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Solar and atmospheric neutrino problems can both be

explained in terms of three flavour neutrino oscillations.

The survival/oscillation probabilities depend on two

mass-squared differences,∆21 and∆31, three mixing angles,

θ12, θ13 andθ23, and a CP violating phaseδ.

Solution to solar neutrino problem requires the smaller

mass-squared difference, which is commonly taken to be

∆21, should be positive.

Atmospheric neutrino data and the data from accelerator

experiments, K2K and MINOS, determine the magnitude of

∆31 but not its sign.



CHOOZ reactor experiment and solar neutrino (and

KamLAND) data lead to the constraintθ13 ≤ 14◦.

Mohan Narayan, G. Rajasekaran and S. Uma Sankar

(hep-ph/9712409), Phys. Rev. D58, 031301 (1998).

A. Bandyopadhyayaet al, Phys. Lett. B608, 115 (2005).

Efforts are on to measure non-zero value ofθ13 with both

reactor neutrinos (Double CHOOZ and Daya Bay) and

accelerator neutrinos (T2K and Noνa).

Question: How can we measure the other unknown

quantities, sign of∆31 and the CP violating phaseδ?



Sign of∆31 is also called neutrino mass hierarchy.

m3 ≫ m2 > m1 (normal hierarchy) ORm2 > m1 ≫ m3

(inverted hierarchy)

Consider the caseθ13 = 0. Then it can be shown that solar

neutrino oscillations areνe ↔ νµ/ντ and atmospheric

neutrino oscillations areνµ ↔ ντ .

νe, as they propagate through matter, undergo elastic forward

scattering off electrons. This scattering is parametrizedby the

matter (Wolfenstein) termA = 2
√

2EGFNe. This term is

absent for other flavours.



This difference in the propagation of different flavours

interferes with the vacuum oscillations which are driven by

mass-squared difference. Thus the matter term leads to

modification of oscillation probabilities, which depend onthe

interference between∆ andA.

The matter term is a function of neutrino energy. Therefore

the modifications induced by it are also energy dependent.

The electron neutrino survival probability in solar neutrino

problem has a particular energy dependence, which is

reproduced by matter modified neutrino oscillations only for

the case∆21 positive.



The muon neutrino survival probability in atmospheric

neutrinos (and also accelerator neutrinos) in the limitθ13 = 0

is given by

P (νµ → νµ) = 1 − sin2 2θ23 sin2

(

1.27
∆31L

E

)

,

which is the same for both signs of∆31.

In the limit of θ13 = 0, matter effects have no role here

because these oscillations do not involveνe.

θ13 is a measure of theνe component of the mass eigenstate

ν3 (sin θ13 = Ue3). Non-zero value ofθ13 implies thatνe also

has a role in atmospheric neutrino oscillations.



Matter effects modify this angle which linksνe to other

flavours at the atmospheric neutrino energy scale (∼ GeV).

The expression of matter modifiedθ13 is given by

sin 2θm
13

= sin 2θ13∆31/∆
m
31

,

where

∆m
31

=
√

(∆31 cos 2θ13 − A)2 + (∆31 sin θ13)2.

Modification of atmospheric neutrino oscillation/survival

probabilities due to matter effects must necessarily be

proportional toθ13.

Question: What is the smallest value ofθ13 for which these



matter effects can be measured and the neutrino mass

hierarchy can be determined?

Answer (obviously) depends on what kind of experiments

will be performed.

Here I will confine my attention to long baseline experiments

which are being constructed (Double CHOOZ and T2K) and

are likely to be constructed (Daya Bay and Noνa). One

important other possibility is INO (which I will not consider

here).

Firstly, we need an experiments which are sensitive only to

non-zero value ofθ13 but not matter effects. Reactor neutrino



experiments satisfy this constraint.

Double CHOOZ and Daya Bay experiments are designed to

have the least possible systematic errors, so that a good

precision inθ13 can be achieved. They will measure non-zero

value forθ13 if θ13 ≥ 5◦.

Lindneret al have made a proposalTriple CHOOZto

improve the situation even further

(hep-ph/0601266) JHEP 0605 (2006) 072.

With a non-zeroθ13 in hand, one can determine the mass

hierarchy by measuringνµ → νe oscillation probability,



which gets modified by matter effects, in an accelerator

experiment.

This oscillation probability is given, in the limit∆21 = 0, by

Pm(νµ → νe) = sin2 θ23 sin2 2θm
13

sin2

(

1.27
∆m

31
L

E

)

.

For longer baseline, this probability achieves a miximum

value at largerE.

The matter term is proportional toE. Hence to discern the

effect of the matter term should have the oscillation

probability maximum at large energy and hence must have

large baseline lengthL.
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For∆31 positive this probability is higher and for∆31

negative this probability is lower than the vacuum

expectation. Changing the sign of∆31 is leading to a change

of about25% in the oscillation probability.



If we keep∆21 6= 0, then the matter modified oscillation

probability becomes

Pm(νµ → νe) = sin2 θ23 sin2 2θ13

sin2((1 − Â)∆)

(1 − Â)2

+α cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

[sin δ sin(∆) + cos δ cos(∆)]

sin(Â∆)

Â

sin((1 − Â)

(1 − Â)

+α2 cos2 θ23 sin2 2θ12

sin2(Â∆)

(Â∆)2
,

whereα = ∆21/∆31, Â = A/∆31 and∆ = 1.27∆31L/E.



