Excursions in QCD Phase Diagram

Excursions in QCD Phase Diagram

Motivation

Quark Number Susceptibility

EoS for nonzero baryon density

Screening Lengths

Summary

- Standard Model Very Successful!
- Precision tests from LEP
- All tests based on perturbation theory
- Need to understand non-perturbative QCD to explain baryonic matter in our Universe, i.e., us.
- Lattice QCD only well-understood, viable tool for this.

(O^{meas}–O^{fit})/σ^{meas} Pull Measurement -3 -2 -1 0 1 2 3 $\Delta \alpha_{\rm had}^{(5)}({\rm m_2})$ 0.02761 ± 0.00036 -0.16m₇ [GeV] 91.1875 ± 0.0021 0.02 Γ_7 [GeV] 2.4952 ± 0.0023 -0.36 $\sigma_{\rm had}^0$ [nb] 41.540 ± 0.037 1.67 20.767 ± 0.025 1.01 0.01714 ± 0.00095 0.79 $A_{l}(P_{\tau})$ -0.42 0.21644 ± 0.00065 0.99 0.1718 ± 0.0031 -0.15 0.0995 ± 0.0017 -2.43 0.0713 ± 0.0036 -0.78 0.922 ± 0.020 -0.64 0.670 ± 0.026 0.07 A_I(SLD) 0.1513 ± 0.0021 1.67 $\sin^2 \theta_{eff}^{lept}(Q_{fb})$ 0.2324 ± 0.0012 0.82 mw [GeV] 80.426 ± 0.034 1.17 Γ_{w} [GeV] 2.139 ± 0.069 0.67 m, [GeV] 0.05 174.3 ± 5.1 $\sin^2\theta_W(vN)$ 2.94 0.2277 ± 0.0016 Q_w(Cs) -72.83 ± 0.49 0.12

Winter 2003

-3 -2 -1 0 1 2 3

- Standard Model Very Successful!
- Precision tests from LEP
- All tests based on perturbation theory
- Need to understand non-perturbative QCD to explain baryonic matter in our Universe, i.e., us.
- Lattice QCD only well-understood, viable tool for this.

Winter 2003 (O^{meas}–O^{fit})/σ^{meas} Pull Measurement -3 -2 -1 0 1 2 3 $\Delta \alpha_{\rm had}^{(5)}({\rm m_2})$ 0.02761 ± 0.00036 -0.16m₇ [GeV] 91.1875 ± 0.0021 0.02 Γ₇ [GeV] 2.4952 ± 0.0023 -0.36 $\sigma_{\rm had}^0$ [nb] 41.540 ± 0.037 1.67 20.767 ± 0.025 1.01 0.01714 ± 0.00095 0.79 $A_{l}(P_{\tau})$ -0.42 0.21644 ± 0.00065 0.99 0.1718 ± 0.0031 -0.15 0.0995 ± 0.0017 -2.43 0.0713 ± 0.0036 -0.78 0.922 ± 0.020 -0.64 0.670 ± 0.026 0.07 A_I(SLD) 0.1513 ± 0.0021 1.67 $\sin^2 \theta_{eff}^{lept}(Q_{fb})$ 0.2324 ± 0.0012 0.82 mw [GeV] 80.426 ± 0.034 1.17 Γ_{w} [GeV] 2.139 ± 0.069 0.67 m, [GeV] 0.05 174.3 ± 5.1 $\sin^2\theta_W(vN)$ 2.94 0.2277 ± 0.0016 Q_w(Cs) -72.83 ± 0.49 0.12

-3 -2 -1 0 1 2 3

- Standard Model Very Successful!
- Precision tests from LEP
- All tests based on perturbation theory
- Need to understand non-perturbative QCD to explain baryonic matter in our Universe, i.e., us.
- Lattice QCD only well-understood, viable tool for this.

Winter 2003 (O^{meas}–O^{fit})/σ^{meas} Pull Measurement -3 -2 -1 0 1 2 3 $\Delta \alpha_{\rm had}^{(5)}({\rm m_2})$ 0.02761 ± 0.00036 -0.16m₇ [GeV] 91.1875 ± 0.0021 0.02 Γ₇ [GeV] 2.4952 ± 0.0023 -0.36 $\sigma_{\rm had}^0$ [nb] 41.540 ± 0.037 1.67 20.767 ± 0.025 1.01 0.01714 ± 0.00095 0.79 $A_{l}(P_{\tau})$ -0.42 0.21644 ± 0.00065 0.99 0.1718 ± 0.0031 -0.15 0.0995 ± 0.0017 -2.43 0.0713 ± 0.0036 -0.78 0.922 ± 0.020 -0.64 0.670 ± 0.026 0.07 A_I(SLD) 0.1513 ± 0.0021 1.67 $\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm fb})$ 0.2324 ± 0.0012 0.82 mw [GeV] 80.426 ± 0.034 1.17 Γ_{w} [GeV] 2.139 ± 0.069 0.67 m, [GeV] 174.3 ± 5.1 0.05 $\sin^2\theta_W(vN)$ 2.94 0.2277 ± 0.0016 Q_w(Cs) -72.83 ± 0.49 0.12

-3 -2 -1 0 1 2 3

- Standard Model Very Successful!
- Precision tests from LEP
- All tests based on perturbation theory
- Need to understand non-perturbative QCD to explain baryonic matter in our Universe, i.e., us.
- Lattice QCD only well-understood, viable tool for this.

Winter 2003 (O^{meas}–O^{fit})/σ^{meas} Pull Measurement -3 -2 -1 0 1 2 3 $\Delta \alpha_{\rm had}^{(5)}({\rm m_2})$ 0.02761 ± 0.00036 -0.16m₇ [GeV] 91.1875 ± 0.0021 0.02 Γ_7 [GeV] 2.4952 ± 0.0023 -0.36 $\sigma_{\rm had}^0$ [nb] 41.540 ± 0.037 1.67 20.767 ± 0.025 1.01 0.01714 ± 0.00095 0.79 $A_{l}(P_{\tau})$ -0.42 0.21644 ± 0.00065 0.99 0.1718 ± 0.0031 -0.15 0.0995 ± 0.0017 -2.43 0.0713 ± 0.0036 -0.78 0.922 ± 0.020 -0.64 0.670 ± 0.026 0.07 A_I(SLD) 0.1513 ± 0.0021 1.67 $\sin^2 \theta_{eff}^{lept}(Q_{fb})$ 0.2324 ± 0.0012 0.82 mw [GeV] 80.426 ± 0.034 1.17 Γ_{w} [GeV] 2.139 ± 0.069 0.67 m, [GeV] 0.05 174.3 ± 5.1 $\sin^2\theta_W(vN)$ 2.94 0.2277 ± 0.0016 Q_w(Cs) -72.83 ± 0.49 0.12 -3 -2 -1 0 1 2 3

ullet Discrete space-time : Lattice spacing a UV Cut-off.

