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Introduction
& Quest for Quark-Gluon Plasma : Heavy lon Collisions at SPS, RHIC and LHC.

When heavy nuclei collide ...

... and then freeze out
into particles ...
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Introduction
& Quest for Quark-Gluon Plasma : Heavy lon Collisions at SPS, RHIC and LHC.

When heavy nuclei collide ... . Little Bang at LHC
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Anisotropy Parameter v,

coordinate-space-anisotropy = momentum-space-anisotropy

X

Initial/final conditions, EoS, degrees of freedom
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=t v, at Low pr Region
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- Minimum bias datal At low p;, model result fits mass hierarchy welll
- Details do not work, need more flow in the model!

Nu Xu “ICHEP 2006™ Moscow, Russia, July 26 - August 2, 2006 17122
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QGP - (Almost) Perfect Liquid
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QGP - (Almost) Perfect Liquid

Elliptic flow consistent with Ideal
Hydrodynamics ~» bound on Shear
0.2 VISCOSILY. (D. Teaney, nuckth/03010099; PRC 2003)

(p7)

> 0.18 b = 6.8 fm (16-24% Central)

%1% . STAR Data
0.14
0.12
0.1
0.08
0.06
0.04

0.02

02 04 06 08 1 12 14 16
p(GeV)

oO

Séminaires Particules, LPT, Orsay, October 5, 2006 R. V. Gavai Top



QGP - (Almost) Perfect Liquid
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where 7 is Shear Viscosity and s is

entropy density; 7 = V12 — 22 is the

time scale of expansion.
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where 7 is Shear Viscosity and s is

entropy density; 7 = vt? — 22 is the

time scale of expansion.

Perturbation theory = Large n/s
Small n/s — Strongly Coupled Liquid.
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Lattice QCD : What it can do

e Transition temperature, Critical energy density, Order of Phase Transition,
Properties of QGP (EoS, Excitation types, Screening..)
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Lattice QCD : What it can do

e Transition temperature, Critical energy density, Order of Phase Transition,
Properties of QGP (EoS, Excitation types, Screening..)

o Completely parameter-free : Agcp and quark masses from hadron spectrum.
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Lattice QCD : What it can do

e Transition temperature, Critical energy density, Order of Phase Transition,
Properties of QGP (EoS, Excitation types, Screening..)

o Completely parameter-free : Agcp and quark masses from hadron spectrum.

o ———————————————

N.a.

Need N > N, for thermodynamic limit and large N; for continuum limit.
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Nakamura and Sakai, PRL 94 (2005).
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e Kubo's Linear Response

Theory Transport
Coefficients in terms of
20 equilibrium correlation
' N B 167xs functions.
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Nakamura and Sakai, PRL 94 (2005).
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e Kubo's Linear Response
Theory Transport
Coefficients in terms of
equilibrium correlation
functions.
Obtain  Energy-Momentum
Correlation functions
on Lattice (at discrete

Matsubara frequencies).

Continue them to get
Retarded ones ~-+ Shear,
Bulk Viscosities.

Séminaires Particules, LPT, Orsay, October 5, 2006

R. V. Gavai Top

8



2.0
B 16°x8
1.5 ¢ Tsl §o247°x3
1.0 } : X Perturbative
'"t ¥

i H ]
0> KSS bound

I T O P
0.0 | _ :
-0.5 - -

1 1.5 2 2.5

Nakamura and Sakai, PRL 94 (2005).

Kubo's Linear Response

Theory Transport
Coefficients in terms of
equilibrium correlation
functions.

Obtain  Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

Continue them to get
Retarded ones ~-+ Shear,
Bulk Viscosities.

Larger lattices and inclusion
of dynamical quarks in
future.
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EoS of QGP

e First results from Bielefeld :
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EoS of QGP

e First results from Bielefeld : 0T
185 |
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Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC hep-lat/0509053
e Recent results for EoS : N;=6, Smaller quark masses.
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EoS of QGP

e First results from Bielefeld : 20

18F —
PR
= = = ]
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| all
2 2.25 25

Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC hep-lat/0509053

e Recent results for EoS : N;=6, Smaller quark masses. Small differences for IV,
= 4 & 6; ¢(T,) ~ 6T still. Too small volumes — Thermodynamic Limit ?
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(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

& C, ~ 4e for 2T, but No Ideal Gas limit.

