Algorithms for frustrated spin models

Kedar Damle, CCP2015, IIT Guwahati
Tata Institute, Bombay

Antiferromagnetism in Mott insulators:

- Antiferromagnetic exchange interactions of magnetic ions in insulators:
$E=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad J>0$
- When is $J>0$, large? Difficult (quauntum chemistry) question, with thumb-rule answer: Goodenough-Kanamori-Anderson rules J.B. Goodenough, Magnetism and the Chemical Bond (1963) (exceptions known, e.g. Oles et. al. 2006)
- Sometimes possible to "measure" J : Inelastic neutron scattering in high field.
e.g. $\mathrm{Yb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ Ross et al. PRX 2011

Triangles on my mind: Frustration and spin liquid behaviour

- Triangles \rightarrow frustrated antiferromagnetism

Competing interactions frustrate Neel order

- 'Quenching' of exchange allows new physics to take center-stage: Spin liquids
- Macroscopic degeneracy of classical minimum energy configurations.
- At intermediate $T_{f}<T<J S^{2}$, spin correlations reflect this macroscopic degeneracy:
No Bragg peaks in structure factor \rightarrow correlated liquid state

Frustration and entropic interactions

- Frustrated magnets: Large degeneracy of minimum energy configurations
- At $T \ll J$: system samples minimally frustrated subspace (Or falls out of equilibrium...)
- Fluctuations generate entropic interactions

Order by disorder:

- Low temperature physics dominated by entropic interactions
- Characteristic signatures in structure factor
- More dramatic cases: Order-by-thermal/quantum disorder

Sign problem in Quantum Monte Carlo

- $Z=\sum_{\mathcal{C}} W(\mathcal{C})$
- In classical stat. mech. $W \propto \exp \left(-E / k_{B} T\right)>0$
- For quantum systems $Z=\operatorname{Tr}\left(e^{-H / k_{B} T}\right)$ Berry phase effects: W need not be positive \rightarrow Exponentially deteriorating error bars

Sign problem and frustration

- Hamiltonian written as sum over links: $H=\sum_{l} H_{l}$
- $Z=\operatorname{Tr}[\exp (-H / T)]=\sum_{\alpha_{0}}\left\langle\alpha_{0}\right| \exp (-H / T)\left|\alpha_{0}\right\rangle$
- High-temp expansion:
$Z=$
$\sum_{n=0}^{\infty} \frac{1}{n!T^{n}} \sum_{\mathcal{S}_{n}}\left\langle\alpha_{0}\right|\left(-H_{n}\right)\left|\alpha_{n-1}\right\rangle\left\langle\alpha_{n-1}\right|\left(-H_{n-1}\right)\left|\alpha_{n-2}\right\rangle \ldots\left\langle\alpha_{1}\right|\left(-H_{1}\right)\left|\alpha_{0}\right\rangle$
Stochastic series expansion (SSE): Sample sum over operator-strings \mathcal{S}_{n} of length n with weight above.
(Sandvik 1991)
- Every $J>0 \rightarrow$ minus sign

Periodicity, closed-loops and the overall sign

- Overall sign insensitive to $|\alpha\rangle \rightarrow e^{i \gamma(\alpha)}|\alpha\rangle$ no quick fix...
- Diagonal matrix elements can always be shifted to make sign positive
- Off-diagonal "hops" control sign
- Constrained by periodicity in τ and lattice structure

(Sign) Problems and "Solutions"...

- Notorious problems:
$H=\sum_{\left\langle r r^{\prime}\right\rangle} \vec{S}_{r} \cdot \vec{S}_{r^{\prime}}$ on Kagome, triangular lattices
$d=2$ square lattice Hubbard model away from half-filling
- Some "solutions":

1. Looking under the (Ising) streetlamp: Frustrated exchange couplings only involving one component of spins
2. Clever change of simulation basis...?
3. Finessing the problem: Effective field theory/Hamiltonian description of low-energy physics can be numerically tractable
4. Identifying symmetries that cancel -ve signs in pairs

Very difficult even if sign-free!

- Quantum and thermal fluctuations determine nature of low temperature phase \& excitations
- Computational scheme needs to be ergodic within macroscopically degenerate minimally frustrated subspace
- Also needs to capture thermal fluctuations out of minimally frustrated subspace

Ideas that help: Clusters, worms, and loops.

- Cluster constructions (Wolff, Swendsen \& Wang) identify and update large regions that "want to" move together (Accurately capture the physics of large correlation lengths associated with ferromagnetic criticality)
- Worm constructions (Evertz \& Wiese; Prokofev \& Svistunov) identify a one-dimensional cascade of moves that take system out of physical (constrained) configuration space (When worm closes on itself, system returns to physical subspace, but with large changes in configuration)
- Dual (loop) representations Bond-variables often more convenient (Hitchcock, Sorensen, Alet ...)