- ullet Discrete space-time : Lattice spacing a UV Cut-off.
- Matter fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gauge transformation : $\psi'(x) = V_x \psi(x)$, $V_x \in SU(3)$.

- ullet Discrete space-time : Lattice spacing a UV Cut-off.
- Matter fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gauge transformation : $\psi'(x) = V_x \psi(x)$, $V_x \in SU(3)$.
- Gauge Fields on links $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}$.
- Gauge invariance → Actions from Closed Wilson loops, e.g., plaquette.

- Discrete space-time : Lattice spacing a UV Cut-off.
- Matter fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gauge transformation : $\psi'(x) = V_x \psi(x)$, $V_x \in SU(3)$.
- Gauge Fields on links $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}$.
- Gauge invariance → Actions from Closed Wilson loops, e.g., plaquette.
- Fermion Doubling Problem

- Discrete space-time : Lattice spacing a UV Cut-off.
- Matter fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gauge transformation : $\psi'(x) = V_x \psi(x)$, $V_x \in SU(3)$.
- Gauge Fields on links $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}$.
- Gauge invariance → Actions from Closed Wilson loops, e.g., plaquette.
- Fermion Doubling Problem →
 - Staggered Fermions (partial chiral and flavour symmetry),
 - Wilson fermions (only flavour symmetry),

- Recent Overlap fermions (exact chiral and flavour symmetry).

Recent Overlap fermions (exact chiral and flavour symmetry).

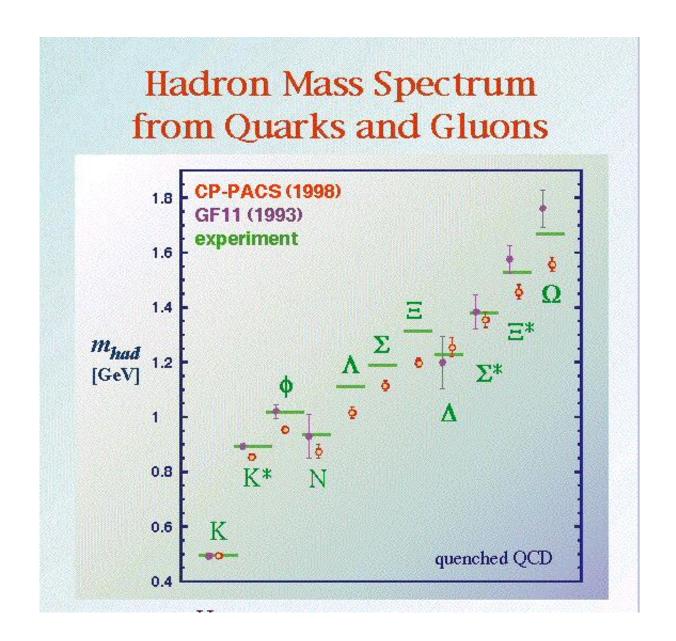
Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v .

Since $\langle\Theta\rangle$ is computed by averaging over a set of configurations $\{U_{\mu}(x)\}$ which occur with probability $\propto \exp(-S_G)\cdot \mathrm{Det}\ M$, the complexity of evaluation of Det $M\Longrightarrow \mathrm{approximations}: \mathrm{Quenched}\ (m_s=\infty\ \mathrm{limit}), \mathrm{Partially}\ \mathrm{Quenched}\ (\mathrm{low}\ m_s=m_u=m_d$), and Full (including a heavier s quark).

 $Q \rightarrow PQ \rightarrow Full \rightsquigarrow Computer time \uparrow and Precision \downarrow$.

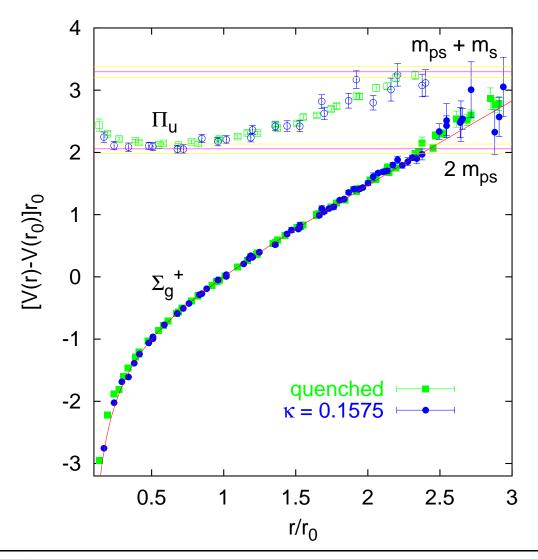


Baryon mass comes out (almost) right.

At least in Quenched Approximation

(From CP-PACS Collaboration, Japan)

SPhT, Saclay, June 11, 2003 R. V. Gavai Top



As does the heavy quark potential $V_{Q\bar{Q}}$.

Here r_0 is roughly 0.5 fm.

(Bali, Phys. Rep. 343 (2001) 1.)

• Non-perturbative prediction of Standard Model.

- Non-perturbative prediction of Standard Model.
- Relevant for physics of Heavy Ion collisions, Early Universe and perhaps quark stars.

- Non-perturbative prediction of Standard Model.
- Relevant for physics of Heavy Ion collisions, Early Universe and perhaps quark stars.
- Theoretically profound : A new critical point ?

- Non-perturbative prediction of Standard Model.
- Relevant for physics of Heavy Ion collisions, Early Universe and perhaps quark stars.
- Theoretically profound : A new critical point ?
- Lattice details :
 - $N_s^3 \times N_t$ Lattice, $N_s \gg N_t$ for $T \neq 0$,
 - Spatial Volume $V=N_s^3a^3$,
 - Temperature $T = 1/N_t a(\beta)$,
 - Chemical potential: Multiply each $U_4(x)$ by $f(a\mu)$ and $U_4^{\dagger}(x)$ by $1/f(a\mu)$, where $f(a\mu)=1+a\mu+\mathcal{O}(a^2)$. (Gavai, PRD '85)

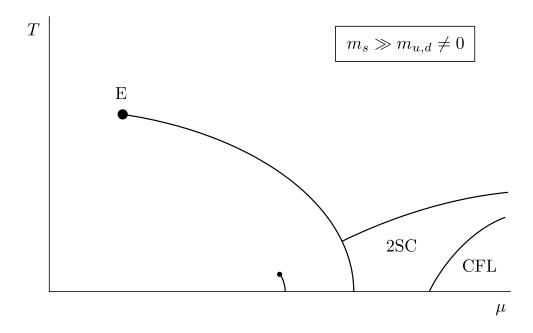
• Known choices : $f_{HK}(x) = \exp(x)$ and $f_{BG} = (1+x)/\sqrt{1-x^2}$.

