G_E(\tau) = \int_0^\infty \frac{d\omega}{\pi} \, \rho(\omega) \, \frac{\cosh \omega (\tau - \frac{1}{2T})}{\sinh \frac{\omega}{2T}} \,. \tag{3}$$

- Using Heavy Quark Effective Theory, they narrowed it down to studying $G_E^{\mathrm{Lat}}(\tau) = -\frac{1}{3L} \sum_{i=1}^3 \left\langle \mathrm{Re} \ \mathrm{tr} \ \left[U(\beta,\tau) \ E_i(\tau,\vec{0}) \ U(\tau,0) \ E_i(0,\vec{0}) \right] \right\rangle \text{, where } L$ is the Polyakov loop.
- ullet The spectral function, $ho(\omega),$ is obtained from the $G_E(au)$, as usual, by

$$G_E(\tau) = \int_0^\infty \frac{d\omega}{\pi} \, \rho(\omega) \, \frac{\cosh \omega (\tau - \frac{1}{2T})}{\sinh \frac{\omega}{2T}} \,. \tag{3}$$

- Then momentum diffusion coefficient $\kappa = \lim_{\omega \to 0} \frac{2T}{\omega} \rho(\omega)$.
- They also suggested a suitable discrete version for Lattice QCD : $E_i(\vec{x},\tau) = U_i(\vec{x},\tau) \ U_4(\vec{x}+\hat{i},\tau) U_4(\vec{x},\tau) \ U_i(\vec{x}+\hat{4}).$

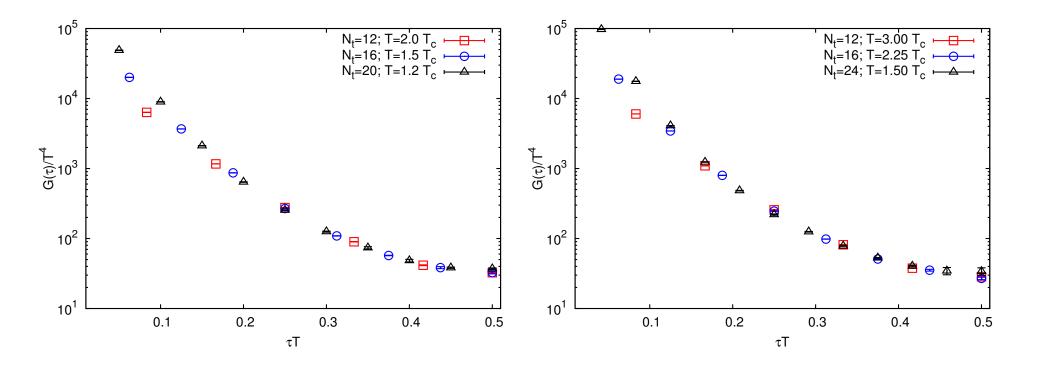
• Using this, the numerator can be written as a derivative of an extended (by spatial detour of a) Polyakov loop.

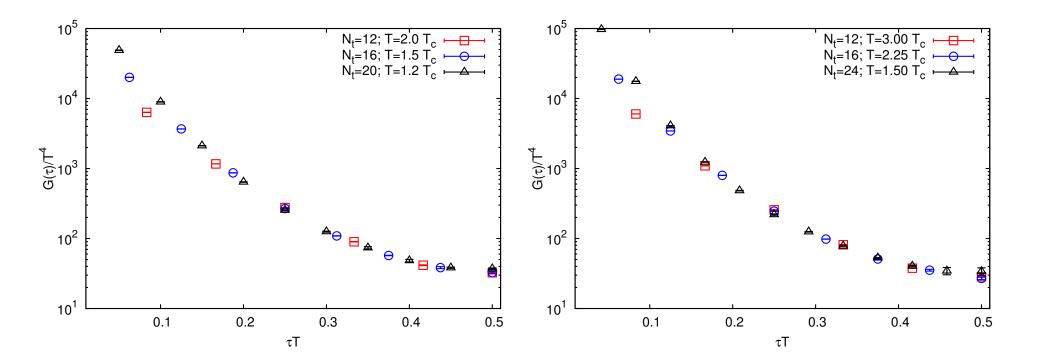
$$G_{E,\text{num}}^{i}(\tau) = C^{i}(\tau+1) + C^{i}(\tau-1) - 2C^{i}(\tau)$$

