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Antiferromagnetism in Mott insulators:

I Antiferromagnetic exchange interactions of magnetic ions in
insulators:
E = J

∑
〈ij〉 Si · Sj J > 0

I When is J>0, large? Difficult (quauntum chemistry) question,
with thumb-rule answer: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)
(exceptions known, e.g. Oles et. al. 2006)

I Sometimes possible to “measure” J: Inelastic neutron scattering
in high field.
e.g. Yb2Ti2O7 Ross et al. PRX 2011



Triangles on my mind: Frustration and spin liquid
behaviour

I Triangles→ frustrated antiferromagnetism

?

+n

−n

Competing interactions frustrate Neel order
I ‘Quenching’ of exchange allows new physics to take

center-stage: Spin liquid regime Tf � T � JS2

I Macroscopic degeneracy of classical minimum energy
configurations.

I In spin liquid regime, spin correlations reflect this macroscopic
degeneracy:
No Bragg peaks in structure factor→ correlated liquid state

I Physics of freezing at Tf : Classical order by disorder effects,
subleading terms in energy, quantum effects ∼ JS



T = 0: Quantum mechanical description of spin-liquids

I Resonating valence-bond (singlet) “soup”
(Fazekas and Anderson 74)
Each S = 1/2 spin paired into singlet with another—Partners
swapped freely by quantum fluctuations

Ψ =
∑

pairings

F ((ri rj), (rk , rl) . . . )
∏

(| ↑i↓j〉 − | ↓i↑j〉) . . .



Projective constructions in specific contexts:

I Representing S = 1/2 by fermionic spinons:
~S =

∑
α=↑,↓ f †α~σαβ fβ

with projection:
∑
α=↑,↓ f †αfα = 1

I Projected BCS superconductor of spinons for cuprate Mott
insulators (Anderson 87)
(but experiments see AF order...)

I Projected Fermi-sea of spinons for (organic) triangular lattice
magnets (Motrunich 2005; S. S. Lee & P. A. Lee 2005)
(in broad agreement with experiment!)



Sign structure

I For unfrustrated couplings on bipartite lattices
Sign structure is simple (Marshall’s sign rule):

∑
P

F ((rA1rBP(1)), (rA2 , rBP(2)) . . . )
∏

(| ↑A1↓BP(1)〉 − | ↓A1↑BP(1)〉) . . .

with F positive
I Satisfied by projected Fermi sea on bipartite lattices
I Non-bipartite lattices: No simple sign structure.



Variational work

I Use factorizable F for square lattice antiferromagnet:

F =
∏

f (~rA1 −~rBP(1))f (~rA2 −~rBP(2))

I Long-range power-law tail in f → antiferromagnetism (m2 > 0)
I Short-range f → short-range spin correlators (spin-liquid)
I Energy 〈Hsq〉 = 〈

∑
〈ij〉
~Si · ~Sj〉 depends only weakly on m2

I “small” “deformations” of Hsq in spin-liquid phase(?)
Liang, Doucot, Anderson (88)



The simplest (bipartite) RVB wavefunction: A surprise

I f = 1 for nearest-neighbour bonds, 0 otherwise
|Ψ〉 =

∑
D |D〉

Each term↔ valid dimer cover D of bipartite lattice
Square lattice case re-studied recently (Albuquerque & Alet
2010; Tang, Sandvik & Henley 2011)

I Spin-spin correlations very short-ranged (ξ ∼ few lattice
spacings (as expected)

I The surprise—Bond-energy correlators decay very slowly:

CEx (~r) ≡ 〈~S~0 ·
~S~0+x̂

~S~r · ~S~r+x̂〉c =
(−1)x

|~r |α

with α ≈ 1.20.
and similarly for CEy



Our goal: Understand this better

I Does the nnRVB state describe a critical system on the verge of
valence-bond solid order?

I Can we quantitatively understand the power-law behaviour
energy correlators?

I Is this special to the nnRVB state?
Effect of adding longer-range valence bonds to the
wavefunction?



Mapping to loop gas

Dimer in D

Dimer in D’

Doubled edge

....Part of nontrivial loop

....

Different terms not orthogonal 〈D′ |D〉 = 〈D|D′〉 = (2)nd (2)nl

Implies 〈Ψ|Ψ〉 =
∑
L wloop(L) with wloop(L) = (2)nd (L)(4)nl (L)

(Sutherland 88)



Physical observables in the loop gas language

I Basic point: Action of PAB = 1
4 − ~SA · ~SB

I Gives back state with amplitude 1 if 〈AB〉 has singlet on it
I If no singlet on 〈AB〉: Forms 〈AB〉 singlet and reconnects

partners, but with amplitude 1/2
I Use to show:

I 〈~S~0 · ~S~r 〉 ∼ Prob(l[~0] = l[~r ])
I

CEx (~r) ∼
Prob(l[~0] = l[~0 + x̂ ] & l[~r ] = l[~r + x̂ ])− Prob(l[~0] = l[x̂ ])Prob(l[~r ] = l[~r + x̂ ])

(dominant contribution at large |~r |)

I Short-range 〈~S~0 · ~S~r 〉 → Short-loop phase of loop model
I If loops are short, why is CEx a slow power-law?



