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Motivation

• Standard Model – Very Successful !

• Precision tests from LEP

• All tests based on perturbation theory

• Need to understand non-perturbative QCD
to explain baryonic matter in our Universe,
i.e., us.

• Lattice QCD – only well-understood, viable
tool for this.

Measurement Pull (Omeas−Ofit)/σmeas

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036  -0.16
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021   0.02
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023  -0.36
σhad [nb]σ0 41.540 ± 0.037   1.67
RlRl 20.767 ± 0.025   1.01
AfbA0,l 0.01714 ± 0.00095   0.79
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032  -0.42
RbRb 0.21644 ± 0.00065   0.99
RcRc 0.1718 ± 0.0031  -0.15
AfbA0,b 0.0995 ± 0.0017  -2.43
AfbA0,c 0.0713 ± 0.0036  -0.78
AbAb 0.922 ± 0.020  -0.64
AcAc 0.670 ± 0.026   0.07
Al(SLD)Al(SLD) 0.1513 ± 0.0021   1.67
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012   0.82
mW [GeV]mW [GeV] 80.426 ± 0.034   1.17
ΓW [GeV]ΓW [GeV] 2.139 ± 0.069   0.67
mt [GeV]mt [GeV] 174.3 ± 5.1   0.05
sin2θW(νN)sin2θW(νN) 0.2277 ± 0.0016   2.94
QW(Cs)QW(Cs) -72.83 ± 0.49   0.12
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Basic Lattice Gauge Theory

• Discrete space-time : Lattice spacing a UV Cut-off.
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• Discrete space-time : Lattice spacing a UV Cut-off.

• Matter fields ψ(x), ψ̄(x) on lattice sites.

• Gauge transformation : ψ′(x) = Vxψ(x), Vx ∈ SU(3) .

• Gauge Fields on links U ′µ(x) = VxUµ(x)V −1
x+µ̂.

• Gauge invariance → Actions from Closed Wilson loops, e.g., plaquette.

• Fermion Doubling Problem →

– Staggered Fermions (partial chiral and flavour symmetry),
– Wilson fermions (only flavour symmetry),
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– Recent Overlap fermions (exact chiral and flavour symmetry).
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– Recent Overlap fermions (exact chiral and flavour symmetry).

Typically, we need to evaluate

〈Θ(mv)〉 =

∫
DU exp(−SG)Θ(mv) Det M(ms)∫

DU exp(−SG) Det M(ms)
, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.

Since 〈Θ〉 is computed by averaging over a set of configurations {Uµ(x)} which
occur with probability ∝ exp(−SG) ·Det M , the complexity of evaluation of Det
M =⇒ approximations : Quenched ( ms =∞ limit), Partially Quenched ( low
ms = mu = md ), and Full (including a heavier s quark).

Q → PQ → Full  Computer time ↑ and Precision ↓.
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Baryon mass comes
out (almost) right.

At least in Quenched
Approximation

(From CP-PACS Collaboration, Japan)
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As does the heavy
quark potential VQQ̄.

Here r0 is roughly 0.5
fm.

(Bali, Phys. Rep. 343 (2001) 1.)
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QCD Phase Diagram

• Non-perturbative prediction of Standard Model.
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QCD Phase Diagram

• Non-perturbative prediction of Standard Model.

• Relevant for physics of Heavy Ion collisions, Early Universe and perhaps quark
stars.

• Theoretically profound : A new critical point ?

• Lattice details :

– N3
s ×Nt Lattice, Ns � Nt for T 6= 0,

– Spatial Volume V = N3
sa

3,
– Temperature T = 1/Nta(β),

– Chemical potential: Multiply each U4(x) by f(aµ) and U†4(x) by 1/f(aµ),
where f(aµ) = 1 + aµ+O(a2). (Gavai, PRD ’85)
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• Known choices : fHK(x) = exp(x) and fBG = (1 + x)/
√

1− x2.
(Hasenfratz-Karsch ’83, Bilić-Gavai, ’84)
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• Known choices : fHK(x) = exp(x) and fBG = (1 + x)/
√

1− x2.
(Hasenfratz-Karsch ’83, Bilić-Gavai, ’84)

• Order Parameters : Chiral condensate 〈ψ̄ψ〉,
Polyakov Loop 〈L〉, where L(~x) = 1

3

∏Nt
t=1 tr U4(~x, t)
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µB 6= 0

• Phase Problem : Det M(µ) is complex for µ 6= 0.

• Early results in quenched approximation and T = 0 :- 〈ψ̄ψ〉 = 0 at µB ∼ mπ !

• Exciting results in recent past for small µ, starting in the Tc(µ = 0)
neighbourhood.