(Hasenfratz-Karsch '83, Bilić-Gavai, '84)

- Known choices : $f_{HK}(x) = \exp(x)$ and $f_{BG} = (1+x)/\sqrt{1-x^2}$. (Hasenfratz-Karsch '83, Bilić-Gavai, '84)
- Order Parameters : Chiral condensate $\langle \bar{\psi}\psi \rangle$, Polyakov Loop $\langle L \rangle$, where $L(\vec{x}) = \frac{1}{3} \prod_{t=1}^{N_t} \operatorname{tr} \, U_4(\vec{x},t)$

- Known choices : $f_{HK}(x) = \exp(x)$ and $f_{BG} = (1+x)/\sqrt{1-x^2}$. (Hasenfratz-Karsch '83, Bilić-Gavai, '84)
- Order Parameters : Chiral condensate $\langle \bar{\psi}\psi \rangle$, Polyakov Loop $\langle L \rangle$, where $L(\vec{x}) = \frac{1}{3} \prod_{t=1}^{N_t} \operatorname{tr} \, U_4(\vec{x},t)$
- Theoretical expectations based on effective models :

- Known choices : $f_{HK}(x) = \exp(x)$ and $f_{BG} = (1+x)/\sqrt{1-x^2}$. (Hasenfratz-Karsch '83, Bilić-Gavai, '84)
- Order Parameters : Chiral condensate $\langle \bar{\psi}\psi \rangle$, Polyakov Loop $\langle L \rangle$, where $L(\vec{x}) = \frac{1}{3} \prod_{t=1}^{N_t} \operatorname{tr} \, U_4(\vec{x},t)$
- Theoretical expectations based on effective models :



$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

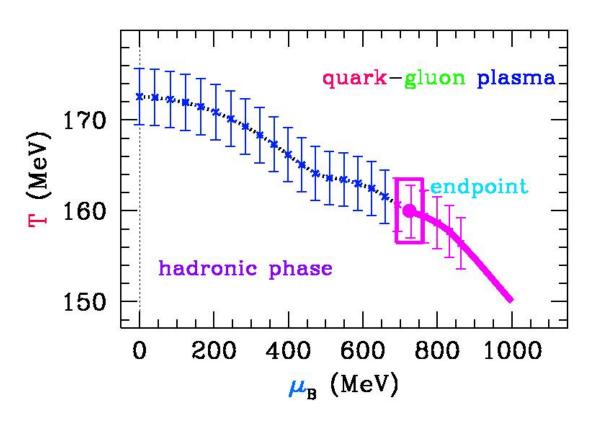
$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

$$\mu_{\rm B} \neq 0$$

- Phase Problem : Det $M(\mu)$ is complex for $\mu \neq 0$.
- ullet Early results in quenched approximation and T=0 :- $\langle \bar{\psi}\psi \rangle = 0$ at $\mu_{
 m B} \sim m_\pi$!
- Exciting results in recent past for small μ , starting in the $T_c(\mu=0)$ neighbourhood.
 - Re-weighting Method (Fodor & Katz, JHEP '02)
 - Imaginary μ (de Forcrand & Philipsen, NPB '02, D'Elia & Lombardo, PRD '03)
 - Re-weighting & Taylor Expansion in μ (Allton et al., PRD '02)
- Large μ simulations possible when Det M is real, e.g., 2 colours or $\mu_{I_3} \neq 0$. Show agreement with effective chiral theory (Kogut & Sinclair '02, S. Gupta '02)

Fodor-Katz Results



```
N_s^3 	imes 4 Lattices, N_s = 4,6,8; Bit heavy u,d quarks. Critical End-point : T = 160(4) MeV, \mu = 725(35) MeV
```

How reliable are these results? Methods, Prescription dependence... We address some of these issues via Quark Number Susceptibilities.

↑ Theoretical Checks : Resummed Perturbation expansions; Finite Density Results

- ♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density Results
- ♠ Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production

- ♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density Results
- ♠ Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production

Definitions: For u, d, and s quarks, the partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
, (2)

- ♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density Results
- ♠ Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production

Definitions: For u, d, and s quarks, the partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
, (2)

where μ_f are corresponding chemical potentials. Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as : (Gottlieb et al. '87, '96, '97, Gavai et al. '89)

- ♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density Results
- \spadesuit Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production Definitions: For u, d, and s quarks, the partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
, (2)

where μ_f are corresponding chemical potentials. Defining $\mu_0=\mu_u+\mu_d+\mu_s$ and $\mu_3=\mu_u-\mu_d$, baryon and isospin density/susceptibilities can be obtained as : (Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$$

Setting $\mu_i = 0$, $n_i = 0$ but χ_{ij} are nontrivial. Diagonal χ 's are

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle] \tag{3}$$

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{4}$$

$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle] \tag{5}$$

Setting $\mu_i = 0$, $n_i = 0$ but χ_{ij} are nontrivial. Diagonal χ 's are

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle] \tag{3}$$

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{4}$$

$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle] \tag{5}$$

Here $\mathcal{O}_2 = \operatorname{Tr} M_u^{-1} M_u'' - \operatorname{Tr} M_u^{-1} M_u' M_u^{-1} M_u'$, and $\mathcal{O}_{11}(m_u) = (\operatorname{Tr} M_u^{-1} M_u')^2$, and the traces are estimated by a stochastic method:

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2 N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^L (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Setting $\mu_i = 0$, $n_i = 0$ but χ_{ij} are nontrivial. Diagonal χ 's are

