

$GERDA: \\ The GERmanium Detector Array for the \\ search for neutrinoless \beta\beta decays of ^{76}Ge$

Allen Caldwell Max-Planck-Institut für Physik

What we know

Mixing Matrix

U_{ij} can be characterized by three mixing angles, Θ_{12} , Θ_{23} , Θ_{13} , one Dirac CP phase, δ , and two Majorana phases Φ_2 , Φ_3 Θ_{12} , Θ_{23} measured, upper limit on Θ_{13}

What we do not know about neutrinos:

1.	absolute mass scale	(offset)
2.	mass hierarchy	(1,2,3 or 3,1,2)
3.	nature of neutrino	(Majorana, Dirac particle)
4.	value of third mixing angle	(⊖ ₁₃)
5.	CP phases	(δ, Φ_2, Φ_3)

Double beta decay experiment can address 3, and, if neutrinos are Majorana particles, then also a combination of 1,2,5

1

How can we test if neutrinos are Dirac or Majorana particles ?

Experimental Problem:

$$P(v_L \to v_R) \propto \left(\frac{m_v}{E_v}\right)^2$$
 m ≤ eV, E MeV or more

Only known technique is neutrinoless double beta decay:

Double Beta Decay

Note: process would violate lepton number conservation !

Effective Neutrino Mass

Complicated relationship between effective mass in neutrinoless double beta decay and neutrino masses, mixing angles and phases

Cancellation possible: m_{ee} could be vanishingly small

Effective Neutrino Mass

A Measurement of the Half-Life of Double Beta-Decay from 50Sn¹²⁴ *

E. L. FIREMAN Department of Physics, Princeton University, Princeton, New Jersey November 29, 1948

 \mathbf{I}^{F} two isobars differ by two units in atomic number, the heavier may decay into the lighter by double betadecay.^{1,2} This is the simultaneous emission of two negatrons if the heavier has lower atomic number or the simultaneous emission of two positons, 1 positon +1K capture, or 2K captures if the heavier has higher atomic number. The half-life depends markedly upon whether or not two neutrinos are emitted in the process. If no neutrinos are

TABLE I. Theoretical half-life for allowed double negaton emission.

Atomic mass difference	0	0.52 Mev	1.04 Mev	1.56 Mev	2.08 Mev	2.60 Mev
2 neutrinos	8	2.6 · 10 ²⁷ yr.	2.4 · 10 ²⁵ yr.	1.3 · 10 ²⁴ yr.	2.1 · 10 ²³ yr.	4.3 · 10 ²² yr.
No neutrinos	8	2.1 · 10 ¹⁶ yr.	2.7 ·10 ¹⁵ yr.	6.5 · 10 ¹⁴ yr.	2.2·10 ¹⁴ yr.	8.3 · 10 ¹³ yr.

Coincidences and single counts from both specimens are recorded simultaneously. The specimen holder is rotated through 180° every other hour and the positions of the specimens in the holder are interchanged every 20 hours. These data are summarized in Table II.

In all situations specimen A gives 2 coincidence counts/ hr. more than specimen B. By repeating this type of measurement with Al absorbers over one side of each specimen an absorption curve is obtained. This absorption curve is similar to that of electrons from a spectrum with an energy end point between 1.0 Mev and 1.5 Mev. The single counts from specimens A and B both give 6.5 ± 0.3 counts/min. If one interprets this effect as double betadecay from Sn^{124} , one obtains a half-life between $0.4 \cdot 10^{16}$ yr. and $0.9 \cdot 10^{16}$ yr. Other alternative explanations for these observations have been considered but none have been found to be plausible. This result would indicate that double beta-decay is unaccompanied by neutrinos. A further consequence of these results pointed out to the author by Professor J. R. Oppenheimer is that the neutronproton charge difference is exactly equal to the electron charge.

Note: 0v predicted to have shorter lifetime from phase space arguments

Positive result corresponds to $\langle m_{ee} \rangle \approx 30 \text{ keV}$ (my estimate)

H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets Phys.Lett.B586:198-212,2004

- Experiment with Ge detectors enriched in ⁷⁶Ge
- Exposure 71.7 kg-yr
- Experiment carried out in Gran Sasso lab
- Background: 0.11/(keV kg yr)

Claim: 4.2 σ signal T_{1/2}=0.69-4.18 10²⁵ yr m_{ee}=440 meV (best fit) KK Matrix Element m_{ee} \approx 700 meV Rodin et al. Matrix Element

GERDA (GERmanium Detector Array) is a collaboration of 12 institutes, ca. 80 physicists, from Germany, Italy, Russia, Poland, Belgium. The experiment has been approved by the LNGS (Gran Sasso)

