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Introduction

Introduction

Problem #1: the universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

ηB ≡ nb−nb̄

nγ
∼ 6×10−10

must have been generated during the evolution of the universe

Necessary ingredients (Sakharov, 1967)

Baryon number violation
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Deviation from thermal equilibrium
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Introduction

Neutrino masses

direct mass searches: mν . 2eV

Neutrino oscillations:
atmospheric ν oscillations: ⇒ mνi & 0.05eV
solar ν oscillations: ⇒ mνj & 0.008eV

Problem #2:

ν masses are 6= 0 but orders of magnitude smaller than any
other known masses

Both problems cannot be solved in the Standard Model
⇒ need extended model
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Introduction

Standard Model:

left- and right-handed quarks and charged leptons

neutrinos only left-handed. Why?

Introduce right-handed neutrinos N

First prediction: neutrino masses (type I seesaw)

mν ∼
v2

M

v∼ 100GeV: SM mass scale; M: mass of N.
Observed light neutrino masses yield clues on M

mν & 0.05eV ⇒ M . 1014GeV

Second prediction: lepton number L is violated
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Introduction

Baryon and lepton number violation

SM: B+L is violated by instantons
(’t Hooft ’76; Klinkhammer & Manton ’84; Kuzmin et al. ’85)

Sphalerons are in thermal equilibrium
above electroweak ‘phase transition’:

Tew∼ 100 GeV. T . 1012GeV

B+L violated, B−L conserved.

Sphaleron b L

b L

t L

sL
sL

c L

d L

d L

u L
νe

νµ

ντ

B and L are not independent at T & 100GeV

ηB = cηB−L =
c

c−1
ηL , with c∼ 1

3

L violating processes can generate ηB!
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Leptogenesis

Leptogenesis

A free lunch: Leptogenesis in type I seesaw

Right-handed neutrinos can also give rise to ηB (Fukugita and Yanagida ’86)

Yukawa couplings:
LY ≃ Nλν lH −N M N

Ns are unstable, decay to lepton-Higgs pairs:

ΓD ∝ m̃1 =
v2

M1
(λ†

νλν)11

N interactions violate L → L 6= 0, partially converted to
B 6= 0 by sphalerons

λν complex ⇒ CP violation εi

N1

l

H
+ N1

H

l

+ N1

l

H
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Leptogenesis

Challenge #1: How do the N get produced?
(Luty ’92; M.P. ’96; Pilaftsis and Underwood ’03)

N scattering processes are important
all production processes ∝ m̃1

need large m̃1 for efficient production

q

u

H

l

N1

Challenge #2: L violating scatterings can destroy ηB

(Fukugita & Yanagida ’90; Buchmüller, Di Bari & M.P. ’02; Giudice et al. ’03)

Two contributions to reaction rate:

resonant contribution from N1: ∝ m̃1

remainder: ∝ M1m2 , m2 = ∑m2
νi

need small m̃1 and M1m2 to avoid washout

Two conflicting requirements

−→ network of Boltzmann equations
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Leptogenesis

Quantitative analysis via Boltzmann equations

competition between production and washout:

dNN1

dz
= −(D+S)(NN1 −Neq

N1
)

dNB−L

dz
= −ε1D(NN1 −Neq

N1
)−W NB−L

z= M1/T ∝
√

t

Ni : number densities in comoving volume

D : decays

S : ∆L = 1 scatterings

W : washout due to L violating scatterings
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Leptogenesis

Quantitative analysis via Boltzmann equations

competition between production and washout:

dNN1

dz
= −(D+S)(NN1 −Neq

N1
)

dNB−L

dz
= −ε1D(NN1 −Neq

N1
)−W NB−L

produced baryon asymmetry:

ηB ≃ 10−2 ε1 κ(m̃1,M1m2)

need to know:

CP asymmetry ε1 (from neutrino mass model)

efficiency factor κ parametrizes N interactions
(from integration of Boltzmann eqs.)
(Barbieri et al. ’00; Buchmüller, Di Bari & M.P. ’02)
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Leptogenesis

Baryon asymmetry determined by four parameters

1 CP asymmetry ε1

2 mass of decaying neutrino M1

3 effective light neutrino mass (coupling strength of N1)

m̃1 =
v2

M1

(
λ†

νλν
)

11

4 light neutrino masses

m=
√

m2
ν1

+m2
ν2

+m2
ν3

since
Γ∆L=2 ∝ M1m2
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Leptogenesis

Efficiency factor κ as function of m̃1

(M.P. ’96; Buchmüller, Di Bari & M.P. ’02)

em1(eV)
κ

M1. 1013GeV

1014GeV

1015GeV

hierarchical light νs:
m= 0.05eV

maximal efficiency:

