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Antiferromagnetism in Mott insulators:

I Antiferromagnetic exchange interactions of magnetic ions in
insulators:
E = J

∑
〈ij〉 Si · Sj J > 0

I When is J>0, large? Difficult (quauntum chemistry) question,
with thumb-rule answer: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)
(exceptions known, e.g. Oles et. al. 2006)

I Sometimes possible to “measure” J: Inelastic neutron scattering
in high field.
e.g. Yb2Ti2O7 Ross et al. PRX 2011



Triangles on my mind: Frustration and spin liquid
behaviour

I Triangles→ frustrated antiferromagnetism

?

+n

−n

Competing interactions frustrate Neel order
I ‘Quenching’ of exchange allows new physics to take

center-stage: Spin liquids
I Macroscopic degeneracy of classical minimum energy

configurations.
I At intermediate Tf < T < JS2, spin correlations reflect this

macroscopic degeneracy:
No Bragg peaks in structure factor→ correlated liquid state



Frustration and entropic interactions

I Frustrated magnets: Large degeneracy of minimum energy
configurations

I At T � J: system samples minimally frustrated subspace
(Or falls out of equilibrium...)

I Fluctuations generate entropic interactions



Order by disorder:

I Low temperature physics dominated by entropic interactions
I Characteristic signatures in structure factor
I More dramatic cases: Order-by-thermal/quantum disorder



Sign problem in Quantum Monte Carlo

I Z =
∑
C W(C)

I In classical stat. mech.
W ∝ exp(−E/kBT) > 0

I For quantum systems Z = Tr(e−H/kBT)

Berry phase effects: W need not be positive
→ Exponentially deteriorating error bars



Sign problem and frustration

I Hamiltonian written as sum over links: H =
∑

l Hl

I Z = Tr[exp(−H/T)] =
∑
α0
〈α0| exp(−H/T)|α0〉

I High-temp expansion:
Z =∑∞

n=0
1

n!Tn

∑
Sn
〈α0|(−Hn)|αn−1〉〈αn−1|(−Hn−1)|αn−2〉 . . . 〈α1|(−H1)|α0〉

Stochastic series expansion (SSE): Sample sum over
operator-strings Sn of length n with weight above.
(Sandvik 1991)

I Every J > 0→ minus sign



Periodicity, closed-loops and the overall sign

I Overall sign insensitive to |α〉 → eiγ(α)|α〉
no quick fix...

I Diagonal matrix elements can always be shifted to make sign
positive

I Off-diagonal “hops” control sign
I Constrained by periodicity in τ and lattice structure



(Sign) Problems and “Solutions”...

I Notorious problems:
H =

∑
〈rr′〉

~Sr ·~Sr′ on Kagome, triangular lattices
d = 2 square lattice Hubbard model away from half-filling

I Some “solutions”:

1. Looking under the (Ising) streetlamp: Frustrated exchange
couplings only involving one component of spins

2. Clever change of simulation basis...?
3. Finessing the problem: Effective field theory/Hamiltonian

description of low-energy physics can be numerically
tractable

4. Identifying symmetries that cancel -ve signs in pairs



Very difficult even if sign-free!

I Quantum and thermal fluctuations determine nature of low
temperature phase & excitations

I Computational scheme needs to be ergodic within
macroscopically degenerate minimally frustrated subspace

I Also needs to capture thermal fluctuations out of minimally
frustrated subspace



Ideas that help: Clusters, worms, and loops.

I Cluster constructions (Wolff, Swendsen & Wang) identify and
update large regions that “want to” move together
(Accurately capture the physics of large correlation lengths
associated with ferromagnetic criticality)

I Worm constructions (Evertz & Wiese; Prokofev & Svistunov)
identify a one-dimensional cascade of moves that take system
out of physical (constrained) configuration space
(When worm closes on itself, system returns to physical
subspace, but with large changes in configuration)

I Dual (loop) representations Bond-variables often more
convenient (Hitchcock, Sorensen, Alet . . . )



Issues

I Key challenge for clusters and worms:
Are clusters rejected with significant probability?
Do worms/clusters reflect underlying physics?

I Composition of clusters should reflect long-wavelength
correlations of the system...
Algorithm needs to “know” of the physics of geometric
frustration?



Example of sign-free but challenging models

I Ising models of quantum frustration (Moessner-Sondhi 2000)
Triangular lattice Ising antiferromagnet in a transverse field
HTFIM = J

∑
〈ij〉 σ

z
iσ

z
j − Γ

∑
i σ

x
i + . . .

I Quantum cluster algorithm available in SSE representation for
unfrustrated quantum Ising models
(Sandvik 2003)



Challenge: Low but not zero temperatures

I Classical frustrated Ising models:
Thermal fluctuations need to be captured in efficient way
Standard (Wolff-inspired) classical cluster constructions
accurately reflect long-wavelength physics of ferromagnetic
correlations, but not of frustration
Coddington & Han 1994, Zhang and Yang 1994

I Frustrated transverse field Ising models
Quantum cluster algorithm reduces to variant of
Swendsen-Wang clusters in Γ = 0 limit→ frustrated Jij again
cause problem at low temp.
Need to “teach” cluster algorithms structure of minimally
frustrated landscape(?)