$$C^{i}(\tau) = \prod_{x_{4}=0}^{t-1} U_{4}(x_{4}) \cdot U_{i}(t) \cdot \prod_{x_{4}=t}^{t+\tau-1} U_{4}(x_{4}) \cdot U_{i}^{\dagger}(t+\tau) \cdot \prod_{x_{4}=t+\tau}^{\beta-1} U_{4}(x_{4}).$$

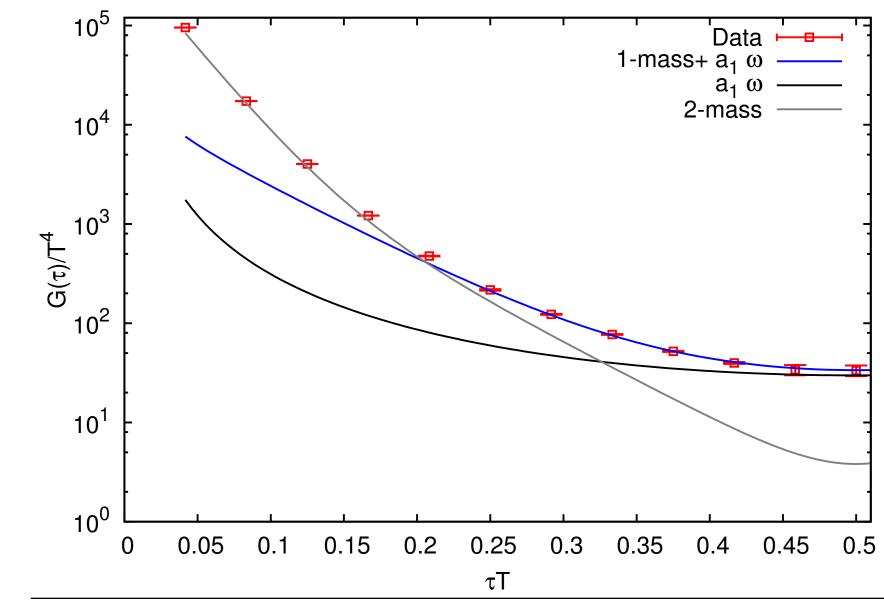
Graphical Representation of $C(\tau)$.

Our Lattice Results


• It is well-known that the Polyakov loop becomes exponentially small with N_{τ} . The extraction of κ , on the other hand, needs large N_{τ} .

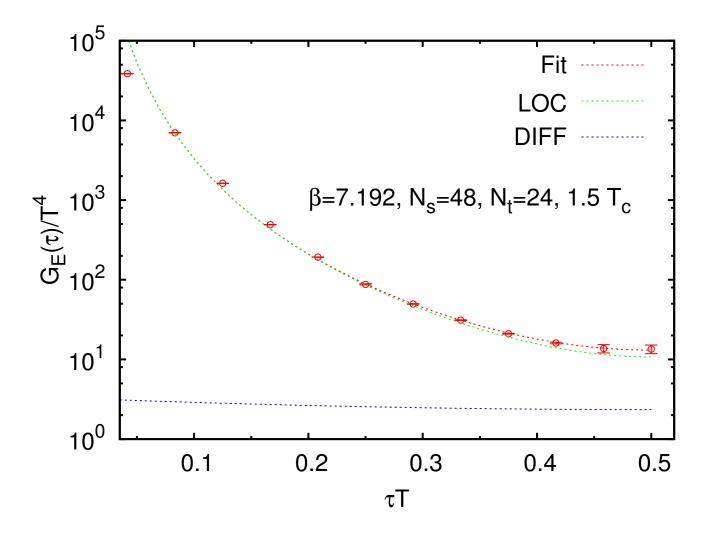

Our Lattice Results

- It is well-known that the Polyakov loop becomes exponentially small with N_{τ} . The extraction of κ , on the other hand, needs large N_{τ} .
- We attempted $N_{\tau}=12$, 16, 20 and 24 for quenched QCD. Multilevel algorithm (Lüscher-Weisz, JHEP 0109 & 0207) was suitably adopted.
- For the same size error on G(10)[G(3)] on $N_{\tau}=20$ lattices, it was found to be $\sim 2500[200]$ times more efficient: Very crucial in getting κ .