– Re-weighting Method (Fodor & Katz, JHEP ’02)

– Imaginary µ (de Forcrand & Philipsen, NPB ’02, D’Elia & Lombardo, PRD ’03)

– Re-weighting & Taylor Expansion in µ (Allton et al., PRD ’02)

• Large µ simulations possible when Det M is real, e.g., 2 colours or µI3 6= 0.
Show agreement with effective chiral theory (Kogut & Sinclair ’02, S. Gupta ’02)
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Fodor-Katz Results

N3
s × 4 Lattices,

Ns = 4,6,8;
Bit heavy u,d quarks.
Critical End-point :
T = 160(4) MeV,

µ = 725(35) MeV

How reliable are these results ? Methods, Prescription dependence...

We address some of these issues via Quark Number Susceptibilities.
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Quark Number Susceptibility

♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density
Results
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Quark Number Susceptibility

♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density
Results

♠ Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production

Definitions: For u, d, and s quarks, the partition function is

Z =
∫

DU exp(−SG)
∏
f=u,d,s Det M(mf,µf ) , (2)
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Quark Number Susceptibility

♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density
Results
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Definitions: For u, d, and s quarks, the partition function is

Z =
∫

DU exp(−SG)
∏
f=u,d,s Det M(mf,µf ) , (2)

where µf are corresponding chemical potentials. Defining µ0 = µu + µd + µs and
µ3 = µu − µd, baryon and isospin density/susceptibilities can be obtained as :
(Gottlieb et al. ’87, ’96, ’97, Gavai et al. ’89)
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Quark Number Susceptibility

♠ Theoretical Checks : Resummed Perturbation expansions; Finite Density
Results

♠ Crucial for QGP Signatures : Q, B Fluctuations; Strangeness production

Definitions: For u, d, and s quarks, the partition function is

Z =
∫

DU exp(−SG)
∏
f=u,d,s Det M(mf,µf ) , (2)

where µf are corresponding chemical potentials. Defining µ0 = µu + µd + µs and
µ3 = µu − µd, baryon and isospin density/susceptibilities can be obtained as :
(Gottlieb et al. ’87, ’96, ’97, Gavai et al. ’89)

ni = T
V
∂ lnZ
∂µi

, χij = T
V
∂2 lnZ
∂µi∂µj
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Setting µi = 0, ni =0 but χij are nontrivial. Diagonal χ’s are

χ0 =
T

2V
[〈O2(mu) +

1
2
O11(mu)〉] (3)

χ3 =
T

2V
〈O2(mu)〉 (4)

χs =
T

4V
[〈O2(ms) +

1
4
O11(ms)〉] (5)
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Setting µi = 0, ni =0 but χij are nontrivial. Diagonal χ’s are

χ0 =
T

2V
[〈O2(mu) +

1
2
O11(mu)〉] (3)

χ3 =
T

2V
〈O2(mu)〉 (4)

χs =
T

4V
[〈O2(ms) +

1
4
O11(ms)〉] (5)

Here O2 = Tr M−1
u M ′′u − Tr M−1

u M ′uM
−1
u M ′u, and O11(mu) = (Tr M−1

u M ′u)2,
and the traces are estimated by a stochastic method:
Tr A =

∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1) ,

where Ri is a complex vector from a set of Nv subdivided in L independent sets.
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u M ′uM
−1
u M ′u, and O11(mu) = (Tr M−1

u M ′u)2,
and the traces are estimated by a stochastic method:
Tr A =

∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1) ,

where Ri is a complex vector from a set of Nv subdivided in L independent sets.

Gavai & Gupta PR D ’01; Gavai, Gupta & Majumdar, PR D 2002

χFFT — Ideal gas results for same Lattice.
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Note that PDG values for strange quark mass =⇒

mstrange
v /Tc ' 0.3-0.7 (Nf=0); 0.45-1.0(Nf=2).
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Perturbation Theory

SPhT, Saclay, June 11, 2003 R. V. Gavai Top 14



Perturbation Theory

Weak coupling expansion gives:
χ

χFFT
= 1− 2(αsπ ) + 8

√
(1 + 0.167Nf)(αsπ )

3
2

(Kapusta 1989).
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♣ Minm 0.981 (0.986) at
0.03 (0.02)
for Nf = 0 (2).
♣ For 1.5 ≤ T/Tc ≤ 3
pert. theory −→ 0.99-0.98
(1.08=1.03) for Nf = 0 (2).

SPhT, Saclay, June 11, 2003 R. V. Gavai Top 14



Resummed Perturbation Theory
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Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :
(Blaizot, Iancu & Rebhan, PLB ’01; Chakraborty, Mustafa & Thoma, EPJC ’02).
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Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :
(Blaizot, Iancu & Rebhan, PLB ’01; Chakraborty, Mustafa & Thoma, EPJC ’02).