Issues

- Key challenge for clusters and worms:

Are clusters rejected with significant probability?
Do worms/clusters reflect underlying physics?

- Composition of clusters should reflect long-wavelength correlations of the system...
Algorithm needs to "know" of the physics of geometric frustration?

Example of sign-free but challenging models

- Ising models of quantum frustration (Moessner-Sondhi 2000) Triangular lattice Ising antiferromagnet in a transverse field $H_{\text {TFIM }}=J \sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-\Gamma \sum_{i} \sigma_{i}^{x}+\ldots$
- Quantum cluster algorithm available in SSE representation for unfrustrated quantum Ising models
(Sandvik 2003)

Challenge: Low but not zero temperatures

- Classical frustrated Ising models:

Thermal fluctuations need to be captured in efficient way
Standard (Wolff-inspired) classical cluster constructions accurately reflect long-wavelength physics of ferromagnetic correlations, but not of frustration
Coddington \& Han 1994, Zhang and Yang 1994

- Frustrated transverse field Ising models

Quantum cluster algorithm reduces to variant of
Swendsen-Wang clusters in $\Gamma=0$ limit \rightarrow frustrated $J_{i j}$ again cause problem at low temp.
Need to "teach" cluster algorithms structure of minimally frustrated landscape(?)

Difficult even in classical case

- Dual worm construction (Wang,Sterck \& Melko 2012) Uses worms to update dual variables (a la Hitchcock,Sorenson,Alet 2004)
- Works when $T=0$ limit is dual to non-interacting dimers
- Involves rejection of significant fraction of worms

Our recent progress

- Quantum cluster construction for frustrated TFIM (Sounak Biswas, R. Geet, \& KD, unpublished)
- Stochastic Series Expansion Quantum Monte Carlo in basis of total spin eigenstates of clusters of spins (F. Alet, KD, \& S. Pujari, unpublished)
- Cluster algorithm for frustrated two-dimensional $H_{\text {Ising }}$ with up to third neighbour interactions
(KD \& R. Geet, unpublished)

Ingredients

- Cluster constructions
- (Dual) "loop-like" (dimer) representations
- Directed worm constructions

Quantum cluster algorithm for frustrated TFIM

- Example: Transverse field Ising antiferromagnet on triangular lattice (also with further neighbour $\left(J_{2}, J_{3}\right)$ couplings...)
- Interesting physics questions

Thermodynamic signature of two-step melting of three-sublattice order
Transition from plaquette to columnar three-sublattice order

Order parameter

For triangular lattice: $\Psi=\sum_{r} e^{i \mathbf{Q} \cdot r} \sigma_{r}^{z}$

Columnar vs Plaquette type orders

$\Psi=|\Psi| e^{i \theta}$
$\theta=2 \pi m / 6$: Columnar three-sublattice order ($m=0,1,2 \ldots 6$)
$\theta=(2 m+1) \pi / 6$: Plaquette three-sublattice order $(m=0,1,2 \ldots 6)$
In ordered state: θ pinned to these values
Columnar phase is ferrimagnetic $m \propto \cos (3 \theta)$
In power-law phase: θ has gaussian fluctuations with no pinning

Physics summary

T

Paramagnet

Three-sublattice order

Γ
(Isakov \& Moessner 2003) for $J_{2}=0$
(D. P. Landau 1985) for J_{2} ferromagnetic

Conventional quantum cluster algorithm

$H_{\text {TFIM }}=\sum_{\text {link }} H_{\text {link }}+\sum_{\text {sites }} H_{\text {sites }}$
trick: $H_{\text {site }}=-\Gamma \sigma_{\text {site }}^{x}-\Gamma \mathbf{1}_{\text {site }}$

Conventional quantum cluster algorithm

: Also add or remove diagonal operators to change length of operator string

Loss of ergodicity in conventional approach

$$
L=48, \Gamma=0.8, J_{1}=1.0, J_{2}=0.0
$$

Improvement achieved:

$$
L=48, \Gamma=0.8, J_{1}=1.0, J_{2}=0.0
$$

Clean signature of ferrimagnetic phase

$$
L=48, \Gamma=0.8, J_{1}=1.0, J_{2}=-0.1
$$

Pinpointing transition to ferrimagnetic phase algorithmically
 $1=0.8, \mathrm{~T}_{1}=1.0,7=0.1$

Improvement achieved:

Improvement achieved:

Improvement achieved:

Improvement achieved:

How: Our approach

$H_{\text {TFIM }}=\sum_{\Delta} H_{\Delta}+\sum_{\text {link }} H_{\text {link }}+\sum_{\text {sites }} H_{\text {sites }}$
H_{Δ} : Triangle decomposition of all antiferromagnetic couplings
$H_{\text {Link }}$: Bond decomposition of all ferromagnetic couplings
$H_{\text {sites }}$: site decomposition of transverse field term

Quantum-cluster construction for frustrated TFIM

- 00	00	- 00	00
			\square
000	- 0	- 0	0
			0
	(a)		(b)

Quantum-cluster construction for frustrated TFIM

A-Majority site

A-Minority Site

'A' Update

Physics: Divergent ferromagnetic susceptibility of antiferromagnet

$\Gamma=0.8, J_{1}=1.0, J_{2}=0.0$

Why does it work?

$$
L=48, \Gamma=0.8, T=0.1, J_{1}=1.0, J_{2}=0.0
$$

Why does it work?