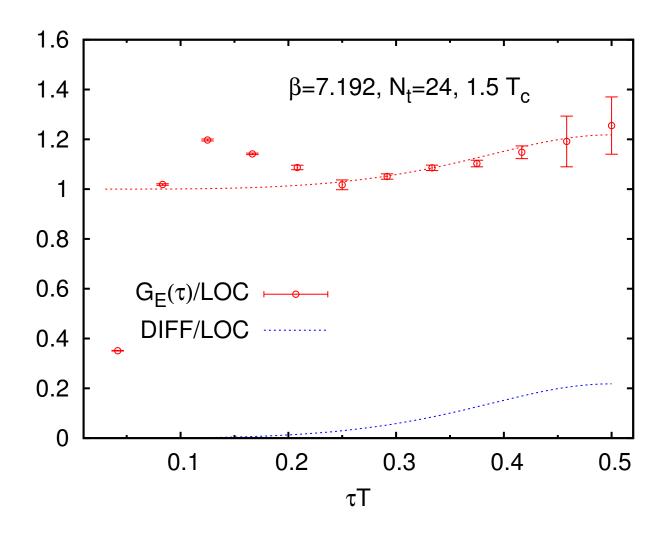

Our Lattice Results

- It is well-known that the Polyakov loop becomes exponentially small with N_{τ} . The extraction of κ , on the other hand, needs large N_{τ} .
- We attempted $N_{\tau}=12$, 16, 20 and 24 for quenched QCD. Multilevel algorithm (Lüscher-Weisz, JHEP 0109 & 0207) was suitably adopted.
- For the same size error on G(10)[G(3)] on $N_{\tau}=20$ lattices, it was found to be $\sim 2500[200]$ times more efficient: Very crucial in getting κ .
- Spatial volumes are such that $N_s \geq 2N_{\tau}$.
- Couplings were chosen suitably to make simulations at $T/T_c=1.04,\ 1.09,\ 1.24,\ 1.5$ and 1.96 for the two largest $N_{\tau}.$
- Typical Statistics: Few hundred Independent Configurations, with a few thousand multilevel updates.

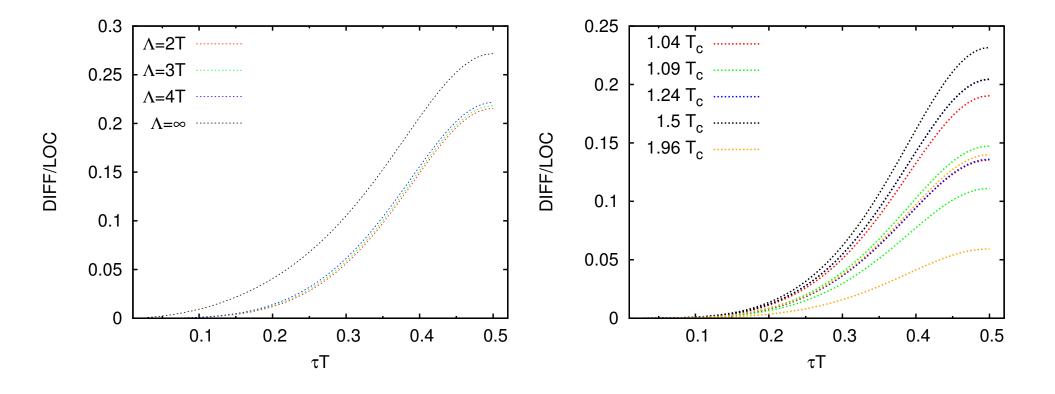
- Large τ region shows scaling.
- ullet Low au region, on the other hand, has only lattice artifacts.


