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Introduction
♠ Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC.
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QGP - (Almost) Perfect Liquid
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where η is Shear Viscosity and s is
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Elliptic flow consistent with Ideal
Hydrodynamics  bound on Shear
viscosity. (D. Teaney, nucl-th/03010099; PRC 2003)

Γs =
4
3η

sT
, (1)

where η is Shear Viscosity and s is
entropy density; τ =

√
t2 − z2 is the

time scale of expansion.

Perturbation theory ⇒ Large η/s
Small η/s −→ Strongly Coupled Liquid.
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Lattice QCD : What it can do

• Transition temperature, Critical energy density, Order of Phase Transition,
Properties of QGP (EoS, Excitation types, Screening..)
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Lattice QCD : What it can do

• Transition temperature, Critical energy density, Order of Phase Transition,
Properties of QGP (EoS, Excitation types, Screening..)

• Completely parameter-free : ΛQCD and quark masses from hadron spectrum.

Need Ns � Nt for thermodynamic limit and large Nt for continuum limit.
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• Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.
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• Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

• Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

• Continue them to get
Retarded ones  Shear,
Bulk Viscosities.
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• Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

• Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

• Continue them to get
Retarded ones  Shear,
Bulk Viscosities.

• Larger lattices and inclusion
of dynamical quarks in
future.

Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 8



EoS of QGP

• First results from Bielefeld :
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EoS of QGP

• First results from Bielefeld :

Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC hep-lat/0509053

• Recent results for EoS : Nt=6, Smaller quark masses.
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EoS of QGP

• First results from Bielefeld :

Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC hep-lat/0509053

• Recent results for EoS : Nt=6, Smaller quark masses. Small differences for Nt

= 4 & 6; ε(Tc) ∼ 6T 4
c still. Too small volumes −→ Thermodynamic Limit ?
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♠ Cv ∼ 4ε for 2Tc but No Ideal Gas limit.
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(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

♠ Cv ∼ 4ε for 2Tc but No Ideal Gas limit.

♠ Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB ’98,

202) for T = 1.5− 3Tc but fails at lower T , as do various weak coupling schemes
: s

s0
= f(g2Nc), where f(x) = 3

4 + 45
32ζ(3)x−3/2 + · · · and s0 = 2

3π
2N2

cT
3.
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Weak Coupling
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Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 11



Weak Coupling

0.6

0.7

0.8

0.9

1.0

1 2 3

χ 
 /Τ

2
3

T/Tc

NL

HTL

Blaizot, Iancu & Rebhan PRD 01, PLB 01 RVG & Gupta PRD 01, 03

♣ Re-summed weak coupling explains lattice results.
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♣ Re-summed weak coupling explains lattice results.

♣ So does dimensional reduction (Kajantie et al, Vourinen)
♣ Quasiparticle, PNJL models (Kampfer et al., Wiese et al.).
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Baryon-Strangeness Correlation

♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.
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ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.

♣ Baryon Number(Charge)–Strangeness correlation : C(BS)/S (C(QS)/S) (Koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); u-d Correlation.
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

• Obtained from the long-distance behaviour of the correlator
〈CAB(z)〉 = 〈Ā(z)B̄(0)〉 − 〈Ā(0)〉〈B̄(0)〉 ∼ exp(−µ(T )z), as z →∞.

• Here Ā(z) =
∑

x,y,tA(x, y, z, t)/N2
sNt and is typically taken as a local meson

or baryon operator. µ(T )−1 then is meson(baryon) screening length.
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

• Obtained from the long-distance behaviour of the correlator
〈CAB(z)〉 = 〈Ā(z)B̄(0)〉 − 〈Ā(0)〉〈B̄(0)〉 ∼ exp(−µ(T )z), as z →∞.

• Here Ā(z) =
∑

x,y,tA(x, y, z, t)/N2
sNt and is typically taken as a local meson

or baryon operator. µ(T )−1 then is meson(baryon) screening length.

• Their conclusion : Existence of hadronic modes in QGP, unlike expectations
from naive pictures of deconfinement.
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• MTc-collaboration (Born et al. PRL ’89) pointed out that lowest Matsubara frequency
for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.
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for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.

• Is π really different in QGP ? or are there “artifacts” of lattice formulation
dominating it ?

• Similar results for Nf = 0 (quenched), 2 and 4 flavours of dynamical quarks.

Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 14



• MTc-collaboration (Born et al. PRL ’89) pointed out that lowest Matsubara frequency
for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.

• Is π really different in QGP ? or are there “artifacts” of lattice formulation
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• Type of quarks ? Fermions on lattice have a well-known “No-Go” theorem due
to Nielsen-Ninomiya :
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• MTc-collaboration (Born et al. PRL ’89) pointed out that lowest Matsubara frequency
for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.

• Is π really different in QGP ? or are there “artifacts” of lattice formulation
dominating it ?

