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Antiferromagnetism in Mott insulators:

» Antiferromagnetic exchange interactions of magnetic ions in
insulators:
E=JY ;S-S J>0

» When is J>0, large? Difficult (quauntum chemistry) question,
with thumb-rule answer: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)
(exceptions known, e.g. Oles et. al. 2006)

» Sometimes possible to “measure” J: Inelastic neutron scattering
in high field.
e.g. Yb,Ti,O; Ross et al. PRX 2011



Triangles on my mind: Frustration and spin liquid
behaviour

» Triangles — frustrated antiferromagnetism
+n

/\

-n ?
Competing interactions frustrate Neel order
» ‘Quenching’ of exchange allows new physics to take
center-stage: Spin liquids
» Macroscopic degeneracy of classical minimum energy
configurations.

» Atintermediate 7y < T < JS?, spin correlations reflect this
macroscopic degeneracy:
No Bragg peaks in structure factor — correlated liquid state



Frustration and entropic interactions

» Frustrated magnets: Large degeneracy of minimum energy
configurations

» At T <« J: system samples minimally frustrated subspace
(Or falls out of equilibrium...)

» Fluctuations generate entropic interactions



Order by disorder:

» Low temperature physics dominated by entropic interactions
» Characteristic signatures in structure factor
» More dramatic cases: Order-by-thermal/quantum disorder



Sign problem in Quantum Monte Carlo

> Z=3,W(C)

> In classical stat. mech.
W o exp(—E/kgT) > 0

» For quantum systems Z = Tr(eH/%sT)
Berry phase effects: W need not be positive
— Exponentially deteriorating error bars



Sign problem and frustration

» Hamiltonian written as sum over links: H = ) H;
> Z = Trlexp(~H/T)] = Y, (0| exp(~H/T)|ax)
» High-temp expansion:

Z —=

Sty i 2os, (@0l (—Ha) | n—1) (@1 [(—=Hu—1)|@n—2) . .. (| (=H1)| o)
Stochastic series expansion (SSE): Sample sum over
operator-strings S, of length n with weight above.

(Sandvik 1991)

» Every J > 0 — minus sign

o



Periodicity, closed-loops and the overall sign

» Overall sign insensitive to |a) — ¢7(%)|a)
no quick fix...

» Diagonal matrix elements can always be shifted to make sign
positive

» Off-diagonal “hops” control sign

» Constrained by periodicity in 7 and lattice structure



(Sign) Problems and “Solutions”...

» Notorious problems:
H=1Y .5 S~ onKagome, triangular lattices
d = 2 square lattice Hubbard model away from half-filling

» Some “solutions”:

1. Looking under the (Ising) streetlamp: Frustrated exchange
couplings only involving one component of spins

2. Clever change of simulation basis...?

3. Finessing the problem: Effective field theory/Hamiltonian
description of low-energy physics can be numerically
tractable

4. Identifying symmetries that cancel -ve signs in pairs



Very difficult even if sign-free!

» Quantum and thermal fluctuations determine nature of low
temperature phase & excitations

» Computational scheme needs to be ergodic within
macroscopically degenerate minimally frustrated subspace

» Also needs to capture thermal fluctuations out of minimally
frustrated subspace



ldeas that help: Clusters, worms, and loops.

» Cluster constructions (Wolff, Swendsen & Wang) identify and
update large regions that “want to” move together
(Accurately capture the physics of large correlation lengths
associated with ferromagnetic criticality)

» Worm constructions (Evertz & Wiese; Prokofev & Svistunov)
identify a one-dimensional cascade of moves that take system
out of physical (constrained) configuration space
(When worm closes on itself, system returns to physical
subspace, but with large changes in configuration)

» Dual (loop) representations Bond-variables often more
convenient (Hitchcock, Sorensen, Alet .. .)



Issues

» Key challenge for clusters and worms:
Are clusters rejected with significant probability?
Do worms/clusters reflect underlying physics?

» Composition of clusters should reflect long-wavelength
correlations of the system...
Algorithm needs to “know” of the physics of geometric
frustration?



Example of sign-free but challenging models

» Ising models of quantum frustration (Moessner-Sondhi 2000)
Triangular lattice Ising antiferromagnet in a transverse field
Hrpv = JZ@.) J;f"'crf —I'Y,of +...

» Quantum cluster algorithm available in SSE representation for
unfrustrated quantum Ising models
(Sandvik 2003)



Challenge: Low but not zero temperatures

» Classical frustrated Ising models:
Thermal fluctuations need to be captured in efficient way
Standard (Wolff-inspired) classical cluster constructions
accurately reflect long-wavelength physics of ferromagnetic
correlations, but not of frustration
Coddington & Han 1994, Zhang and Yang 1994

» Frustrated transverse field Ising models
Quantum cluster algorithm reduces to variant of
Swendsen-Wang clusters in I = 0 limit — frustrated J;; again
cause problem at low temp.
Need to “teach” cluster algorithms structure of minimally
frustrated landscape(?)