& Entropy agrees with strong coupling SYM prediction (Gubser, Kiebanov & Tseytlin, NPB 98,
202) for T' = 1.5 — 3T, but fails at lower I', as do various weak coupling schemes

£ = [(¢2N,), where f(x) = 3 +42¢(3)e=%/2 4 - - and 5o = 272 N2T?,
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Weak Coupling
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& Re-summed weak coupling explains lattice results.
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Weak Coupling
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& Re-summed weak coupling explains lattice results.

& So does dimensional reduction (kajantie et al, Vourinen)

* QuaSipartiC|e, PNJL models (Kampfer et al., Wiese et al.).
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Baryon-Strangeness Correlation

& Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = <[§£%;ji>><2L>

& These are robust : theoretically & experimentally.
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Baryon-Strangeness Correlation

JCorrelation between quantum numbers K and L can be studied through the
ratio C(KL)/L = <[§£%>__<Z>><2L>

& These are robust : theoretically & experimentally.

& Baryon Number(Charge)-Strangeness correlation : C(pgy/s (C(gs)/s) (coch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); U-d Correlation.
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Baryon-Strangeness Correlation

JCorrelation between quantum numbers K and L can be studied through the
ratio C(KL)/L = <[§£%;ji>><2L>

& These are robust : theoretically & experimentally.

& Baryon Number(Charge)-Strangeness correlation : C(psy/s (C(gs)/s) (koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); U-d Correlation.
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Baryon-Strangeness Correlation

JCorrelation between quantum numbers K and L can be studied through the
ratio C(KL)/L = <[§£%;ji>><2L>

& These are robust : theoretically & experimentally.

& Baryon Number(Charge)-Strangeness correlation : C(psy/s (C(gs)/s) (koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); U-d Correlation.
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Hadronic Screening Lengths

e DeTar & Kogut (PRD '87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects 7
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Hadronic Screening Lengths

e DeTar & Kogut (PRD '87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

e Obtained from the long-distance behaviour of the correlator
(Ca(z)) = (A(2)B(0)) — (A(0)){B(0)) ~ exp(—u(T)z), as z — 0.

o Here A(2) =3, A(z,y,2,t)/N;N; and is typically taken as a local meson
or baryon operator. ;(T) ™! then is meson(baryon) screening length.
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Hadronic Screening Lengths

e DeTar & Kogut (PRD '87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

e Obtained from the long-distance behaviour of the correlator
(Ca(z)) = (A(2)B(0)) — (A(0)){B(0)) ~ exp(—u(T)z), as z — oo.

o Here A(z) =3, A(x,y,2,t)/NIN; and is typically taken as a local meson
or baryon operator. ;(T) ™! then is meson(baryon) screening length.

e Their conclusion : Existence of hadronic modes in QGP, unlike expectations
from naive pictures of deconfinement.
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e MT,-collaboration (Bometal PrL89) pointed out that lowest Matsubara frequency
for small Ny is much larger than in continuum = can explain p (IV)-screening
mass as that for free qq (qqq)-pair. But p, was still very different.
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e MT,-collaboration (Bometal. PrL89) pointed out that lowest Matsubara frequency
for small Ny is much larger than in continuum = can explain p (IV)-screening
mass as that for free qq (qqq)-pair. But p, was still very different.

e |s 7 really different in QGP 7 or are there “artifacts” of lattice formulation
dominating it ?

e Similar results for Ny = 0 (quenched), 2 and 4 flavours of dynamical quarks.
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mass as that for free qq (qqq)-pair. But p, was still very different.

o |s 7 really different in QGP 7 or are there “artifacts” of lattice formulation
dominating it ?