GERDA Locations

Some of the possible isotopes

Decay	Q(keV)	Nat. Abundance	Experiments
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2%	CANDLES
⁷⁶ Ge → ⁷⁶ Se	2039	7.4%	GERDA, Majorana
⁸² Se → ⁸² Kr	2995	8.4%	NEMO
⁹⁶ Zr → ⁹⁶ Mo	3350	2.8%	
¹⁰⁰ Mo → ¹⁰⁰ Ru	3034	9.6%	NEMO,MOON
¹¹⁶ Cd → ¹¹⁶ Sn	2802	7.5%	
¹²⁸ Te → ¹²⁸ Xe	867	32%	
¹³⁰ Te → ¹³⁰ Xe	2529	34%	COBRA, CUORE
¹³⁶ Xe → ¹³⁶ Ba	2479	8.9%	EXO,XMASS
150 Nd \rightarrow^{150} Sm	3367	5.6%	

We like Germanium because:

excellent energy resolution (3 keV @ 2 MeV)

• considerable experience built up over the years - best background levels, best limits to date !

• still improvements possible

There are also some downsides:

- Q=2039 keV in region of γ backgrounds
- Q=2039 keV not among the higher Q values (recall $\tau \propto 1/Q^5$)
- enrichment possible, but expensive !
- limited number of crystal growers, detector makers

Detector Setup

Start with existing detectors

Sensitivity

Sensitivity

Background Suppression

Source	Action
γ 's external to crystals from ²⁰⁸ Tl(²³² Th), ²¹⁴ Bi(²²⁶ Ra), ⁶⁰ Co,	Shield: high-purity liquid argon shield. Minimize material close to detector.
Front-end electronics	Cold ASIC
μ Induced prompt signals	Underground location (LNGS - 3400 mwe); Water Cerenkov veto
µ Induced delayed signals (e.g. n+ ⁷⁶ Ge→ ⁷⁷ Ge→ ⁷⁷ As)	Low-Z material shield (Ar)
Internal to crystal (cosmogenic)	Minimize time above ground after enrichment (⁶⁸ Ge), crystal pulling (⁶⁰ Co)

In addition: segmented detectors and pulse shape analysis (Phase II)

1/1/2010

The types of things we worry about:

e.g., cosmogenic activation of ⁶⁸Ge (about 6/(day kg) in enriched Ge)

11.

2000

Days

1750

Existing Detectors

Heidelberg-Moscow detectors for Phase I of GERDA. In addition, three detectors from IGEX experiment. Total mass approx 18 kg. Detectors need to be refurbished to fit into GERDA scheme. This process is well underway.

	ANG1	ANG2	ANG3	ANG4	ANG5	RG1	RG2	RG3
FWHM [keV]	2.54	2.29	2.93	2.47	2.59	2.21	2.31	2.26
Mass [kg]	0.980	2.906	2.446	2.400	2.781	2.150	2.194	2.121

Phase II detectors 18-fold segmented detectors (true-coaxial, 3x6, n-type)

New Detectors

Material Screening

Material	Mass [g/det]	Contamination	$SP [10^{-6}]$					
Crystal								
Germanium	2400	Ra-226	780					
		Th-228	170					
		Co-60	65					
		Ge-68	180					
Surface	-	Pb-210	160					
		Th-228	1030					
Holder								
Copper	31	Ra-226	50					
		Th-228	110					
		Co-60	≤ 31					
Teflon	7	Ra-226	50					
		Th-228	70					
Cables	1	1						
Copper	1.3	Ra-226	1630					
		Th-228	1110					
		Co-60	80					
Kapton	0.8	Ra-226	260					
		Th-228	250					
		Co-60	10					
Bond pads a	nd wires							
Copper	0.04	Ra-226	150					
		Th-228	60					
		Co-60	40					
Nickel	0.04	Ra-226	160					
		Th-228	130					
		Co-60	≤ 31					
Gold	$5.6 \cdot 10^{-4}$	Ra-226	200					
1		Th-228	40					
		Co-60	≤ 31					
Aluminum	$8.2 \cdot 10^{-5}$	Ra-226	410					
		Th-228	170					
		Co-60	≤ 31					
Support Strings								
Copper	20	Ra-226	0					
		Th-228	0					
		Co-60	10					
Electronics								
Misc.	(3/4) 100	Ra-226	8					
		Th-228	46					
		Co-60	≤ 31					

Sample screening coordinated between: MPIK, GEEL, Baksan, LNGS

All materials which can produce background are measured

GeMPI at LNGS:

Background sources:

Cosmogenically produced ⁶⁸Ge and ⁶⁰Co

U/Th contamination, ²¹⁰Pb on surface

External gammas

Signatures:

Signal has two electrons in final state \rightarrow range \sim mm

Background sources mostly γ with E_{γ}>2 MeV

Compton scattering dominant interaction, range ~few cm

Background (60Co):

Background Suppression

Summary

- 1. We will confirm or rule out the Klapdor-Kleingrothaus et al. claim
- 2. If not verified and background reduction to the level 10⁻³/(kg yr keV) demonstrated, go for Phase III (ca. 1 ton, 20 meV level)