κmax≃ 0.18

for m̃1 ≃ 10−3 eV
and M1 . 1013GeV

→ N interactions reduce efficiency:

for m̃1 ≪ 10−3 eV: N production inefficient

for m̃1 ≫ 10−3 eV: washout too strong

for M1 & 1013GeV: Γ∆L=2 ∝ M1m2 becomes important
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Leptogenesis
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Leptogenesis
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Leptogenesis

lines of constant κ in (m̃1,M1) plane

em1 (eV)

M
1

(GeV) κ = 0:1 10�2

10�3

10�4

hierarchical light ν’s:
m= 0.05eV

maximal efficiency in the mass range

10−4 eV . m̃1 . 10−2 eV

M1 . 1013GeV

Michael Plümacher Neutrinos and the Origin of Matter



Leptogenesis

Baryon asymmetry determined by four parameters

1 CP asymmetry ε1

2 mass of decaying neutrino M1

3 effective light neutrino mass m̃1 (∝ decay width of N1)

4 light neutrino masses m=
√

m2
ν1

+m2
ν2

+m2
ν3

Final baryon asymmetry

ηB ≃ 10−2 ε1 κ(m̃1,M1m2)
need to know:

CP asymmetry ε1 (from neutrino mass model)

efficiency factor κ parametrizes N interactions
(from integration of Boltzmann eqs.)
(Barbieri et al. ’00; Buchmüller, Di Bari & M.P. ’02)
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Leptogenesis

CP asymmetry

ε1 =
Γ(N → l )−Γ(N → l̄ )

Γ(N → l )+ Γ(N → l̄ )

for M2,3 ≫ M1: upper bound on ε1 in terms of light ν masses:
(Davidson & Ibarra ’02; Buchmüller, Di Bari & M.P. ’03; Hambye et al. ’03)

εmax
1 =

3
16π

M1mν3

v2 f (mνi ,m̃1)

two limiting cases:

hierarchical light νs: mν1 → 0 ⇒ εmax
1 =

3
16π

M1mν3

v2

degenerate light νs: mν3 = mν1 ⇒ εmax
1 = 0

→ CP asymm. suppressed if light ν spectrum quasi-degenerate
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Leptogenesis
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Leptogenesis

Maximal baryon asymmetry

ηmax
B = 10−2 εmax

1 κ(m̃1,M1m2)

hierarchical light νs: m= 0.05eV ⇒ ηmax
B = 10−2 3

16π
M1mν3

v2 κ

em1(eV)

M
1

(GeV)
10�6

10�8

10�10

10�12

ηCMB
B

⇒ Lower bound on
the baryogenesis
temperature

TB ∼ M1 & 109 GeV
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Constraints on neutrino parameters

Constraints on neutrino parameters

1 N1 production processes ∝ m̃1 ⇒ lower limit on m̃1

2 Washout processes:

res. contrib. from N1 ∝ m̃1 ⇒ upper limit on m̃1

remainder ∝ M1m2 ⇒ upper limit on M1 for fixed m
3 maximal CP asymmetry ∝ M1 ⇒ lower limit on M1

since ηB ∝ ε1

for fixed m⇒ allowed region in (m̃1,M1) plane

Size of allowed region depends on m since:

max. CP asymm. suppressed for quasi-degenerate light νs

m̃1 ≥ mν1

⇒ upper bound on m
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Constraints on neutrino parameters

(Buchmüller, Di Bari & M.P. ’03, ’04)

em1(eV)

M
1

(GeV)
m= 0:05 eV

0:15 eV

0:21 eV

light ν masses: m< 0.22eV ⇒ mνi < 0.13eV

RHN masses: TB ∼ M1 & 109 GeV
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Constraints on neutrino parameters

The neutrino mass window for baryogenesis

upper bound on light ν masses mνi . 0.1eV

no dependence on initial conditions for m̃1 & 10−3 eV

since m̃1 ≥ mν1 → leptogenesis window for neutrino masses

10−3 eV . mνi . 0.1eV

compatible with ν oscillations (matm∼ 0.05eV)

Analytical solution for efficiency factor in leptogenesis window:

κ = (2±1)×10−2
(

0.01eV
m̃1

)1.1±0.1
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Conclusions

Conclusions

Type I seesaw naturally explains the cosmological baryon
asymmetry and the smallness of neutrino masses
Quasi-degenerate light ν masses are incompatible with
leptogenesis:

mνi < 0.13 eV

lower bound on the baryogenesis temperature:

TB & 109 GeV , tB ∼ 10−25s

possible way out: resonant leptogenesis
leptogenesis works best in neutrino mass window

10−3 eV . mνi . 0.1eV

consistent with neutrino oscillations
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Conclusions

Michael Plümacher Neutrinos and the Origin of Matter



Initial Conditions

Neutrino production?

em1(eV)
κ

M1. 1013GeV

1014GeV

1015GeV

hierarchical light νs:
m= 0.05eV

initial conditions

NN1 = Neq
N1

at T ≫ M1: thin lines

NN1 = 0 at T ≫ M1: thick lines

no dependence on initial conditions for m̃1 & 10−3 eV

Michael Plümacher Neutrinos and the Origin of Matter



Initial Conditions

Primordial Asymmetry?

initial asymmetry before leptogenesis:
effect of washout?