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle] \tag{3}$$

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{4}$$

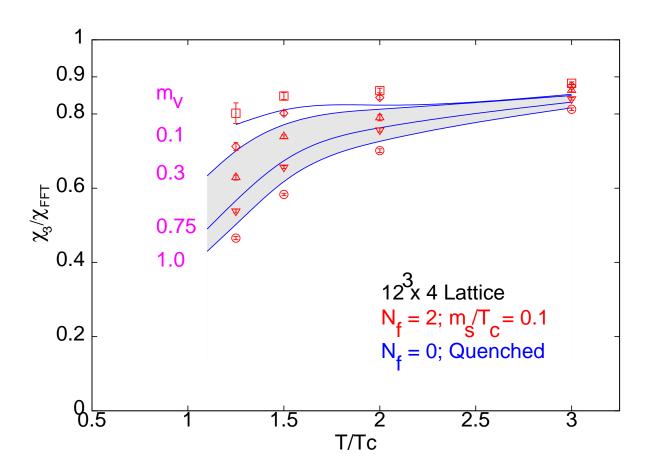
$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle] \tag{5}$$

Here $\mathcal{O}_2 = \operatorname{Tr} M_u^{-1} M_u'' - \operatorname{Tr} M_u^{-1} M_u' M_u^{-1} M_u'$, and $\mathcal{O}_{11}(m_u) = (\operatorname{Tr} M_u^{-1} M_u')^2$, and the traces are estimated by a stochastic method:

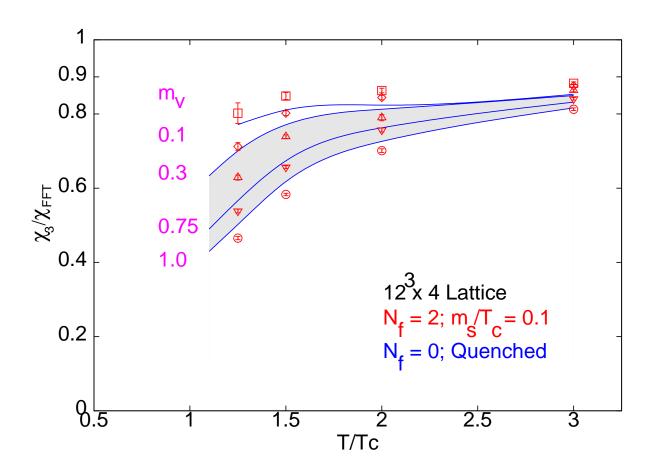
 $\operatorname{Tr} A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2 N_v$, and $(\operatorname{Tr} A)^2 = 2 \sum_{i>j=1}^L (\operatorname{Tr} A)_i (\operatorname{Tr} A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002

 χ_{FFT} — Ideal gas results for same Lattice.



Top



Note that PDG values for strange quark mass \Longrightarrow

$$m_v^{strange}/T_c \simeq$$
 0.3-0.7 (N_f =0); 0.45-1.0(N_f =2).

Perturbation Theory

Perturbation Theory

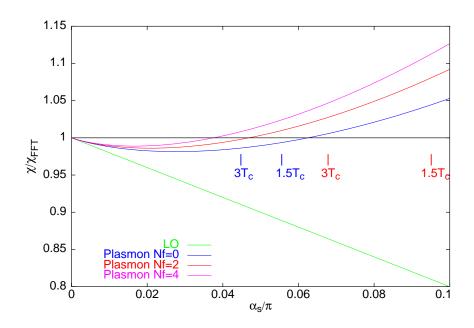
Weak coupling expansion gives:

$$\frac{\chi}{\chi_{FFT}} = 1 - 2(\frac{\alpha_s}{\pi}) + 8\sqrt{(1+0.167N_f)}(\frac{\alpha_s}{\pi})^{\frac{3}{2}}$$
 (Kapusta 1989).

Perturbation Theory

Weak coupling expansion gives:

$$\frac{\chi}{\chi_{FFT}} = 1 - 2(\frac{\alpha_s}{\pi}) + 8\sqrt{(1 + 0.167N_f)}(\frac{\alpha_s}{\pi})^{\frac{3}{2}}$$
 (Kapusta 1989).



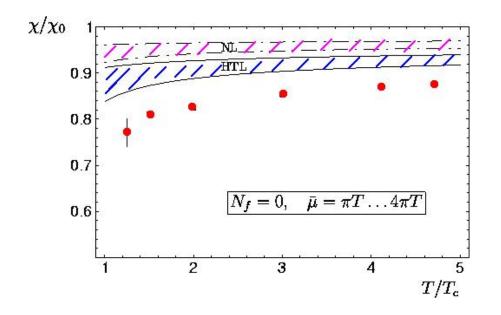
♣ Minm 0.981 (0.986) at 0.03 (0.02) for $N_f = 0$ (2).
♣ For $1.5 \le T/T_c \le 3$ pert. theory \longrightarrow 0.99-0.98 (1.08=1.03) for $N_f = 0$ (2).

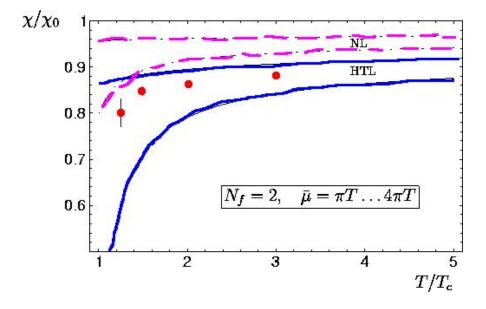
Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

Hard Thermal Loop & Self-consistent resummation give :

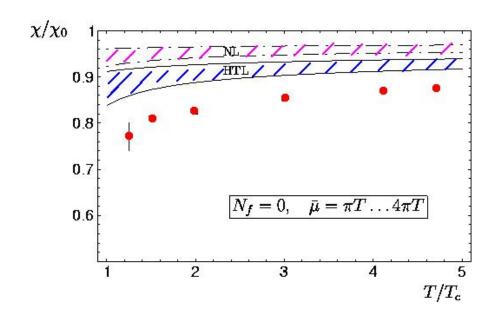
(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

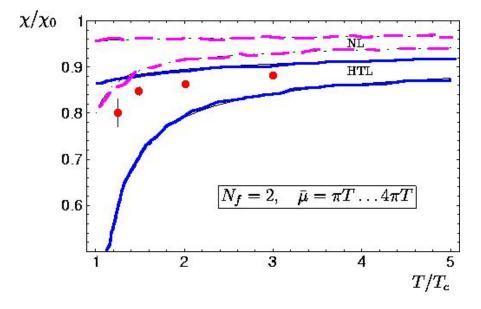




Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, lancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).





Our results for $N_t = 4 \rightsquigarrow \text{Lattice artifacts}$? Check for larger N_t and improved actions.