e Similar results for Ny = 0 (quenched), 2 and 4 flavours of dynamical quarks.

e Type of quarks ? Fermions on lattice have a well-known “No-Go" theorem due
to Nielsen-Ninomiya :
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e MT,-collaboration (Bometal. PrL89) pointed out that lowest Matsubara frequency
for small Ny is much larger than in continuum = can explain p (IV)-screening
mass as that for free qq (qqq)-pair. But p, was still very different.

o |s 7 really different in QGP 7 or are there “artifacts” of lattice formulation
dominating it ?

e Similar results for Ny = 0 (quenched), 2 and 4 flavours of dynamical quarks.

e Type of quarks ? Fermions on lattice have a well-known “No-Go" theorem due
to Nielsen-Ninomiya : Popular choices

— Wilson Fermions — Break all chiral symmetries.

— Kogut-Susskind Fermions — Break some chiral symmetries but break also
flavour symmetry.

— Overlap Fermions — both correct chiral and flavour symmetry on lattice.
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Overlap-Dirac Operator

& Neuberger (pe190s) proposed the overlap-Dirac operator :

aD =1+ A(ATA)"Y2  with A =aD,, (2)
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Overlap-Dirac Operator

& Neuberger (pe190s) proposed the overlap-Dirac operator :
aD =1+ A(ATA)"Y2  with  A=aD,, (2)

& Here D, is the Wilson-Dirac Operator given by,

1 * *
aDy, = 5{7/14(6/; + 8,“) o aa,uaﬂ} + M7 (3)

with —2 < M < 0 and 0, and 0}, as forward and backward gauge-invariant
difference operators.
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Overlap-Dirac Operator

& Neuberger (pe190s) proposed the overlap-Dirac operator :
aD =1+ A(ATA)"Y2  with  A=aD,, (2)

& Here D,, is the Wilson-Dirac Operator given by,

1 * *
aDy, = 5{7/14(6“ + aﬂ) o aa,uau} + M7 (3)

with —2 < M <0 and 0, and 0}, as forward and backward gauge-invariant
difference operators.

& Satisfies {5, D} = aD~sD ~» Exact Chiral Symmetry on lattice (Lischer, PLB 1999).
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Overlap-Dirac Operator

& Neuberger (pe190s) proposed the overlap-Dirac operator :
aD =1+ A(ATA)"Y2  with  A=aD,, (2)

& Here D,, is the Wilson-Dirac Operator given by,

1 * *
aDy, = 5{7/14(6“ + aﬂ) o aﬁuau} + M7 (3)

with —2 < M <0 and 0, and 0}, as forward and backward gauge-invariant
difference operators.

@ Satisfies {5, D} = aD~sD ~» Exact Chiral Symmetry on lattice (Lischer, PLB 1999).

#® quark with a mass : D(ma) = ma + (1 — ma/2)D; Use ma = 0.001 — 0.1
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Computational Difficulties

e Quark Propagator, Y = D~ !X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

e At each iteration for overlap, need M~1Y2X : lterations within each iteration.
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Computational Difficulties

e Quark Propagator, Y = D~ !X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

e At each iteration for overlap, need M~1Y2X : |terations within each iteration.

e Quenched QCD with overlap quarks = Full QCD with Wilson quarks
in computational resources.
Full QCD with overlap quarks ~ Square of that!
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Computational Difficulties

e Quark Propagator, Y = D~ !X, needs inversion of D. Usually done iteratively
(Conjugate Gradient).

e At each iteration for overlap, need M~1Y2X : |terations within each iteration.

e Quenched QCD with overlap quarks = Full QCD with Wilson quarks
in computational resources.
Full QCD with overlap quarks ~ Square of that!

e Several methods for computing M ~1/2X, including one by us (prp 2002, cpc 2003).

e We use two algorithms : Conjugate Gradient based CGA, and Zolotarev
Approximation.
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Our Results

Gavai, Gupta, Lacaze PRD 2002

17

Top

R. V. Gavai

Séminaires Particules, LPT, Orsay, October 5, 2006



Our Results

Eigenvalues of D come in pairs
of opposite chiralities except
Gavai, Gupta, Lacaze PRD 2002 Zero.
Index theorem for Overlap
quarks (P. Hasenfratz et al. PLB 1998) ~~
Instanton - zero modes linkage
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Gavai, Gupta, Lacaze PRD 2002

Our Results

Eigenvalues of D come in pairs
of opposite chiralities except
Zero.