Our results for Nt = 4  Lattice artifacts ?
Check for larger Nt and improved actions.
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χud

Off-diagonal Susceptibility : χud = 〈 TV Tr M−1
u M ′uTr M−1

d M ′d〉
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Off-diagonal Susceptibility : χud = 〈 TV Tr M−1
u M ′uTr M−1

d M ′d〉

♥ Zero within 1–σ ∼ O(10−6) for T > Tc.
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Off-diagonal Susceptibility : χud = 〈 TV Tr M−1
u M ′uTr M−1

d M ′d〉

♥ Zero within 1–σ ∼ O(10−6) for T > Tc.

♥ Identically zero for Ideal gas but O(α3
s) in P.T.

Using the same scale and αs as for χ3 −→ χud ∼ O(10−4) !!
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♣ 123 × 4 Lattice; Quenched.
♣ T = 0.75Tc
♣ Gavai, Gupta & Majumdar,
PR D 2002
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Taking Continuum Limit

(Gavai & Gupta, PR D ’02 and hep-lat/0211015)
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Taking Continuum Limit

(Gavai & Gupta, PR D ’02 and hep-lat/0211015)

♠ Investigate larger Nt : 6, 8, 10, 12 and 14.
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Taking Continuum Limit

(Gavai & Gupta, PR D ’02 and hep-lat/0211015)

♠ Investigate larger Nt : 6, 8, 10, 12 and 14.

♠ Naik action : Improved by O(a) compared to Staggered.
Introduction of µ nontrivial but straightforward.
(Naik, NP B 1989; Gavai, hep-lat/0209008)
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♠ Investigate larger Nt : 6, 8, 10, 12 and 14.

♠ Naik action : Improved by O(a) compared to Staggered.
Introduction of µ nontrivial but straightforward.
(Naik, NP B 1989; Gavai, hep-lat/0209008)
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♠ Does improve the
Nt-dependence of the free
fermions.

SPhT, Saclay, June 11, 2003 R. V. Gavai Top 17



Results at 2Tc :
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♦ N−2
t ∼ a2 extrapolation works and leads to same results within errors for both

staggered and Naik fermions.
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♦ N−2
t ∼ a2 extrapolation works and leads to same results within errors for both

staggered and Naik fermions.

♦ Milder N−2
t ∼ a2-dependence for Naik fermions.
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The continuum susceptibility vs. T therefore is :
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The continuum susceptibility vs. T therefore is :
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♥ Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D ’03.
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The continuum susceptibility vs. T therefore is :
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♥ Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D ’03.

♥ Note that χud behaves the same way for ALL Nt and both fermions, leading to
the same O(10−6) values in continuum too.
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Wroblewski Parameter

Enhancement of strangeness production – A signal of Quark-Gluon Plasma.

Wroblewski Parameter – ratio of newly created strange quarks to light quarks.

λs =
2〈ss̄〉
〈uū+ dd̄〉

. (6)

Using our continuum QNS, it is a ratio χs/χu.

m/Tc = 0.03 for u, d and m/Tc = 1 for s quark → λs(T ). Extrapolate to Tc.
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Caveats

• Quenched approximation – Expect a shift of 5-10 % in full QCD.

• Extrapolation to Tc – Straightforward but better to do it for full QCD .

• At SPS and RHIC, µB 6= 0 ; But observed λs is insensitive to it. .

• Assumed : characteristic time scale of plasma are far from the energy scales of
strange or light quark production.

• Assumed : Chemical equilibration in the plasma.
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EoS for nonzero baryon density

Higher order susceptibilities are defined by

χfg··· =
T

V

∂n logZ
∂µf∂µg · · ·

=
∂nP

∂µf∂µg · · ·
. (7)

These are Taylor coefficients of the pressure P in its expansion in µ.

Can be written as traces of products of M−1 and various derivatives of M . E.g. ,
χuuuu involves terms having fourth derivative w. r. to µ while χuudd only second
derivatives.

In continuum, f(aµ) = 1 + aµ→ f ′′(0) = 0.
On lattice, in general, all derivatives exist and depend on the nature of function :
prescription dependence !

Fodor-Katz used fHK and got µE = 725 MeV for Nt = 4. If they were to use
fBG, then µE = 692 MeV.
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Easy to show that f ′′(0) = 1 always but all higher derivatives depend on choice of
f . Thus, one can write

χuuuu = χHKuuuu + ∆f (3)
(χuu
T 2

)( 4
N2
t

)
, (8)

where ∆f (3) = f (3) − 1 is 2 for fBG.

Prescription dependence must go away for small a or large enough Nt.
How large an Nt needed ? Nt ≥ 10, see below.