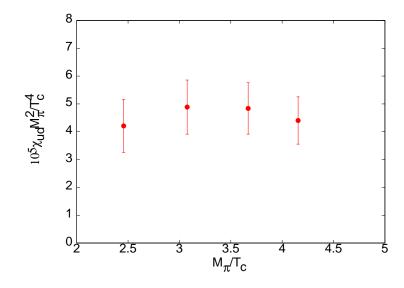
Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

 \heartsuit Zero within $1\text{--}\sigma\sim O(10^{-6})$ for $T>T_c$.

- \heartsuit Zero within $1-\sigma \sim O(10^{-6})$ for $T>T_c$.
- \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!

- \heartsuit Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.
- \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!
- \heartsuit NONZERO for $T < T_c$ and $\propto M_\pi^{-2}$.

- \heartsuit Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.
- \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!
- \heartsuit NONZERO for $T < T_c$ and $\propto M_\pi^{-2}$.



- $\clubsuit 12^3 \times 4$ Lattice; Quenched.
- $T = 0.75T_c$
- ♣ Gavai, Gupta & Majumdar, PR D 2002

(Gavai & Gupta, PR D '02 and hep-lat/0211015)

(Gavai & Gupta, PR D '02 and hep-lat/0211015)

 \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.

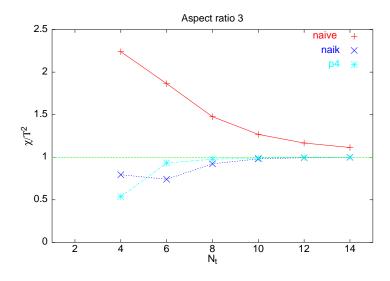
(Gavai & Gupta, PR D '02 and hep-lat/0211015)

- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward.

(Naik, NP B 1989; Gavai, hep-lat/0209008)

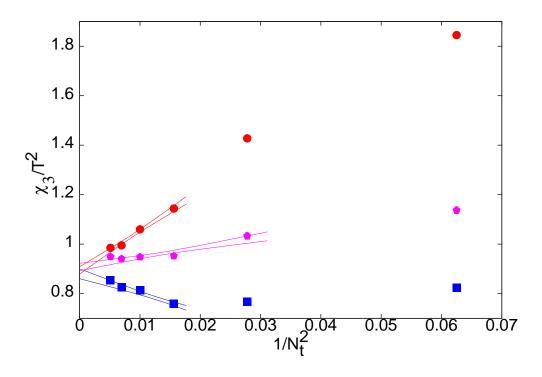
(Gavai & Gupta, PR D '02 and hep-lat/0211015)

- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, hep-lat/0209008)



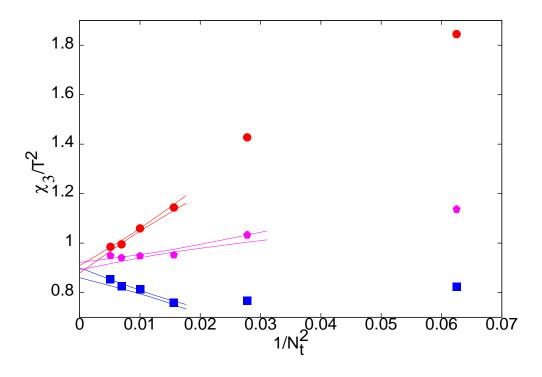
 \spadesuit Does improve the N_t -dependence of the free fermions.

Results at $2T_c$:



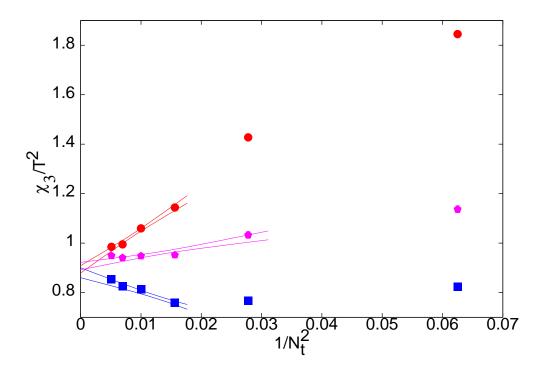
SPhT, Saclay, June 11, 2003 R. V. Gavai Top 18

Results at $2T_c$:



 $\diamondsuit~N_t^{-2} \sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.

Results at $2T_c$:



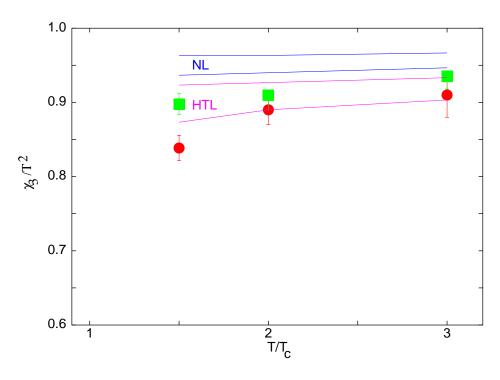
 $\diamondsuit~N_t^{-2}\sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.

 \diamondsuit Milder $N_t^{-2} \sim a^2\text{-dependence}$ for Naik fermions.

The continuum susceptibility vs. ${\cal T}$ therefore is :

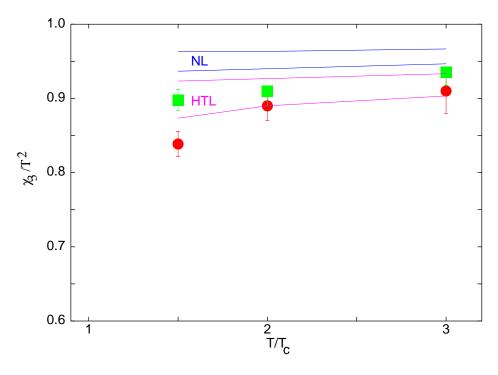
SPhT, Saclay, June 11, 2003 R. V. Gavai Top 19

The continuum susceptibility vs. T therefore is :



Naik action (Squares) and Staggered action (circles)

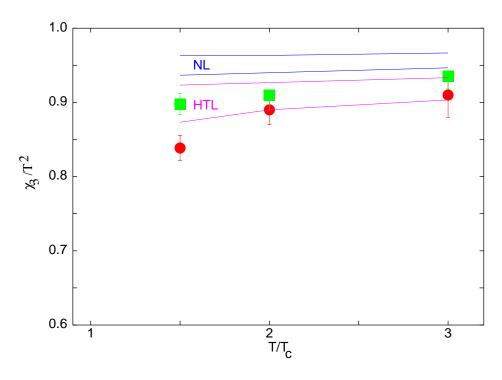
The continuum susceptibility vs. T therefore is :



Naik action (Squares) and Staggered action (circles)

O Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.