Why does it work?

Why does it work?

$$
L=48, \Gamma=0.8, J_{1}=1.0, J_{2}=0.0
$$

Solution of sign problem for frustrated bilayer magnets

- $\vec{S}_{\mathrm{I} r}$ and $\vec{S}_{\mathrm{II} r}$ located on the two layers at sites r of a bipartite Bravais lattice in any spatial dimension

General frustrated bilayer Hamiltonian

$$
\begin{aligned}
& H_{\text {bilayer }}=\sum_{r} \mathcal{D}_{z} S_{\mathrm{Ir}}^{z} S_{\mathrm{II} r}^{z}+\mathcal{D}_{\perp} \vec{S}_{\mathrm{II} \cdot}^{\perp} \cdot \vec{S}_{\mathrm{Ir} r}^{\perp}+\sum_{\left\langle r_{a} r_{b}\right\rangle}\left(\mathcal{J}_{z} S_{\mathrm{Ir}}^{z} S_{\mathrm{I} r_{b}}^{z}+\mathcal{J}_{\perp} \vec{S}_{I r_{a}}^{\perp} \cdot \vec{S}_{I r_{b}}^{\perp}+\mathrm{I} \leftrightarrow\right. \\
& \mathrm{II})+\sum_{\left\langle r_{a} r_{b}\right\rangle}\left(\mathcal{K}_{z} S_{\mathrm{I} r_{a}}^{z} S_{\mathrm{II} r_{b}}^{z}+\mathcal{K}_{\perp} \vec{S}_{\mathrm{Ir}_{a}}^{\perp} \cdot \vec{S}_{\mathrm{II} r_{b}}^{\perp}+\mathrm{I} \leftrightarrow \mathrm{II}\right)
\end{aligned}
$$

Severe sign problem for conventional SSE

- Triangles in lattice structure
\rightarrow
- Severe sign problem in z basis for SSE

Basic idea

- Stochastic Series Expansion in basis of total spin eigenstates of two spins at Bravais lattice site r

Vertices and weights

Proof of sign-free nature

Periodicity and bipartiteness implies constraints

- $\mathcal{N}_{p}+\mathcal{N}_{p m}$ must at least be even.
- $\mathcal{N}_{m}+\mathcal{N}_{p m}+\mathcal{N}_{\text {lm }}$ must also be even.
- $\mathcal{N}_{l}+\mathcal{N}_{l m}$ must also be even.
- If $K_{\perp}=0$, we have $\mathcal{N}_{l m}=\mathcal{N}_{p m}=0$.

No sign problem

- If $K_{z}=0$, we have $\mathcal{N}_{l}=\mathcal{N}_{p}=0$.

No sign problem

Illustration: Fully frustrated ladder with $K_{z} \neq 0$

$H_{\text {bilayer }}$ in $d=1$ with $\mathcal{D}_{z}=\mathcal{D}_{\perp}=1, \mathcal{J}_{\perp}=\mathcal{K}_{\perp}=1, \mathcal{J}_{z}=1+K_{z}$, $\mathcal{K}_{z}=1-K_{z}$, as a function of rescaled temperature T / K_{z} with linear size (number of unit-cells) $L=64$.
The inset shows the perfect agreement between QMC data (symbols) and exact diagonalization results (lines) for a system of linear size $L=6$.

Can we access $\operatorname{SU}(2)$ symmetric frustrated bilayers?

Cluster algorithm for classical frustrated Ising models

- Map configuration to dual (bond-energy) representation. "Generalized dimer model"
- Devise a rejection-free worm algorithm to update bond-energies Subtlety: Allowing for excursions outside minimally frustrated subspace with correct weight
- Transform back to spins

Algorithm for $H_{\text {Ising }}$ on triangular lattice

Algorithm for $H_{\text {Ising }}$ on triangular lattice

Algorithm for $H_{\text {Ising }}$ on triangular lattice

Algorithm for $H_{\text {Ising }}$ on triangular lattice

Algorithm for $H_{\text {Ising }}$

Test against exact enumeration

In power-law three-sublattice ordered phase

In power-law three-sublattice ordered phase

In power-law three-sublattice ordered phase

Acknowledgements

- Collaborators:

Sounak Biswas, R. Geet, S. Pujari, \& Fabien Alet

- Computational resources: DTP TIFR \& DST
- CEFIPRA funding