Index theorem for Overlap
quarks (P. Hasenfratz et al. PLB 1998) ~~
Instanton - zero modes linkage

Found zero modes all the way
up to 27., but in decreasing
numbers.

((ny —n_)?)/V falls as power
of T/T. : Ua(1l) continues to
be broken up to 27..
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Gavai, Gupta, Lacaze PRD 2002

Our Results

Eigenvalues of D come in pairs
of opposite chiralities except
zZero.

Index theorem for Overlap
quarks (P. Hasenfratz et al. PLB 1998) ~~
Instanton - zero modes linkage

Found zero modes all the way
up to 27., but in decreasing
numbers.

((ny —n_)?)/V falls as power
of T/T. : Ua(1l) continues to
be broken up to 27..

Cy =C4p & Cpg = —Cg after
subtraction of zero modes.
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R. V. Gavai Top
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O Screening lengths (1/T') essentially T-independent for 1.25 < T'/T,. < 2 for
N; = 4. (coL, pro 2002). Investigating now continuum limit at 27, :
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O Screening lengths (1/T') essentially T-independent for 1.25 < T'/T,. < 2 for
Ny = 4. (coL pro2002). Investigating now continuum limit at 27,
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O Screening lengths (1/T') essentially T-independent for 1.25 < T'/T,. < 2 for
Ny = 4. (coL pro2002). Investigating now continuum limit at 27,
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O Screening lengths (1/T') essentially T-independent for 1.25 < T'/T,. < 2 for

N¢ = 4. (coL, pro 2002). Investigating now continuum limit at 27,

1 - T T T T T ] 1 FT T T

Pion —o— ] Pion o
I Rho —x— ] =] Rho +—x—
011l " ldeal Gas [ ] 0.1} g Ideal Gas [ g
® & Z
0.01 | ]
0.01} ] _
0.001 | ]
0.001 £ E
5’ 519'04 E E
16-04 - -1
1e-05 F =
1e-05 | i I
] 1e-06 | =
16-06 6x142x24 1 1e-07} 8x182x32
y Lattice ] | Lattice
- ! ! ! 1 ! ! - ! ! 1 1 1 1 1
18075 5 10 15 20 25 1808 5 10 15 20 25 30
r/a r/a

& On both N; =6 and 8, cosh-like behaviour is seen.

& Ideal gas correlator very close in each case.
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& Pion seems to deviate from FFT much more than rho.
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& Pion seems to deviate from FFT much more than rho.
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& Pion seems to deviate from FFT much more than rho.

Pion —o— '
Rho —¢— 8 ——
6 6 <
- 4 .
5| i
o o
R &)
(©)
@c}% b, ﬁ% IS S
2 o) o) I i % I
@ @ Tz ¢ 5 i '
©® " ¥ Tk xxx o T
¥ *
HETFrT s * FEH K KR . o
0% 5 10 15 20 25 30 0 0.2 0.4 06 0.8 1
r/a r/nz
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& Pion seems to deviate from FFT much more than rho.

Pion —o— '
Rho —¥— 8
3 s
5| |
o o =y
S W %% 5 m i
(@)
50 % ﬁ A & St
2 ¢ D i ol
(D ®® { P ) 1 % i s
® * *% % * % 2
HETFrT s x4 X FEH K KR . o
05 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1
r/a r’'nz
& As a gets smaller, the pion deviations increase.
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& Local masses [~ In(C'(r)/C(r + 1)] show nice plateau behaviour for pi & rho.
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& Local masses [~ In(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho.
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& Local masses [~ In(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho.
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& Local masses [~ In(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho.