The continuum susceptibility vs. T therefore is :



Naik action (Squares) and Staggered action (circles)

- O Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.
- \heartsuit Note that χ_{ud} behaves the same way for ALL N_t and both fermions, leading to the same $O(10^{-6})$ values in continuum too.

Enhancement of strangeness production – A signal of Quark-Gluon Plasma.

Wroblewski Parameter – ratio of newly created strange quarks to light quarks.

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle}.$$
(6)

Using our continuum QNS, it is a ratio χ_s/χ_u .

 $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark $\to \lambda_s(T)$. Extrapolate to T_c .

Enhancement of strangeness production – A signal of Quark-Gluon Plasma.

Wroblewski Parameter – ratio of newly created strange quarks to light quarks.

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle}.$$
(6)

Using our continuum QNS, it is a ratio χ_s/χ_u .

 $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark $\to \lambda_s(T)$. Extrapolate to T_c .

Enhancement of strangeness production – A signal of Quark-Gluon Plasma.

Wroblewski Parameter – ratio of newly created strange quarks to light quarks.

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle}.$$
(6)

Using our continuum QNS, it is a ratio χ_s/χ_u .

 $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark $\to \lambda_s(T)$. Extrapolate to T_c .

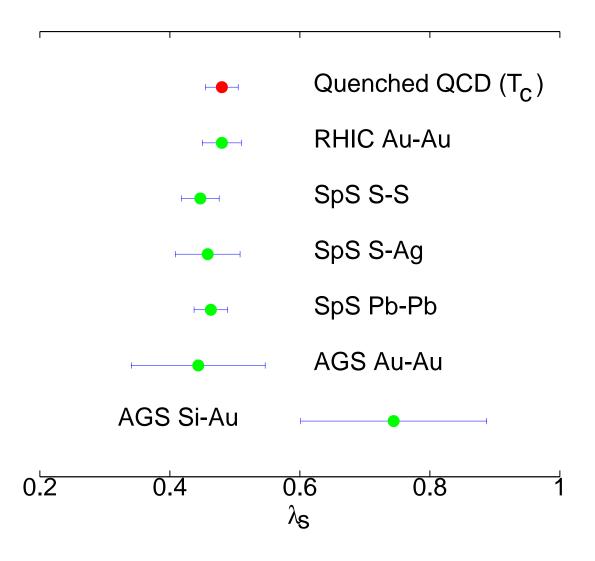
Enhancement of strangeness production – A signal of Quark-Gluon Plasma.

Wroblewski Parameter – ratio of newly created strange quarks to light quarks.

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle}.$$
(6)

Using our continuum QNS, it is a ratio χ_s/χ_u .

 $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark $\to \lambda_s(T)$. Extrapolate to T_c .



Caveats

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
- Assumed : Chemical equilibration in the plasma.

Caveats

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
- Assumed: Chemical equilibration in the plasma.

Caveats

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- ullet At SPS and RHIC, $\mu_{
 m B}
 eq 0$; But observed λ_s is insensitive to it. .
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
- Assumed : Chemical equilibration in the plasma.

Caveats

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- ullet At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
- Assumed : characteristic time scale of plasma are far from the energy scales of strange or light quark production.
- Assumed: Chemical equilibration in the plasma.

Caveats

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
- Assumed: Chemical equilibration in the plasma.

EoS for nonzero baryon density

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} . \tag{7}$$

These are Taylor coefficients of the pressure P in its expansion in μ .

Can be written as traces of products of M^{-1} and various derivatives of M. E.g., χ_{uuuu} involves terms having fourth derivative w. r. to μ while χ_{uudd} only second derivatives.

In continuum, $f(a\mu) = 1 + a\mu \rightarrow f''(0) = 0$.

On lattice, in general, all derivatives exist and depend on the nature of function : prescription dependence!

Fodor-Katz used f_{HK} and got $\mu_E=725$ MeV for $N_t=4$. If they were to use f_{BG} , then $\mu_E=692$ MeV.

Easy to show that f''(0) = 1 always but all higher derivatives depend on choice of f. Thus, one can write

$$\chi_{uuuu} = \chi_{uuuu}^{HK} + \Delta f^{(3)} \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{4}{N_t^2}\right) , \qquad (8)$$

where $\Delta f^{(3)} = f^{(3)} - 1$ is 2 for f_{BG} .

Prescription dependence must go away for small a or large enough N_t . How large an N_t needed ? $N_t \ge 10$, see below.

Defining

$$\frac{\mu_*}{T} = \sqrt{\frac{12\chi_{uu}/T^2}{|\chi_{uuuu}|}} , \qquad (9)$$

and $\Delta P = P(\mu) - P(\mu = 0)$, the Taylor series expansion for Pressure P for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu/T}{\mu_*/T}\right)^2 + \mathcal{O}\left(\frac{\mu^4}{\mu_*^4}\right)\right]. \tag{10}$$

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuu}$.
- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently ?

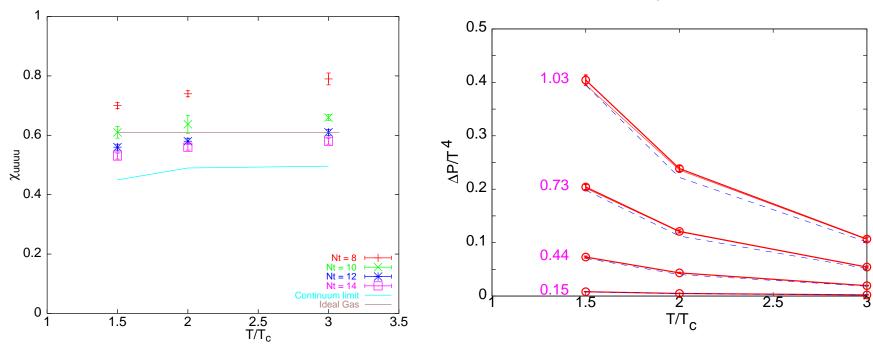
- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuu}$.
- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently?

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuu}$.
- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently?

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuu}$.
- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently ?