• Similar results for Nf = 0 (quenched), 2 and 4 flavours of dynamical quarks.

• Type of quarks ? Fermions on lattice have a well-known “No-Go” theorem due
to Nielsen-Ninomiya : Popular choices

– Wilson Fermions – Break all chiral symmetries.
– Kogut-Susskind Fermions – Break some chiral symmetries but break also

flavour symmetry.
– Overlap Fermions – both correct chiral and flavour symmetry on lattice.
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 with A = aDw, (2)
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators.
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aD = 1 +A(A†A)−1/2 with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators.

♠ Satisfies {γ5, D} = aDγ5D  Exact Chiral Symmetry on lattice (Lüscher, PLB 1999).
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators.

♠ Satisfies {γ5, D} = aDγ5D  Exact Chiral Symmetry on lattice (Lüscher, PLB 1999).

♠ quark with a mass : D(ma) = ma+ (1−ma/2)D; Use ma = 0.001 – 0.1
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Computational Difficulties

• Quark Propagator, Y = D−1X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

• At each iteration for overlap, need M−1/2X : Iterations within each iteration.
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• Quark Propagator, Y = D−1X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

• At each iteration for overlap, need M−1/2X : Iterations within each iteration.

• Quenched QCD with overlap quarks ≡ Full QCD with Wilson quarks
in computational resources.

Full QCD with overlap quarks ∼ Square of that!
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Computational Difficulties

• Quark Propagator, Y = D−1X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

• At each iteration for overlap, need M−1/2X : Iterations within each iteration.

• Quenched QCD with overlap quarks ≡ Full QCD with Wilson quarks
in computational resources.

Full QCD with overlap quarks ∼ Square of that!

• Several methods for computing M−1/2X, including one by us (PRD 2002, CPC 2003).

• We use two algorithms : Conjugate Gradient based CGA, and Zolotarev
Approximation.
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Our Results

Gavai, Gupta, Lacaze PRD 2002
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Found zero modes all the way
up to 2Tc, but in decreasing
numbers.
〈(n+ − n−)2〉/V falls as power
of T/Tc : UA(1) continues to
be broken up to 2Tc.
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of opposite chiralities except
zero.
Index theorem for Overlap
quarks (P. Hasenfratz et al. PLB 1998)  
Instanton - zero modes linkage

Found zero modes all the way
up to 2Tc, but in decreasing
numbers.
〈(n+ − n−)2〉/V falls as power
of T/Tc : UA(1) continues to
be broken up to 2Tc.

CV = CA & CPS = −CS after
subtraction of zero modes.
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♥ Screening lengths (µ/T ) essentially T -independent for 1.25 ≤ T/Tc ≤ 2 for
Nt = 4. (GGL, PRD 2002). Investigating now continuum limit at 2Tc :
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Nt = 4. (GGL, PRD 2002). Investigating now continuum limit at 2Tc :
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Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 18



♥ Screening lengths (µ/T ) essentially T -independent for 1.25 ≤ T/Tc ≤ 2 for
Nt = 4. (GGL, PRD 2002). Investigating now continuum limit at 2Tc :

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25

C
(r

)

r/a

6 x 14 2 x 24
Lattice

Pion 
Rho 

Ideal Gas 

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30

C
(r

)
r/a

8 x 18 2 x 32
Lattice

Pion 
Rho 

Ideal Gas 

♣ On both Nt =6 and 8, cosh-like behaviour is seen.

♣ Ideal gas correlator very close in each case.
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♣ Pion seems to deviate from FFT much more than rho.

Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 19



♣ Pion seems to deviate from FFT much more than rho.

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

C
(r

)/C
fre

e (
r)

r/a

Pion 
Rho 
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♣ As a gets smaller, the pion deviations increase.
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♣ Local masses [∼ ln(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho.
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♣ Contrast this with the staggered effective mass (Gavai & Gupta PRD 2002).
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Comparison with Wilson Fermions

♣ Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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Comparison with Wilson Fermions

♣ Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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♣ Nice plateau behaviour for Overlap fermions.
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Momentum Space Correlators
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Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 22



Momentum Space Correlators

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  1  2  3  4  5  6

C
(k

z)

kz

 Rho : 8 x 18 x 18 x 32  
 1.275*Ideal Gas: 8 x 18 x 18 x 32  

 Rho: 6 x 14 x 14 x 24  
 Rho: 6 x 14 x 14 x 14  

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  1  2  3  4  5  6

C
(k

z)

kz

Pion : 8 x 18 x 18 x 32 
1.3*Ideal Gas : 8 x 18 x 18 x 32 

Pion : 6 x 14 x 14 x 24 
Pion : 6 x 14 x 14 x 14 
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Screening masses vs. a
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Screening masses vs. a
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♣ Very small a dependence.
♣ mρ consistent with Ideal Gas but mπ smaller by about 10 %.
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Summary

• Single cosh behaviour, leading to nice plateau in local masses, seen on ALL
Nt= 4, 6 and 8.