12

15 T T T
Pion —o—
14 | % Rho —x— | 10l
13+ @ 1 @
12} 1 81 E%
@% é
11} « = © %o . 1
= ~N 6 meveooe e
N 10} ® c ®
S X EIJ @
®
9L X 4| @
8l O ox
® ¥ 1 ®
! o = % *—x—x %K% %X °
- AV D D) ) 3
5 1 1 1 0 0:5 Jl 1:5
0 0.5 1 1.5 2 ST
zT

& Contrast this with the staggered effective mass (Gavai & Gupta PRD 2002).
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Comparison with Wilson Fermions

& Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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Comparison with Wilson Fermions

& Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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Comparison with Wilson Fermions

& Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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Comparison with Wilson Fermions

& Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group))
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Pion o~
o 1 1 1 1 Rho —k—
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0 0.2 0.4 0.6 0.8 1 1/2nzT

& Nice plateau behaviour for Overlap fermions.
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Momentum Space Correlators
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Momentum Space Correlators
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Screening masses vs. a
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Screening masses vs. a
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Screening masses vs. a

1.05 __ 1.05 —
Cy||ndr|cal —— Cy||ndr|cal ——
Cubic +—¥— Cubic +—¥—
1 1
0.95 | + 1 0.95 | +
€ o9 + £ 09} +
£ = '
0.85 | 0.85 |
08} ] 08}
0-755 0.02 0.04 0.06 0.08 01 97°% 0.02 0.04 0.06 0.08 0.1
1/N{? 1/N{?
& Very small a dependence.
& m, consistent with Ideal Gas but m, smaller by about 10 %.
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Summary

e Single cosh behaviour, leading to nice plateau in local masses, seen on ALL
Nt: 4, 6 and 8.

e Rho correlator in very good agreement with ideal gas one, but pion differs on
all V;; Deviations increase in continuum limit.
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Summary

e Single cosh behaviour, leading to nice plateau in local masses, seen on ALL
Nt: 4, 6 and 8.

e Rho correlator in very good agreement with ideal gas one, but pion differs on
all NV;; Deviations increase in continuum limit.

e Pion screening mass remained different from the ideal gas at ~ 10 % or 3¢
level, while rho mass was in agreement.

e Very little, if any, a dependence = difference to persist on very large IV;.
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Summary 1|

o Lattice QCD predicts transition to
Quark-Gluon Plasma and several of its
properties, T, EoS, 1., A, 1 ...

e m-screening length appears nontrivial
even in continuum limit.
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Summary 1|

e Lattice QCD predicts transition to
Quark-Gluon Plasma and several of its
properties, T, EoS, 1., As, 1 ...

e m-screening length appears nontrivial
even in continuum limit.

e Our results on correlations of quantum
numbers suggest quark-like excitations

in QGP.
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Summary 1|

e Lattice QCD predicts transition to
Quark-Gluon Plasma and several of its
properties, T, EoS, 1., As, 1 ...

e m-screening length appears nontrivial
even in continuum limit.

e Our results on correlations of quantum
numbers suggest quark-like excitations

in QGP.

e Phase diagram in T — up plane has
begun to emerge: Our estimate for the
critical point is ug/T ~ 1 — 2.
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Summary 1|

e Lattice QCD predicts transition to
Quark-Gluon Plasma and several of its

. 1.1
properties, T, EoS, 1., As, 1 ...
e m-screening length appears nontrivial i
even in continuum limit. i 18 GeV (CERN) $ 1
£ 0.9} 30GeV
_ = 20 GeV 10 GeV
e Our results on correlations of quantum
numbers suggest quark-like excitations 08|
. Freezeout curve
in QGP. i
. . 07 i 7 3 z
e Phase diagram in T' — up plane has u/T

begun to emerge: Our estimate for the
critical point is up/T ~ 1 — 2.
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Wroblewski Parameter

e Measure of Strangeness produced. Quark number susceptibilities,
Xij ~ 0InZ/0pu;0p;, can provide a handle; QNS also useful theoretical check
on models.
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Wroblewski Parameter

e Measure of Strangeness produced. Quark number susceptibilities,
Xij ~ 0InZ/0pu;0p;, can provide a handle; QNS also useful theoretical check

on models.
e Fluctuation-Dissipation Theorem — Production of Strange quark-antiquark
pair ~ imaginary part of generalized strange quark susceptibility.