Extracting D

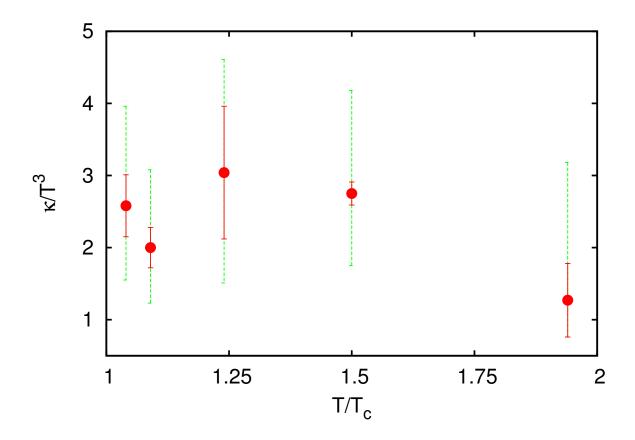
• Getting to the spectral function ρ , an ill-posed problem, has attracted a lot of attention. Many methods can be tried.

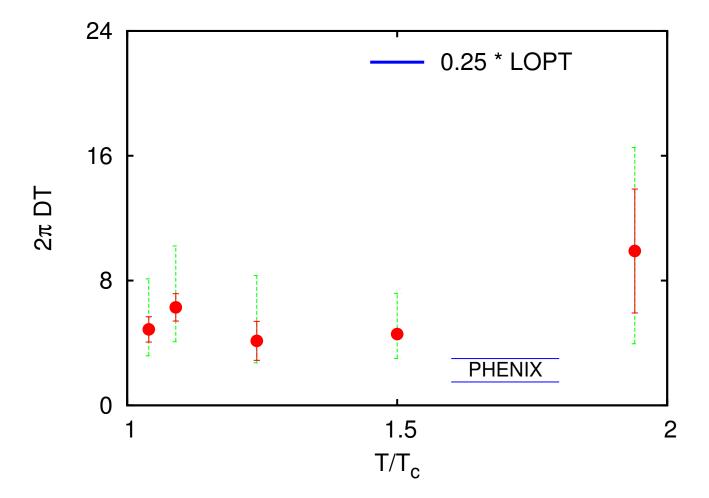

• We use an ansatz for ρ , obtain G from it, and then fit in the large τ range $[N_{\tau}/4, N_{\tau}/2]$

Extracting D


- Getting to the spectral function ρ , an ill-posed problem, has attracted a lot of attention. Many methods can be tried.
- We use an ansatz for ρ , obtain G from it, and then fit in the large τ range $[N_{\tau}/4, N_{\tau}/2]$
- $\rho(\omega) = a\omega \Theta(\omega \Lambda) + b\omega^3$ First term is the due to the expected DIFFusion constant, and the second is motivated by leading perturbation theory (LOC)
- $\Lambda = 3T$ used; varied from 2 to ∞ for systematic error.

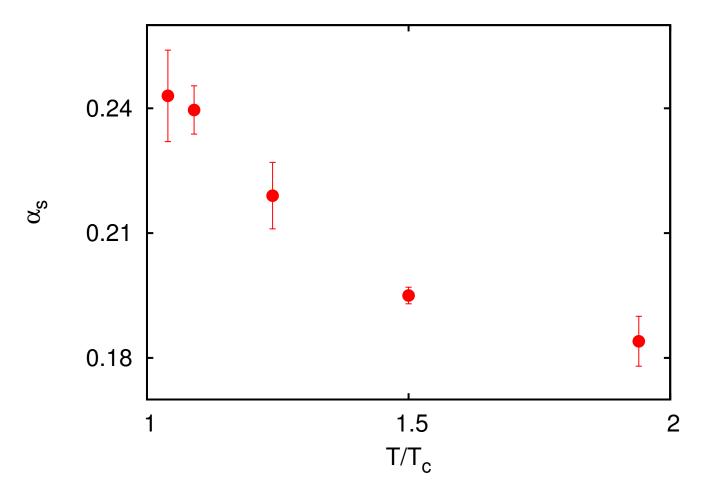
• Contribution of the two terms shown as DIFF and LOC.