• Rho correlator in very good agreement with ideal gas one, but pion differs on
all Nt; Deviations increase in continuum limit.
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Summary

• Single cosh behaviour, leading to nice plateau in local masses, seen on ALL
Nt= 4, 6 and 8.

• Rho correlator in very good agreement with ideal gas one, but pion differs on
all Nt; Deviations increase in continuum limit.

• Pion screening mass remained different from the ideal gas at ∼ 10 % or 3σ
level, while rho mass was in agreement.

• Very little, if any, a dependence =⇒ difference to persist on very large Nt.
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Summary II

• Lattice QCD predicts transition to
Quark-Gluon Plasma and several of its
properties, Tc, EoS, µπ, λs, η ...

• π-screening length appears nontrivial
even in continuum limit.
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• Our results on correlations of quantum
numbers suggest quark-like excitations
in QGP.

• Phase diagram in T − µB plane has
begun to emerge: Our estimate for the
critical point is µB/T ∼ 1− 2.
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Wróblewski Parameter

• Measure of Strangeness produced. Quark number susceptibilities,
χij ∼ ∂ lnZ/∂µi∂µj, can provide a handle; QNS also useful theoretical check
on models.
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• Measure of Strangeness produced. Quark number susceptibilities,
χij ∼ ∂ lnZ/∂µi∂µj, can provide a handle; QNS also useful theoretical check
on models.

• Fluctuation-Dissipation Theorem −→ Production of Strange quark-antiquark
pair ∼ imaginary part of generalized strange quark susceptibility.

• Kramers - Krönig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.
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Wróblewski Parameter

• Measure of Strangeness produced. Quark number susceptibilities,
χij ∼ ∂ lnZ/∂µi∂µj, can provide a handle; QNS also useful theoretical check
on models.

• Fluctuation-Dissipation Theorem −→ Production of Strange quark-antiquark
pair ∼ imaginary part of generalized strange quark susceptibility.

• Kramers - Krönig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.

• Finally, make a relaxation time approximation (ωτ � 1)  ratio of real parts is
the same as the ratio of imaginary parts.
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We use m/Tc = 0.03 for u, d and m/Tc = 1 for s quark;
At each T , ratio of χs and χud → λs(T ).

Extrapolate it to Tc. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006)
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(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)
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(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.
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(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Since about 30-40 % observed J/ψ come through χ and ψ′ decays, expect
changes of suppression patterns as a function of T or

√
s.
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(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Since about 30-40 % observed J/ψ come through χ and ψ′ decays, expect
changes of suppression patterns as a function of T or

√
s.

♠ No Significant Effect of inclusion of dynamical fermions ?
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.

Expected QCD Phase Diagram ... but could, however, be ...

Τ
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).
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• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).

• Imaginary Chemical Potential (Ph. de

Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D’Elia PR D67 (2003) 014505 ).
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

• Lee-Yang Zeroes and Two parameter
Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002)

014 ).

• Imaginary Chemical Potential (Ph. de

Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002)

074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR

D68 (2003) 034506 ).
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Critical Point Estimate

RVG & S. Gupta, PR D 71 2005.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes). Left panel for ρn and right one for rn.
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Critical Point Estimate

RVG & S. Gupta, PR D 71 2005.
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♠ Radii of convergence as a function of the order of expansion at T = 0.95Tc on
Ns = 8 (circles) and 24 (boxes). Left panel for ρn and right one for rn.

♠ Extrapolation in n  µE/TE = 1.1± 0.2 at TE = 0.95Tc. Finite volume shift
consistent with Ising Universality class.
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mρ/Tc mπ/mρ mN/mρ Nsmπ flavours TE/Tc µE
B/T

E

5.372 (5) 0.185 (2) — 1.9–3.0 2+1 0.99 (2) 2.2 (2)
5.12 (8) 0.307 (6) — 3.1–3.9 2+1 0.93 (3) 4.5 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3–10.0 2 0.95 (2) 1.1 (2)
5.4 (2) 0.31 (1) 1.8 (2) 3.3 2 — —
5.5 (1) 0.70 (1) — 15.4 2 — —

Table 1: Summary of critical end point estimates— the lattice spacing is

a = 1/4T . Ns is the spatial size of the lattice and Nsmπ is the size in units of the

pion Compton wavelength, evaluated for T = µ = 0. The ratio mπ/mK sets the

scale of the strange quark mass.

Results are sequentially from Fodor-Katz ’04, Fodor-Katz ’02, Gavai-Gupta, de
Forcrand- Philipsen and Bielefeld-Swansea.

Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top 32