Difficult even in classical case

I Dual worm construction (Wang,Sterck & Melko 2012)
Uses worms to update dual variables (a la
Hitchcock,Sorenson,Alet 2004)

I Works when T = 0 limit is dual to non-interacting dimers
I Involves rejection of significant fraction of worms



Our recent progress

I Quantum cluster construction for frustrated TFIM
(Sounak Biswas, R. Geet, & KD, unpublished)

I Stochastic Series Expansion Quantum Monte Carlo in basis of
total spin eigenstates of clusters of spins
(F. Alet, KD, & S. Pujari, unpublished)

I Cluster algorithm for frustrated two-dimensional HIsing with up to
third neighbour interactions
(KD & R. Geet, unpublished)



Ingredients

I Cluster constructions
I (Dual) “loop-like” (dimer) representations
I Directed worm constructions



Quantum cluster algorithm for frustrated TFIM

I Example: Transverse field Ising antiferromagnet on triangular
lattice (also with further neighbour (J2, J3) couplings...)

I Interesting physics questions
Thermodynamic signature of two-step melting of three-sublattice
order
Transition from plaquette to columnar three-sublattice order
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Columnar vs Plaquette type orders

Ψ = |Ψ|eiθ

θ = 2πm/6: Columnar three-sublattice order (m = 0, 1, 2 . . . 6)
θ = (2m + 1)π/6: Plaquette three-sublattice order (m = 0, 1, 2 . . . 6)
In ordered state: θ pinned to these values
Columnar phase is ferrimagnetic m ∝ cos(3θ)
In power-law phase: θ has gaussian fluctuations with no pinning



Physics summary

T

Γ

Three−sublattice

order

Paramagnet

power−law

(Isakov & Moessner 2003) for J2 = 0
(D. P. Landau 1985) for J2 ferromagnetic



Conventional quantum cluster algorithm

HTFIM =
∑

link Hlink +
∑

sites Hsites

trick: Hsite = −Γσx
site − Γ1site



Conventional quantum cluster algorithm
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: Also add or remove diagonal operators to change length of operator
string



Loss of ergodicity in conventional approach
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Improvement achieved:
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Clean signature of ferrimagnetic phase
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Pinpointing transition to ferrimagnetic phase
algorithmically
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Improvement achieved:
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Improvement achieved:
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Improvement achieved:
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Improvement achieved:
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How: Our approach

HTFIM =
∑

∆ H∆ +
∑

link Hlink +
∑

sites Hsites

H∆: Triangle decomposition of all antiferromagnetic couplings
HLink: Bond decomposition of all ferromagnetic couplings
Hsites: site decomposition of transverse field term



Quantum-cluster construction for frustrated TFIM
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Quantum-cluster construction for frustrated TFIM
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Physics: Divergent ferromagnetic susceptibility of
antiferromagnet

Γ = 0.8, J1 = 1.0, J2 = 0.0
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Why does it work?
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Why does it work?
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Why does it work?
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Why does it work?
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Solution of sign problem for frustrated bilayer magnets

I ~SIr and ~SIIr located on the two layers at sites r of a bipartite
Bravais lattice in any spatial dimension

SI SI

SII
SII

J+K

J+K

J−K

J−K

D D



General frustrated bilayer Hamiltonian

Hbilayer =
∑

r DzSz
IrS

z
IIr +D⊥~S⊥Ir ·~S⊥IIr +

∑
〈rarb〉(JzSz

Ira
Sz

Irb
+J⊥~S⊥Ira

·~S⊥Irb
+ I↔

II) +
∑
〈rarb〉(KzSz

Ira
Sz

IIrb
+K⊥~S⊥Ira

·~S⊥IIrb
+ I↔ II)



Severe sign problem for conventional SSE

I Triangles in lattice structure
→

I Severe sign problem in z basis for SSE



Basic idea

I Stochastic Series Expansion in basis of total spin eigenstates of
two spins at Bravais lattice site r



Vertices and weights
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Proof of sign-free nature

Periodicity and bipartiteness implies constraints
I Np +Npm must at least be even.
I Nm +Npm +Nlm must also be even.
I Nl +Nlm must also be even.
I If K⊥ = 0, we have Nlm = Npm = 0.

No sign problem
I If Kz = 0, we have Nl = Np = 0.

No sign problem



Illustration: Fully frustrated ladder with Kz 6= 0
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Can we access SU(2) symmetric frustrated bilayers?
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Cluster algorithm for classical frustrated Ising models

I Map configuration to dual (bond-energy) representation.
“Generalized dimer model”

I Devise a rejection-free worm algorithm to update bond-energies
Subtlety: Allowing for excursions outside minimally frustrated
subspace with correct weight

I Transform back to spins



Algorithm for HIsing on triangular lattice

Pcurrent

Star
t =

 O old

S1

S
0

S2
S

3

S4

S
5

S6S7S8S9

S
1
0

S11

P
current

(Prob : 1/3)

Star
t =

 O

Pcurrent

(Prob : 1/3)

S1
S

0
S2

S
3

S4

S
5

S6S7S8S9

S
1
0

S11

 P current
(Prob : 1/3)

  o
ld



Algorithm for HIsing on triangular lattice

Bounce
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Algorithm for HIsing on triangular lattice
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Algorithm for HIsing on triangular lattice
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Test against exact enumeration
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In power-law three-sublattice ordered phase
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In power-law three-sublattice ordered phase
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In power-law three-sublattice ordered phase
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