e Kramers - Kronig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.
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Wroblewski Parameter

e Measure of Strangeness produced. Quark number susceptibilities,
Xij ~ 0InZ/0pu;0p;, can provide a handle; QNS also useful theoretical check
on models.

e Fluctuation-Dissipation Theorem — Production of Strange quark-antiquark
pair ~ imaginary part of generalized strange quark susceptibility.

e Kramers - Kronig relation can be used to relate it to the real part of the
susceptibility, which we obtain from lattice QCD simulations.

e Finally, make a relaxation time approximation (w7 > 1) ~~ ratio of real parts is
the same as the ratio of imaginary parts.
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We use m /T, = 0.03 for u,d and m/T, =1 for s quark;
At each T, ratio of x5 and Y4 — A(T).

Extrapolate it to T,.. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006)
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We use m /T, = 0.03 for u,d and m/T, =1 for s quark;

At each T, ratio of xs and xu4 — A(T).

Extrapolate it to 7. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006)

fo Quenched QCD (T;)
—e RHIC Au-Au
o SpS S-S
— SpS S-Ag
o SpS Pb-Pb
—— AGS Au-Au
AGS Si-Au ; .
0.2 0.4 0.6 0.8 1
s
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We use m /T, = 0.03 for u,d and m/T, =1 for s quark;
At each T, ratio of xs and xu4 — A(T).

Extrapolate it to 7. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006)

fo Quenched QCD (T;)
- RHIC Au-Au 0.8} —S
o SpS S-S S
— SpS S-Ag 0.6¢
< ©
- SpS Pb-Pb ®
04t o Nt = 4
AGS Si-Au | ® 02L
0.2 0.2 0.6 0.8 1
% 0 05 1 15 > 25
T/Tc
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0.16 ] 0.1}
Iy
0.12 r i
3 3
5 008} 3 005
0.9T,——
15T——
D 25T ——
0.04 | 3Te—
0 - 0
2 1 3 5 1 3 5
w[GeV]
(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)
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0.16

0.12

PAW)

0.04

#® . seems to indeed dissolve by 1.17,, however, J/v and 7. persist up to 2.25

0.08 r

Iy

(S. Datta et al.,

0.1

PLW)

0.05

0 (- 1 O /
1 3

Phys. Rev. D 69, 094507 (2004).)

5
w[GeV]

T, and are gone at 37,; Similar results by Asakawa-Hatsuda and Matsufuru.
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0.16 | o1l

Iy
0.12 |

PLW)
PLW)

0.08 0.05

0.04

1 3

5
w[GeV]
(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

#® . seems to indeed dissolve by 1.17,, however, J/v and 7. persist up to 2.25
T, and are gone at 37,; Similar results by Asakawa-Hatsuda and Matsufuru.

# Since about 30-40 % observed J/1 come through x and 1’ decays, expect
changes of suppression patterns as a function of T" or /s.
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0.16 | o1l

Iy
0.12 |

PLW)
PLW)

0.08 0.05

0.04

1 3 5
w[GeV]
(S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

#® . seems to indeed dissolve by 1.17,, however, J/v and 7. persist up to 2.25
T, and are gone at 37,; Similar results by Asakawa-Hatsuda and Matsufuru.

# Since about 30-40 % observed J/1 come through x and 1’ decays, expect
changes of suppression patterns as a function of T" or /s.

& No Significant Effect of inclusion of dynamical fermions ?
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QCD Phase diagram

& Another fundamental aspect — Critical Point in T-up plane; based on
symmetries and models.
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QCD Phase diagram

& Another fundamental aspect — Critical Point in T-up plane; based on
symmetries and models.