♠ Comparing the DIFF fit with the data after eliminating the LOC.


 \spadesuit Variation of a with the cut-off Λ and the temperature.

- \spadesuit Our fit parameter $a \leadsto \kappa$ modulo the renormalization factor for the electric fields.
- \spadesuit We use the tadpole factor. It is ~ 1.2 as evaluated from our plaquette values.

- \spadesuit Our fit parameter $a \leadsto \kappa$ modulo the renormalization factor for the electric fields.
- \spadesuit We use the tadpole factor. It is ~ 1.2 as evaluated from our plaquette values.



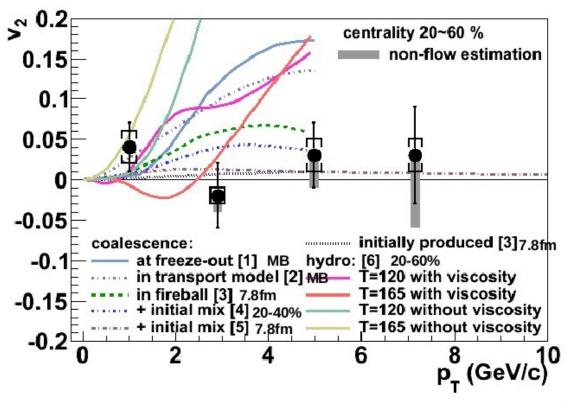
 \spadesuit Multiplying by T, obtain D, the quantity used by Moore-Teaney and PHENIX.

♡ In agreement with preliminary Bielefeld estimates (Ding et al. 1107.0311; Francis et al. 1109.3941).

 \spadesuit The ω^3 term comes with g^2 . Use as a scheme to define α_s non-perturbatively.

♡ In agreement with other similar estimates (Ding et al. PRD 83 (2011) 034504).

J/ψ : Flows or not ?


- \clubsuit The diffusion coefficient D results from colour interactions. Expect it to be zero for the colourless J/ψ , leading to very small flow for it due to its large mass.
- \diamondsuit But the thermal charm may be in abundance and may also obey the n_q -scaling.

J/ψ : Flows or not ?

- \clubsuit The diffusion coefficient D results from colour interactions. Expect it to be zero for the colourless J/ψ , leading to very small flow for it due to its large mass.
- \diamondsuit But the thermal charm may be in abundance and may also obey the n_q -scaling.
- \spadesuit If thermal charm 'recombines' to produce many J/ψ , then one expects J/ψ to flow still.
- \heartsuit The STAR collaboration presented results for J/ψ flow in the recent Quark Matter 2011.

J/ψ elliptic flow v_2

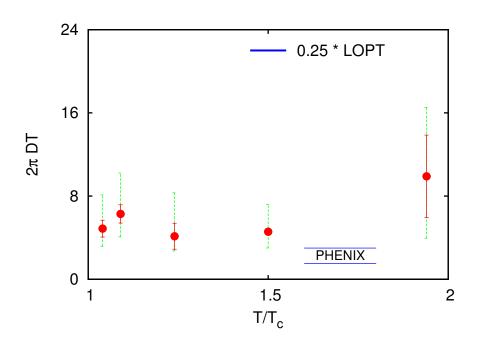
co, C.M. Ko, R. Rapp, PLB 595, 202.
Igli, R. Rapp, PLB 655, 126.
P. Zhuang, N. Xu, PRL 97, 232301.
D. R. Rapp, 24th WWND, 2008.

[5] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317[6] U. Heinz, C. Shen, priviate communication.