Our Results

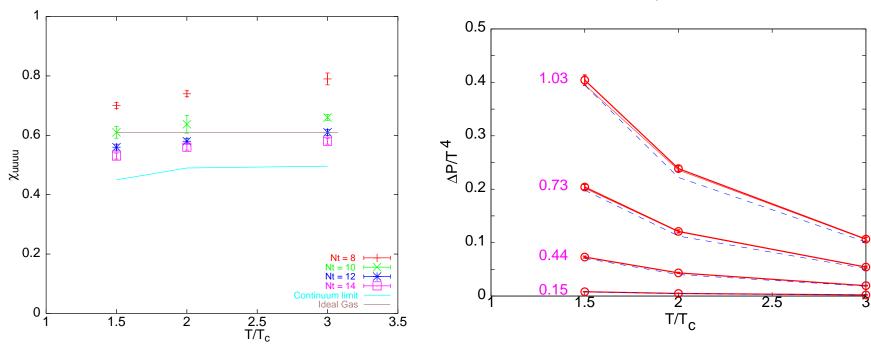
Our results for χ_{uuu} and ΔP : Gavai and Gupta hep-lat/0303013.



- ♡ Both reproduced in dimensional reduction (1 free parameter). Vuorinen, hep-ph/0305183.
- \heartsuit Our results for P agree with Fodor-Katz (hep-lat/0208078) and the recent Bielefeld results (hep-lat/0305007).

Our Results

Our results for χ_{uuu} and ΔP : Gavai and Gupta hep-lat/0303013.

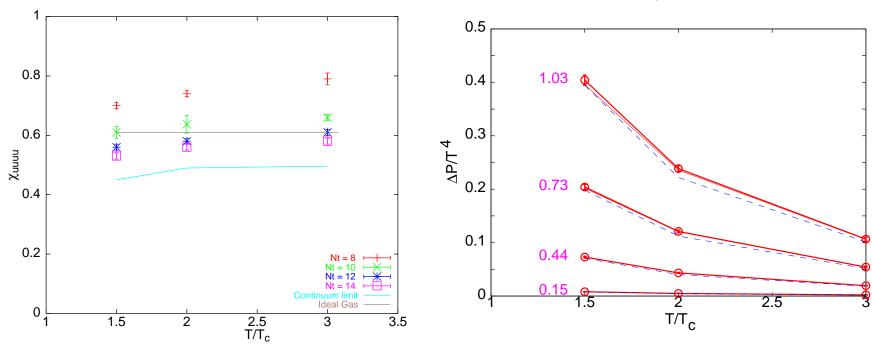


♥ Both reproduced in dimensional reduction (1 free parameter). Vuorinen, hep-ph/0305183.

 \heartsuit Our results for P agree with Fodor-Katz (hep-lat/0208078) and the recent Bielefeld results (hep-lat/0305007).

Our Results

Our results for χ_{uuu} and ΔP : Gavai and Gupta hep-lat/0303013.



- ♥ Both reproduced in dimensional reduction (1 free parameter). Vuorinen, hep-ph/0305183.
- \heartsuit Our results for P agree with Fodor-Katz (hep-lat/0208078) and the recent Bielefeld results (hep-lat/0305007).

• Phase diagram in $T-\mu$ on small $N_t=4$ has begun to emerge: Different methods, \rightsquigarrow same (T_E,μ_E) . Beware of prescription dependence and look forward to larger N_t .

- Phase diagram in $T \mu$ on small $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow same (T_E, μ_E) . Beware of prescription dependence and look forward to larger N_t .
- Quark number susceptibilities RHIC signal physics.

- Phase diagram in $T \mu$ on small $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow same (T_E, μ_E) . Beware of prescription dependence and look forward to larger N_t .
- Quark number susceptibilities RHIC signal physics.
- Continuum limit of χ_{uu} in Quenched QCD obtained. Yields λ_s in agreement with RHIC and SPS results. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?

- Phase diagram in $T \mu$ on small $N_t = 4$ has begun to emerge: Different methods, \rightsquigarrow same (T_E, μ_E) . Beware of prescription dependence and look forward to larger N_t .
- Quark number susceptibilities RHIC signal physics.
- Continuum limit of χ_{uu} in Quenched QCD obtained. Yields λ_s in agreement with RHIC and SPS results. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?
- Continuum limit of χ_{uuuu} in Quenched QCD obtained. \sim to dimensional reduction.

- Phase diagram in $T-\mu$ on small $N_t=4$ has begun to emerge: Different methods, \rightsquigarrow same (T_E,μ_E) . Beware of prescription dependence and look forward to larger N_t .
- Quark number susceptibilities RHIC signal physics.
- Continuum limit of χ_{uu} in Quenched QCD obtained. Yields λ_s in agreement with RHIC and SPS results. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?
- Continuum limit of χ_{uuuu} in Quenched QCD obtained. \sim to dimensional reduction.
- Pressure for nonzero μ obtained. At both SPS and RHIC, χ_{uu} is the major contribution.

ullet Many questions still for full 2+1 QCD : Order, Large $N_t,\,\cdots$

SPhT, Saclay, June 11, 2003 R. V. Gavai Top 28

Obtained from the exponential decay of

$$C_{\Gamma}(z) = \sum_{x,y,t} \langle M_{\alpha\beta}^{-1}(x,y,z,t) \Gamma M_{\beta\alpha}^{\dagger - 1}(x,y,z,t) \Gamma \rangle$$
 (11)

 Γ – Spin-flavour matrix, α , β – colour indices and M^{-1} – quark propagator with source at origin.

Obtained from the exponential decay of

$$C_{\Gamma}(z) = \sum_{x,y,t} \langle M_{\alpha\beta}^{-1}(x,y,z,t) \Gamma M_{\beta\alpha}^{\dagger - 1}(x,y,z,t) \Gamma \rangle$$
 (11)

 Γ – Spin-flavour matrix, α , β – colour indices and M^{-1} – quark propagator with source at origin.

• Known results : Degenerate parity partners, FFT results for all except π . (DeTar-Kogut, Boyd et al., Gottlieb et al., Gavai-Gupta, \cdots)

Obtained from the exponential decay of

$$C_{\Gamma}(z) = \sum_{x,y,t} \langle M_{\alpha\beta}^{-1}(x,y,z,t) \Gamma M_{\beta\alpha}^{\dagger - 1}(x,y,z,t) \Gamma \rangle$$
 (11)

 Γ – Spin-flavour matrix, α,β – colour indices and M^{-1} – quark propagator with source at origin.