The second term, which is the leading term in∆21, also

contains the CP violating phaseδ. There is no information on

this phase and we must consider variation in its full range−π

to π. Whenδ is varied over its full range, the second term

leads to25% change inPm(νµ → νe). This is illustrated in

the next figure.
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If we have the data onPm(νµ → νe) from one experiment,

there are two possible solutions to it: (a) The true hierarchy

and the true value ofδ and (b) the wrong hierarchy and a

wrong value ofδ (which is aboutπ/4 to π away from the true

value).

Because of the dependence ofPm(νµ → νe) on δ, data from a

single long baseline experiment can’t determine the mass

hierarchy.

The change induced by the matter term is energy dependent.

Whereas the change induced byδ is energy independent

provided(L/E) is kept fixed.



Suppose we have data onPm(νµ → νe) from two different

experiments with two different baselines. Then the change

induced by the matter term in the two experiments will be

different. But the change induced by the CP phaseδ will

roughly be the same.

In such a situation,the wrong hierarchy along with a single

spurious value ofδ can’t account for both sets of data. This is

illustrated in the next figure for two experiments with

baselinesL1 = 295 Km (T2K) andL2 = 810 Km (Noνa).
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The figure on the left is for T2K and figure on the right is for

Noνa. ∆31 positive curve hasδ = 30◦ and∆31 negative curve

hasδ = 75◦. In both cases|∆31| = 2.5 × 10−3 eV2 and

θ13 = 10◦.
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The figure on the left is for T2K and figure on the right is for

Noνa. ∆31 positive curve hasδ = −90◦ and∆31 negative

curve hasδ = 90◦. In both cases|∆31| = 2.5 × 10−3 eV2 and

θ13 = 10◦.



So here is the strategy we adopt. The three experiments,

Double CHOOZ, T2K and Noνa, give us the event spectra in

the case of no oscillations.

We assume three years of running of Double CHOOZ

(hep-ex/0405032) and five years of running of T2K in

neutrino mode (hep-ex/0106019). In the case of Noνa also,

we assume five years of running in neutrino mode with POT

of 7.3 × 1020 per year (hep-ex/0503053).

We take∆31 to be positive and select atrue valueof θ13 and a

true valueof δ from their currently allowed ranges

0 ≤ θ1314◦ and−π ≤ δ ≤ π. For other neutrino parameters,

|∆31|, ∆21, θ12 andθ23, we take their current best values.



With these values we computeP (ν̄e → ν̄e) (which is relevant

for Double CHOOZ) andPm(νµ → νe) (which is relevant for

T2K and Noνa) as functions of energy.

We multiply the event spectra in the case of no oscillations

with the survival/oscillation probabilities to obtain theevent

spectra with oscillations driven by the above given neutrino

parameters.

Each detector has an uncertainty in measuring the energy of

an event. This leads to an distortion of the above spectrum.

We compute the distorted spectrum by convoluting the

previous spectrum with a Gaussian energy smearing function.



In the case of Double CHOOZ, the uncertainty in the

measurement of the energy is much smaller than the bin size.

Therefore no energy smearing is done.

For T2K the uncertainty in the measurement of energy is

σE = 100 MeV (hep-ex/0106019). For Noνa the energy

uncertainty is taken toσE/E = 0.1/
√

E, whereE is in GeV

(hep-ex/0503053).

We take these smeared event spectra to be our ”experimental

data”. We have 36 data points from Double CHOOZ, 18 from

T2K and 46 from Noνa for a total of 100 data points.

We now calculate ”theoretical event spectra” by assuming the



wrong hierarchy (in this case negative∆31) and all allowed

values ofθ13 andδ.

For each ”test value” ofθ13 andδ (and the wrong hierarchy),

we calculate the ”theoretical values” of the above 100

measurables.

We then compute

χ2(θtest
13

, δtest) =
100
∑

i=1

(Ni − N test
i )2/Ni,

whereNi are the ”experimental data” for each measurable

andN test
i are the ”theoretical values” for them, which are

functions ofθtest
13

andδtest.



χ2 will be minimum for some value ofθtest
13

andδtest.

If this minimum value is greater than 4, then the wrong

hierarchy can be ruled out at95% confidence, for the

initially chosen ”true” values of θ13 and δ.

Now we vary these ”true” values ofθ13 andδ over their

allowed ranges (again0 ≤ θ1314◦ and−π ≤ δπ) and ask

what is the minimum ”true” value ofθ13 for which the

minimum of χ2 will be greater than 4, irrespective of the

”true” value of δ.

This is shown in the following figure for∆31 = 2.5 × 10−3

eV2.
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We find this minimumθ13, for which the matter hierarchy can

be resolved at95% confidence, to be about6◦.

MINOS experiment allows the maximum value of|∆31| to be

about3.5 × 10−5 eV2. For this value of|∆31| we get the

following result of minimumθ13 = 4◦.
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The minimum allowed value of|∆31| by Super-Kamiokande

is 1.5 × 10−3 eV2. For this small a value, the ability of

current long baseline experiments to distinquish the matter

hierarchy is quite bad. We get minimumθ13 = 16◦.
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