Disfavor coalescence from thermalized charm quarks

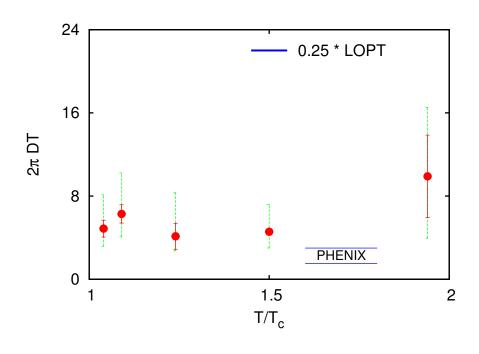
Zebo Tang, USTC

QM2011

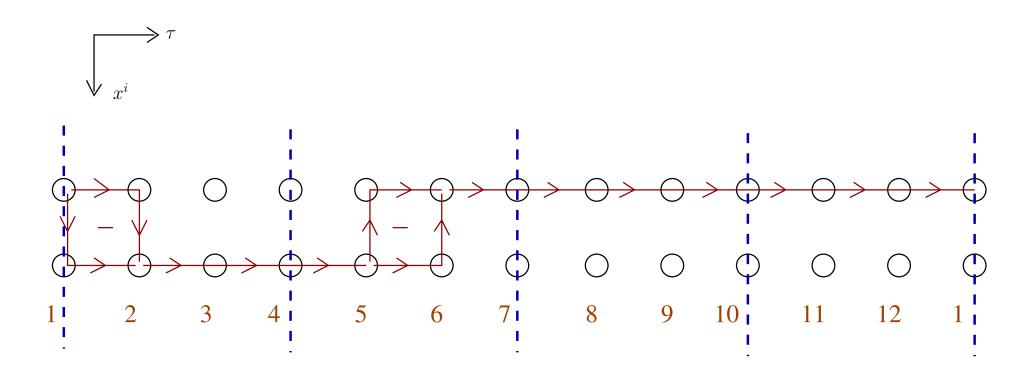

Consistent with zero

Summary

- ullet We have obtained the diffusion constant D as a function of T/T_c in quenched QCD in the temperature range of interest to RHIC and LHC.
- Our results for DT are almost constant in the range studied.


Summary

- ullet We have obtained the diffusion constant D as a function of T/T_c in quenched QCD in the temperature range of interest to RHIC and LHC.
- Our results for DT are almost constant in the range studied.
- The value itself is tantalisingly close to what PHENIX data needs in the Moore-Teaney model.



Summary

- ullet We have obtained the diffusion constant D as a function of T/T_c in quenched QCD in the temperature range of interest to RHIC and LHC.
- Our results for DT are almost constant in the range studied.
- The value itself is tantalisingly close to what PHENIX data needs in the Moore-Teaney model.

It would be interesting to see if DT vs. T/T_c exhibits similar flavour independence as the pressure.

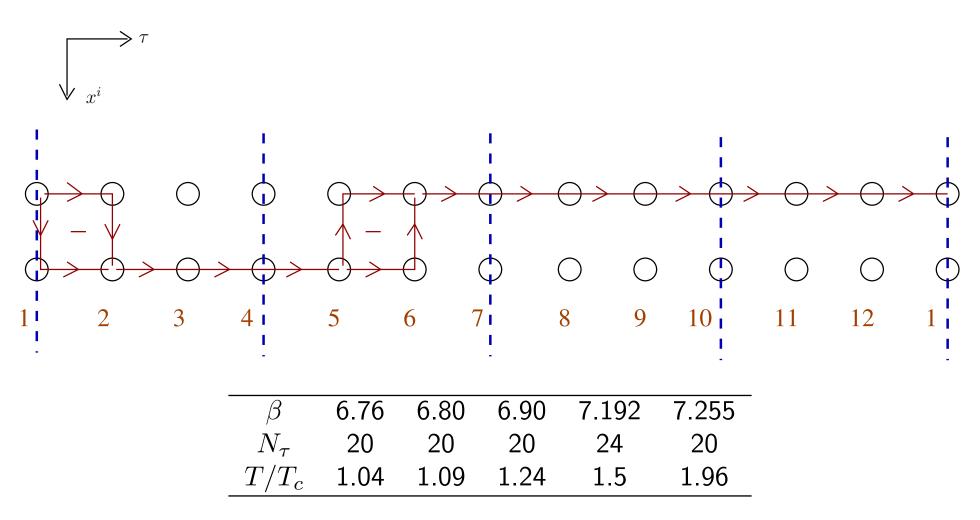


Table 1: List of lattices on which diffusion coefficients were extracted, and the temperatures.