Expected QCD Phase Diagram

mg > Muy,d 7é 0

25C
CFL
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QCD Phase diagram

& Another fundamental aspect — Critical Point in T-up plane; based on
symmetries and models.

Expected QCD Phase Diagram ... but could, however, be ...

mg > Muy,d 7é 0

25C
CFL
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QCD Phase diagram

& Another fundamental aspect — Critical Point in T-up plane; based on
symmetries and models.

Expected QCD Phase Diagram ... but could, however, be ...

mg > Muy,d 7é 0

25C
\ CFL
I
x
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

me > May,d 7& 0

25C
CFL
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

e |Lee-Yang Zeroes and Two parameter
Re-weighting (z. Fodor & 5. Katz, JHEP 0203 (2002)

T
ms>>mu’d7$0 014 )

25C
CFL
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

e |Lee-Yang Zeroes and Two parameter
Re-weighting (z. Fodor & 5. Katz, JHEP 0203 (2002)

T
ms>>mu7d7$0 014 )

e Imaginary Chemical Potential (P de
Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D'Elia PR D67 (2003) 014505 )

25C
CFL
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Expected QCD Phase Diagram and Lattice Approaches to unravel it.

me > May,d 7& 0

25C
CFL

e |Lee-Yang Zeroes and Two parameter
Re-weighting (z. Fodor & 5. Katz, JHEP 0203 (2002)
014 ).

e Imaginary Chemical Potential (ph e
Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo

& M. D'Elia PR D67 (2003) 014505 )

e Taylor Expansion (c. Aiiton et al., PR D66 (2002)
074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR
D68 (2003) 034506 ).
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Critical Point Estimate

RVG & S. Gupta, PR D 71 2005.

5 : : ‘ ‘ ‘ 7

6l
41 d ] %
0 St d
3t {4l
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W) 331
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m 2
1 | o ¢ ¢
11
0 2 3 4 5 6 7 0 2 3 4 5 6 7
n n
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Critical Point Estimate

RVG & S. Gupta, PR D 71 2005.

5 : : ‘ ‘ ‘ 7

6L
4! o) ] %
0) 5t <]>
3t ] 4l
= @ =
m m
35 2 3t
®
[ 21
1 m o EI] EIJ
, |
0 s 3 2 5 5 7 0 2 3 % 5 6 7
n n

& Radii of convergence as a function of the order of expansion at 17" = 0.957, on
N = 8 (circles) and 24 (boxes). Left panel for p,, and right one for r,,.
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Critical Point Estimate

RVG & S. Gupta, PR D 71 2005.

5 : : ‘ ‘ ‘ 7

6L
4| o) ] %
o) St <l>
3t ] 4l
= ® =
m m
3o =3t
®
[ 21
1 m o EI] EIJ
, |
0 s 3 % 5 5 7 0 o 3 % 5 6 7
n n

& Radii of convergence as a function of the order of expansion at 1" = 0.957, on
N = 8 (circles) and 24 (boxes). Left panel for p,, and right one for r,,.

# Extrapolation in n ~ pu¥ /T =1.140.2 at T* = 0.95T... Finite volume shift
consistent with Ising Universality class.
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my/T. | mx/m, mn/m, | Ngm, flavours | T*/T. pupg/T"
5372 (5) | 0.185 (2) — 11930 241 |099(2) 2202
5.12 (8) | 0.307 (6) — 13139 241 |0.93(3) )
54(2) | 031(1) 18(2)|33-100 2 | 0.95(2) )
54(2) | 031(1) 18(2)| 323 > _ _
5.5 (1) | 0.70 (1) | 154 ; _ _

Table 1: Summary of critical end point estimates— the lattice spacing is

a =1/4T. Ny is the spatial size of the lattice and Nym is the size in units of the

pion Compton wavelength, evaluated for T'= u = 0. The ratio m,/mg sets the

scale of the strange quark mass.

Results are sequentially from Fodor-Katz '04, Fodor-Katz '02, Gavai-Gupta, de

Forcrand- Philipsen and Bielefeld-Swansea.
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