The key point: Correlations between loops

I Loop model is at full-packing
I Full packing constraint apparently introduces very strong

correlations between loops
I Need to understand these correlations



Understanding correlations: Generalize nnRVB state
to SU(g)

|Ψ(g)〉 =
∑
D
|D〉g ,where

|D〉g =
∏
e∈D
|Φ0(g)〉e

with

|Φ0(g)〉e =

Sg∑
m=−Sg

(−1)(Sg−m)|Sz
eA

= m,Sz
eB

= −m〉

Singlet generalized to SU(g): A sublattice carries fundamental (g × g
matrices) representation. B-sublattice has complex-conjugate.
Using equivalent spin-Sg language (Sg = g−1

2 )



Understanding correlations: Loop gas at general g

I If g increases, gas likes to have more loops
I So long loops disfavoured (full-packing, hard-core constraints)
I In limit of large g, all loops of minimum size

Doubled edges at full-packing



The g =∞ limit is non-trivial

I Doubled edges at full-packing maps to fully-packed dimer model
I Bipartite dimer models known to have long-range power-law

correlations between dimers due to full-packing and hard-core
constraints

I Basic idea:
Loop gas at g = 2 “inherits” these correlations



Aside: Fully-packed square lattice dimer model

I Hard-core constraint→ Divergence-free “magnetic” field (2d)
I ∆ · B = 0 solved by Bµ = εµν∆νh
I Action for height field

S = πρ

∫
d2r(∇h)2 +

∑
p=4,8,12...

yp

∫
d2r cos(2πph) + . . .

I yp irrelevant for 0 < ρ∗ ≤ 4.
I Power-law correlations for dimers.

Usual dimer model has ρ∗ = 1
2



From g =∞ to finite g: Classical “Schrieffer-Wolff”

I Each non-trivial loop in L → two sequences of doubled-edges
on alternating edges.

I L with nl non-trivial loops and nd doubled edges→ 2nl (L)

different loop configurations made up purely of doubled edges
(≡ dimers)

I L → 2nl (L) dimer configurations Dα (α = 1,2 . . . 2nl (L)).



Classical “Schrieffer-Wolff”: More details

I wloop(g,L) distributed equally among these Dα.
I Each of these 2nl (L) different configurations Dα acquire an

additional weight w(g,L)/2nl (L).
I Resulting wdimer (g,D):

wdimer (g,D) =
∑
L|D

wloop(g,L)

2nl (L)

L|D: all loop configurations L obtained from the overlap of D
with any other fully-packed dimer configuration D′

.
I Energy V (g,D) of a dimer configuration D in this classical

interacting fully-packed dimer model:

V (g,D) = − log (wdimer (g,D))



Classical Schrieffer-Wolff: Cleaner formulation

I

wdimer (g,D) = 〈Ψ(g)|D〉g

I

Zloop = Zdimer =
∑
D

wdimer (g,D)



Cluster expansion for V (g,D)

I Natural decomposition of V (g,D): Sum of n-body potential
energies Vn(Dn) of subconfigurations Dn consisting of n distinct
dimers from D:

V (g,D) =
∑

n

∑
Dn∈D

Vn(Dn)

I Vn determined recursively from wGn
dimer (g,Dn) of Dn in the

interacting dimer model on the finite subgraph Gn(Dn) of the
square lattice

I Calculated from loop model defined on Gn(Dn)
I Subgraph Gn(Dn): 2n vertices covered by dimers in Dn + all

allowed edges between these vertices



Cluster expansion: Details

I Vn obtained recursively

− log
[
wGn

dimer (g,Dn)
]

= Vn(Dn) +
n−1∑
m=1

∑
Dm∈Dn

Vm(Dm)

Dm ∈ Dn: all m-dimer subconfigurations Dm of Dn

and Gm(Dm): corresponding subgraphs of Gn(Dn).
I

V1 ( ) = V1
( )

= − log(g) . (1)

non-interacting dimer model in large-g limit



Leading non-trivial order in g−1

I

V2

( )
= V2

( )
= − log(1 + g−1)

I Classical interacting dimer model with aligning interaction
between parallel dimers on the same plaquette

I Luckily: Well-studied in past numerical work (Alet et al 2006,
Papanikolaou et al 2007)

I Read off results...



Behaviour of classical model

I As V2 increased fro zero, stiffness ρ∗ in height description
increases
Eventually, transition to columnar ordered state
((Alet et al 2006, Papanikolaou et al 2007)

I Transition not relevant for our purposes—V2 small in our case
I Read of magnitude of ρ∗, and prediction for energy energy

correlators



“Operator correspondence”

I Need to know how to transform energy correlator to dimer
variables

I Formal rule:

P̄Ô(D) =
1

wdimer (g,D)

∑
L|D

wloop(g,L)PÔ(L)

2nl (L)
, (2)

PÔ(L) : contribution of L to 〈Ψ(g)|Ô|Ψ(g)〉 in loop-gas language
I For leading long-distance behaviour: Replace energy density by

dimer occupation



Reality check: Set g = 2

Dimer-dimer correlators at V2 = log( 3
2 ) (with attractive sign)

CEx (~r) ≡ 〈~S~0 · ~S~0+x̂
~S~r · ~S~r+x̂〉c =

(−1)x

|~r |α

with α ≈ 1.22!
Compares well with exact numerics finding α ≈ 1.20



Adding further neighbour bonds

I Stick to bipartite valence bonds
g =∞: Bipartite but non-planar dimer model
Power-law dimer correlations not destroyed (Sandvik &
Moessner 2000)

I nnRVB wavefunction represents a point in a critical phase(?)
with variable α
Caveat Emptor: No detailed understanding of dimer interactions
+ longer-range dimers
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