Washout factor for
hierarchical light νs:
m= 0.05eV
and
M1 = 1010GeV

Initial temperature:

zi =
M1

Ti

efficient washout of initial asymmetry at zi ∼ 1 for m̃1 & 10−3 eV

no dependence on initial conditions for m̃1 & 5×10−3 eV
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Alternatives

Alternatives?

What if light neutrinos are quasi-degenerate?

What if the reheating temperature is lower than ∼ 109 GeV?

decouple light neutrino masses from baryogenesis, i.e.
contribution to light ν masses and/or baryogenesis from
triplet Higgs
some other mechanism for light ν masses,. . .

resonant leptogenesis, soft leptogenesis in SUSY models

non-thermal leptogenesis, i.e. through inflaton decay or
Affleck-Dine, . . .
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Alternatives

Resonant Leptogenesis

Resonant enhancement of CP-asymmetry for M2,3−M1 ≪ M1:

N1

l

H
+ N1

H

l

+ N1

l

H

Almost no effect on bound on light ν masses, but lower limit on
TB,M1 can be evaded.
However: many different results in literature !?

Problem: Ni unstable, i.e. cannot appear as in- or out-states of
S-matrix elements
Solution: scattering amplitudes of stable parti-
cles with Ni as intermediate states

Factorisation: effective one-loop couplings of Ni
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Alternatives

Resummation of self-energies

regularizes resonant propagator ⇒ mixing effects
(
S−1)

ij =6p−Mi −Σij

Renormalization known (Kniehl & Pilaftsis ’96)

Chiral decomposition of propagator:

S= PRSRR+PL SLL +PL 6p SLR+PR 6p SRL

Contribute to different scattering processes:

M (lr → ls) ∝ hri SLL
ij hsj M ( lr → ls) ∝ h∗ri SRR

ij h∗sj

M (lr → ls) ∝ h∗ri SRL
ij hsj M ( lr → ls) ∝ hri SLR

ij h∗sj

Contributions of different Ni mass eigenstates?
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Alternatives

Factorization (Anisimov, Broncano & M.P. ’05):

Different methods:
1 Decompose scattering ampl. into partial fractions, e.g.:

M (lr → ls) ∝ λr1
1

p2− M̂ 2
1

λs1+ λr2
1

p2− M̂ 2
2

λs2 + . . .

λri : resummed effective Ni Yukawa coupling

Consistency: all 4 amplitudes can be factorized
simultaneously.

2 Diagonalization of propagators, e.g.: U SLL UT = Sdiag

M (lr → ls) ∝
(
hUT)

ri Sdiag
ii

(
hUT)

si

(
hUT

)
ri : resummed effective Ni Yukawa coupling

Consistency: for p2 = M 2
i all 4 amplitudes can be factorized

simultaneously.
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Alternatives

Results:

Both methods yield identical results for physical quantities:

1 Decay widths: Γ(Ni → lr) ∝ |λri |2 =
∣∣(hUT)

ri

∣∣2
, for p2 = M 2

i

2 CP-asymmetries, e.g.:

ε1 ∝
M 2

2 −M 2
1(

M 2
2 −M 2

1

)2
+(M2Γ2−M1Γ1)

2
,

Previous approaches, e.g., resum only self-energy Σjj of
intermediate neutrino Nj ⇒ regulator: Γj (Pilaftsis & Underwood ’04)

ε1 ∝
M 2

2 −M 2
1(

M 2
2 −M 2

1

)2
+M 2

1 Γ2
2

Different neutrino flavours are treated differently!
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Alternatives

Relative one-loop correction to couplings of N1

Our result (thick line) compared to the one of Pilaftsis et al.:

2
1/M2p

-110 1 10 210

11h
11h-

11λ

-1610

-1510

-1410

-1310

-1210

-1110

-1010 1=2M2M

thin line has resonance at p2 = M 2
2 , i.e. contributions from

different neutrino mass eigenstates not properly separated in
previous approaches.
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Alternatives

CP asymmetry

Our result (thick line) compared to the one of Pilaftsis et al.:

-11/M2=M∆

-1410 -1310 -1210

1ε

-410

-310

-210

-110

Both the position of the resonance and the maximum value for
ε1 have shifted by an order of magnitude (details depend on
neutrino mass model used).
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