Defining

µ∗
T

=

√
12χuu/T 2

|χuuuu|
, (9)

and ∆P = P (µ)− P (µ = 0), the Taylor series expansion for Pressure P for 2
flavours can be re-organized as,

∆P
T 4

=
(χuu
T 2

)(µ
T

)2
[

1 +
(
µ/T

µ∗/T

)2

+O
(
µ4

µ4
∗

)]
. (10)
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Note that

• Each term in ∆P is prescription dependent, except the 1st. Physical ∆P may
be best obtained by evaluating each in continuum limit, as we do below. More
important for larger µ.

• The above is true for all physical quantities.

• µ� µ∗ for prescription independence, provided still higher susceptibilities
≤ χuuuu.

• (TE, µE) may be identified from the radius of convergence using many higher
susceptibilities obtained in continuum limit term by term. What about series on
finite lattice and estimate of (TE, µE) as done presently ?
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Our Results

Our results for χuuuu and ∆P : Gavai and Gupta hep-lat/0303013.
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♥ Both reproduced in dimensional reduction (1 free parameter). Vuorinen, hep-ph/0305183.

♥ Our results for P agree with Fodor-Katz (hep-lat/0208078) and the recent
Bielefeld results (hep-lat/0305007).
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Summary

• Phase diagram in T − µ on small Nt = 4 has begun to emerge: Different
methods,  same (TE, µE). Beware of prescription dependence and look
forward to larger Nt.
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• Continuum limit of χuu in Quenched QCD obtained. Yields λs in agreement
with RHIC and SPS results. Broadly in agreement with BIR resummation and
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Summary

• Phase diagram in T − µ on small Nt = 4 has begun to emerge: Different
methods,  same (TE, µE). Beware of prescription dependence and look
forward to larger Nt.

• Quark number susceptibilities −→ RHIC signal physics.

• Continuum limit of χuu in Quenched QCD obtained. Yields λs in agreement
with RHIC and SPS results. Broadly in agreement with BIR resummation and
dimensional reduction. Still scope for improvement in them ?

• Continuum limit of χuuuu in Quenched QCD obtained. ∼to dimensional
reduction.

• Pressure for nonzero µ obtained. At both SPS and RHIC, χuu is the major
contribution.
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• Many questions still for full 2+1 QCD : Order, Large Nt, · · ·.
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Screening Lengths

• Obtained from the exponential decay of

CΓ(z) =
∑
x,y,t

〈M−1
αβ(x, y, z, t)ΓM†−1

βα (x, y, z, t)Γ〉 (11)

Γ – Spin-flavour matrix, α,β – colour indices and
M−1 – quark propagator with source at origin.
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〈M−1
αβ(x, y, z, t)ΓM†−1

βα (x, y, z, t)Γ〉 (11)

Γ – Spin-flavour matrix, α,β – colour indices and
M−1 – quark propagator with source at origin.

• Known results : Degenerate parity partners, FFT results for all except π.
(DeTar-Kogut, Boyd et al., Gottlieb et al., Gavai-Gupta, · · ·)
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Screening Lengths

• Obtained from the exponential decay of

CΓ(z) =
∑
x,y,t

〈M−1
αβ(x, y, z, t)ΓM†−1

βα (x, y, z, t)Γ〉 (11)

Γ – Spin-flavour matrix, α,β – colour indices and
M−1 – quark propagator with source at origin.

• Known results : Degenerate parity partners, FFT results for all except π.
(DeTar-Kogut, Boyd et al., Gottlieb et al., Gavai-Gupta, · · ·)

• Could χ3 and Mπ both have some, perhaps the same, non-perturbative effect ?

• Summing up the CΓ for pion → Pion susceptibility.
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Nt = 4 Lattices with Nz = 16.
4χ3/T

2 (open symbols) and χπ/10T 2 (filled)
at 2Tc (lower set) and 3Tc.
(Gavai, Gupta & Majumdar, PR D ’02)
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4χ3/T

2 (open symbols) and χπ/10T 2 (filled)
at 2Tc (lower set) and 3Tc.
(Gavai, Gupta & Majumdar, PR D ’02)
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Why ? χ3 ∼
∑

propagator of nonlocal vector meson.
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Taking Continuum Limit
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Taking Continuum Limit

On finer lattices, a = 1/8T–1/12T , Pion screening lengths become degenerate
with those of ρ , i.e, also close to FFT!! (Gavai & Gupta, hep-lat/0211015)
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• mv/Tc = 0.03,
• Lattices up to 48× 262.
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Overlap Fermions agree:

On coarse lattices, a = 1/4T , Pion screening lengths become degenerate with
those of ρ , i.e, also close to FFT!! (Gavai, Gupta & Lacaze, PR D ’02 )
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However, chiral condensate, 〈ψ̄ψ〉 differs from FFT by 2, as do the detailed
shapes of the correlators.
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However, chiral condensate, 〈ψ̄ψ〉 differs from FFT by 2, as do the detailed
shapes of the correlators.

Note that both PS and V have SAME fit with changed normalization.
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