Difficult even in classical case

» Dual worm construction (Wang,Sterck & Melko 2012)
Uses worms to update dual variables (a la
Hitchcock,Sorenson,Alet 2004)

» Works when T = 0 limit is dual to non-interacting dimers

» Involves rejection of significant fraction of worms



Our recent progress

» Quantum cluster construction for frustrated TFIM
(Sounak Biswas, R. Geet, & KD, unpublished)

» Stochastic Series Expansion Quantum Monte Carlo in basis of
total spin eigenstates of clusters of spins
(F. Alet, KD, & S. Pujari, unpublished)

» Cluster algorithm for frustrated two-dimensional Hy,, With up to

third neighbour interactions
(KD & R. Geet, unpublished)



Ingredients

» Cluster constructions
> (Dual) “loop-like” (dimer) representations
» Directed worm constructions



Quantum cluster algorithm for frustrated TFIM

» Example: Transverse field Ising antiferromagnet on triangular
lattice (also with further neighbour (J>, J3) couplings...)

» Interesting physics questions
Thermodynamic signature of two-step melting of three-sublattice
order
Transition from plaquette to columnar three-sublattice order



Order parameter
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Columnar vs Plaquette type orders

U = |Ul|elf

0 = 27m/6: Columnar three-sublattice order (m = 0,1,2...6)

0 = (2m+ 1)m/6: Plaquette three-sublattice order (m = 0,1,2...6)
In ordered state: ¢ pinned to these values

Columnar phase is ferrimagnetic m  cos(36)

In power-law phase: 6 has gaussian fluctuations with no pinning



Physics summary

T
Paramagnet

power—law

Three—sublattice
order

(Isakov & Moessner 2003) for J, =0
(D. P. Landau 1985) for J, ferromagnetic



Conventional quantum cluster algorithm

Hrem = Y ik Hiink 4 D ges Hsites
trick: Hge = —T'o% . — Il

site



Conventional quantum cluster algorithm
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Loss of ergodicity in conventional approach
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Improvement achieved:
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Clean signature of ferrimagnetic phase
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Pinpointing transition to ferrimagnetic phase
algorithmically
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Improvement achieved:

L =48,T=08,T =0.1,J; = 1.0, J, = 0.0
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Improvement achieved:

L=48T=08T=01,J; =1.0,J = 0.0
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Improvement achieved:

L=72T=08T=01,J; =1.0,J =00
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Improvement achieved:
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How: Our approach

Hremt = D a HA + D j Hiink + D ies Hlsites

Hn: Triangle decomposition of all antiferromagnetic couplings
Hyin: Bond decomposition of all ferromagnetic couplings
Hges: site decomposition of transverse field term



Quantum-cluster construction for frustrated TFIM
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Quantum-cluster construction for frustrated TFIM
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Physics: Divergent ferromagnetic susceptibility of

antiferromagnet
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Why does it work?
L=48T=08"T=01,J,=10J,=00
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Why does it work?
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Why does it work?
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Why does it work?
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Solution of sign problem for frustrated bilayer magnets

» S and Sy, located on the two layers at sites r of a bipartite
Bravais lattice in any spatial dimension

J+K




General frustrated bilayer Hamiltonian

Hbilayer = Zr DZSIZrS%Ir + Dls?; : S:IJl_r + Z (rarp) (\7ZS%ru S%rb + jigf_n, ! S:IJ;[, +I A
D)+ 324,y (oS5, iy, + K185, Sy, +10 1D



Severe sign problem for conventional SSE

» Triangles in lattice structure
_>

» Severe sign problem in z basis for SSE



Basic idea

» Stochastic Series Expansion in basis of total spin eigenstates of
two spins at Bravais lattice site r



Vertices and weights
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Proof of sign-free nature

Periodicity and bipartiteness implies constraints
> N, + N, must at least be even.
> N, + Npw + Ny must also be even.
» N+ N, must also be even.
» If K, =0, we have N}, =N, =0.
No sign problem
» If K, =0, we have N; = N, = 0.
No sign problem



lllustration: Fully frustrated ladder with K,
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size (number of unit-cells) L = 64.

The inset shows the perfect agreement between QMC data (symbols)
and exact diagonalization results (lines) for a system of linear size

L=6.



Can we access SU(2) symmetric frustrated bilayers?
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Cluster algorithm for classical frustrated Ising models

» Map configuration to dual (bond-energy) representation.
“Generalized dimer model”

» Devise a rejection-free worm algorithm to update bond-energies
Subtlety: Allowing for excursions outside minimally frustrated
subspace with correct weight

» Transform back to spins



Algorithm for Hi,e 0N triangular lattice
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Algorithm for Hi,e 0N triangular lattice
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Algorithm for Hi,e 0N triangular lattice
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Algorithm for Hi,e 0N triangular lattice

current



Algorithm for Higing
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Test against exact enumeration
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In power-law three-sublattice ordered phase
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In power-law three-sublattice ordered phase
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In power-law three-sublattice ordered phase
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