- Known results : Degenerate parity partners, FFT results for all except π . (DeTar-Kogut, Boyd et al., Gottlieb et al., Gavai-Gupta, ...)
- Could χ_3 and M_π both have some, perhaps the same, non-perturbative effect ?

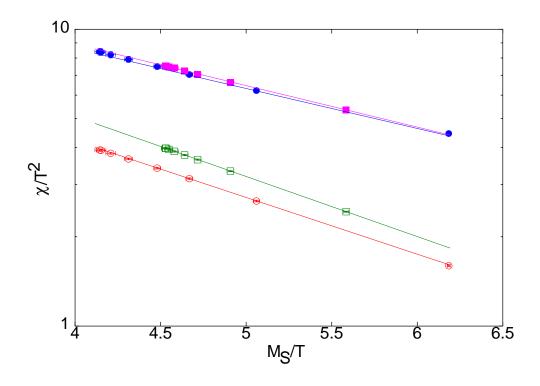
Obtained from the exponential decay of

$$C_{\Gamma}(z) = \sum_{x,y,t} \langle M_{\alpha\beta}^{-1}(x,y,z,t) \Gamma M_{\beta\alpha}^{\dagger - 1}(x,y,z,t) \Gamma \rangle$$
 (11)

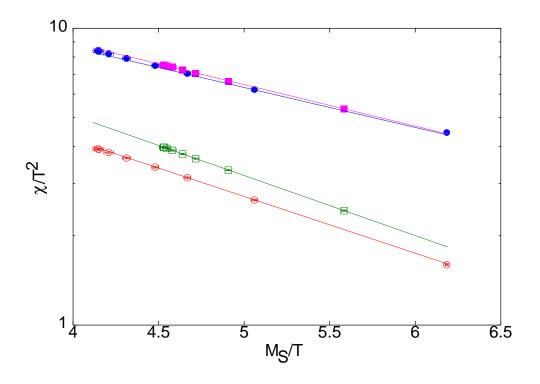
 Γ – Spin-flavour matrix, α,β – colour indices and M^{-1} – quark propagator with source at origin.

- Known results : Degenerate parity partners, FFT results for all except π . (DeTar-Kogut, Boyd et al., Gottlieb et al., Gavai-Gupta, ...)
- Could χ_3 and M_{π} both have some, perhaps the same, non-perturbative effect ?
- Summing up the C_{Γ} for pion \to Pion susceptibility.

 $N_t=$ 4 Lattices with $N_z=$ 16. $4\chi_3/T^2$ (open symbols) and $\chi_\pi/10T^2$ (filled) at $2T_c$ (lower set) and $3T_c$. (Gavai, Gupta & Majumdar, PR D '02)



 $N_t=$ 4 Lattices with $N_z=$ 16. $4\chi_3/T^2$ (open symbols) and $\chi_\pi/10T^2$ (filled) at $2T_c$ (lower set) and $3T_c$. (Gavai, Gupta & Majumdar, PR D '02)

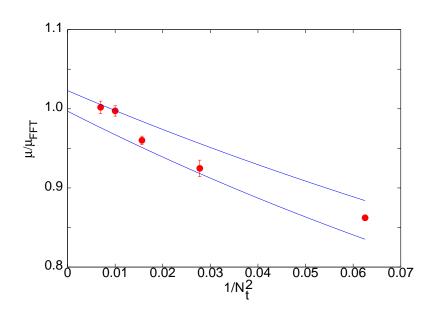


Why ? $\chi_3 \sim \sum$ propagator of nonlocal vector meson.

Taking Continuum Limit

Taking Continuum Limit

On finer lattices, a = 1/8T-1/12T, Pion screening lengths become degenerate with those of ρ , i.e, also close to FFT!! (Gavai & Gupta, hep-lat/0211015)



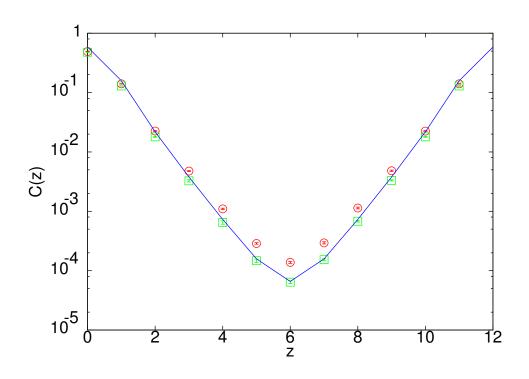
- $m_v/T_c = 0.03$,
- Lattices up to 48×26^2 .

Overlap Fermions agree:

On coarse lattices, a =1/4T, Pion screening lengths become degenerate with those of ρ , i.e, also close to FFT!! (Gavai, Gupta & Lacaze, PR D '02)

Overlap Fermions agree:

On coarse lattices, a =1/4T, Pion screening lengths become degenerate with those of ρ , i.e, also close to FFT!! (Gavai, Gupta & Lacaze, PR D '02)



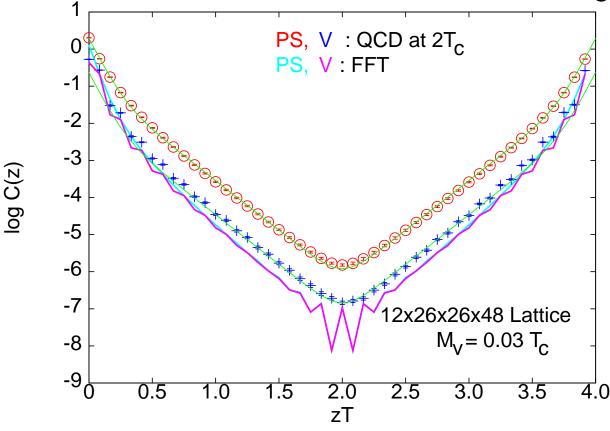
Configurations with zero modes excluded. $12^3 \times 4$ lattice at $T=1.5T_c$. Quenched Approximation. $m/T_c=0.006$

However, chiral condensate, $\langle \bar{\psi}\psi \rangle$ differs from FFT by 2, as do the detailed shapes of the correlators.

SPhT, Saclay, June 11, 2003 R. V. Gavai Top 33

However, chiral condensate, $\langle \bar{\psi} \psi \rangle$ differs from FFT by 2, as do the detailed shapes of the correlators.

Note that both PS and V have SAME fit with changed normalization.



SPhT, Saclay, June 11, 2003 R. V. Gavai Top 33