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Antiferromagnetism in Mott insulators:

» Antiferromagnetic exchange interactions of magnetic ions in
insulators:
E:JZ<”>S/-S]' J>0

» When is J>0, large? Difficult (quauntum chemistry) question,
with thumb-rule answer: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)
(exceptions known, e.g. Oles et. al. 2006)

» Sometimes possible to “measure” J: Inelastic neutron scattering
in high field.
e.g. YboTioO7 Ross et al. PRX 2011



Triangles on my mind: Frustration and spin liquid
behaviour

» Triangles — frustrated antiferromagnetism
+n

/\

-n ?
Competing interactions frustrate Neel order
» ‘Quenching’ of exchange allows new physics to take
center-stage: Spin liquid regime T; < T < JS?
» Macroscopic degeneracy of classical minimum energy
configurations.

» In spin liquid regime, spin correlations reflect this macroscopic
degeneracy:
No Bragg peaks in structure factor — correlated liquid state

» Physics of freezing at T;: Classical order by disorder effects,
subleading terms in energy, quantum effects ~ JS



T = 0: Quantum mechanical description of spin-liquids

» Resonating valence-bond (singlet) “soup”
(Fazekas and Anderson 74)
Each S = 1/2 spin paired into singlet with another—Partners

swapped freely by quantum fluctuations

V=" F((rin), (o) O TTOt) = 1 4it) -

pairings



Projective constructions in specific contexts:

» Representing S = 1/2 by fermionic spinons:
S= ZQ:T,¢ fgﬁaﬁfﬁ
with projection: 3= _,  fif, =1

» Projected BCS superconductor of spinons for cuprate Mott
insulators (Anderson 87)
(but experiments see AF order...)

» Projected Fermi-sea of spinons for (organic) triangular lattice
magnets (Motrunich 2005; S. S. Lee & P. A. Lee 2005)
(in broad agreement with experiment!)



Sign structure

» For unfrustrated couplings on bipartite lattices
Sign structure is simple (Marshall’s sign rule):

Z F((rA1 erm))’ (rAza er(g)) R ) H(| TA1¢B7:(1)> - | ¢A1TB7:(1)>) s
P

with F positive
» Satisfied by projected Fermi sea on bipartite lattices
» Non-bipartite lattices: No simple sign structure.



Variational work

v

Use factorizable F for square lattice antiferromagnet:

F = H f(FA1 - FBP(1))f(FA2 o FBP(2))

Long-range power-law tail in f — antiferromagnetism (m? > 0)

v

v

Short-range f — short-range spin correlators (spin-liquid)

v

Energy (Hyq) = (> S; - S;) depends only weakly on m?

v

“small” “deformations” of Hy, in spin-liquid phase(?)
Liang, Doucot, Anderson (88)



The simplest (bipartite) RVB wavefunction: A surprise

» f =1 for nearest-neighbour bonds, 0 otherwise

V) =225 D)

Each term «> valid dimer cover D of bipartite lattice

Square lattice case re-studied recently (Albugquerque & Alet
2010; Tang, Sandvik & Henley 2011)

» Spin-spin correlations very short-ranged (¢ ~ few lattice
spacings (as expected)
» The surprise—Bond-energy correlators decay very slowly:

(~1)"

7l

CEX(F') = <S SO+XS Sr+)?>C =

with a ~ 1.20.
and similarly for Cg,



Our goal: Understand this better

» Does the nnRVB state describe a critical system on the verge of
valence-bond solid order?

» Can we quantitatively understand the power-law behaviour
energy correlators?

» |s this special to the nnRVB state?
Effect of adding longer-range valence bonds to the
wavefunction?



Mapping to loop gas

‘ — — Doubled edge i

(11
. Dimer in D’ ——=
I N
I
‘ ‘ Dimerin D  m—
— ||

Part of nontrivial loop

Different terms not orthogonal (D'|D) = (D|D’) = (2)"(2)"
Implies (W|W) = 3" ; Wioop(£) With Wieep(L£) = (2)"(£) (4)M(£)
(Sutherland 88)



Physical observables in the loop gas language

> Basic point: Action of Pag = + — Sa- S
» Gives back state with amplitude 1 if (AB) has singlet on it
» If no singlet on (AB): Forms (AB) singlet and reconnects
partners, but with amplitude 1,/2

» Use to show:
> (S5 Sp) ~ Prob(/[0] = I[])
Ce(r) ~
Prob(/[0] = /[0 + X] & I[F] = I[F + X]) — Prob(/[0] = I[X])Prob(/[F] = I[F + X])

(dominant contribution at large |r])

» Short-range (S; - S;) — Short-loop phase of loop model
» If loops are short, why is Cg, a slow power-law?



The key point: Correlations between loops

» Loop model is at full-packing

» Full packing constraint apparently introduces very strong
correlations between loops

» Need to understand these correlations



Understanding correlations: Generalize nnRVB state
to SU(Q)

W(g)) = ) ID)g.where
D
D)g = ]I I®o(g)e

ecD
with

Sg
@o(@e = D (-1 M|SE =m, SF, = —m)

m:—Sg

Singlet generalized to SU(g): A sublattice carries fundamental (g x g
matrices) representation. B-sublattice has complex-conjugate.
Using equivalent spin-Sy language (Sy = %)



Understanding correlations: Loop gas at general g

» If g increases, gas likes to have more loops
» So long loops disfavoured (full-packing, hard-core constraints)

» In limit of large g, all loops of minimum size
Doubled edges at full-packing



The g = oo limit is non-trivial

» Doubled edges at full-packing maps to fully-packed dimer model

» Bipartite dimer models known to have long-range power-law
correlations between dimers due to full-packing and hard-core
constraints

» Basic idea:
Loop gas at g = 2 “inherits” these correlations



Aside: Fully-packed square lattice dimer model

v

Hard-core constraint — Divergence-free “magnetic” field (2d)
» A-B=0solvedby B, = ¢""A,h
Action for height field

v

S = / ErvhE+ S / Prcos(2ph) + ...
p=4.812...

v

Yp irrelevant for 0 < p* < 4.

v

Power-law correlations for dimers.
Usual dimer model has p* = }



From g = ~o to finite g: Classical “Schrieffer-Wolff”

» Each non-trivial loop in £ — two sequences of doubled-edges
on alternating edges.

» £ with n; non-trivial loops and ny doubled edges — 2"(£)
different loop configurations made up purely of doubled edges
(= dimers)

» £ — 27(%) dimer configurations D, (a = 1,2...27%(%)),



Classical “Schrieffer-Wolff”: More details

> Wioop(g, L) distributed equally among these D,,.
» Each of these 2™(£) different configurations D,, acquire an
additional weight w(g, £)/2M(4).
» Resulting Wgimer(g, D):
Wi, g, L
Wdimer(g, D) = Z %

£|D

L|D: all loop configurations £ obtained from the overlap of D
with any other fully-packed dimer configuration D'.

» Energy V(g, D) of a dimer configuration D in this classical
interacting fully-packed dimer model:

V(g, D) = —log (Wdimer(ga D))



Classical Schrieffer-Wolff: Cleaner formulation

Waimer(9, D) = (V(9)ID)g

Zioop = Zdimer = Z Woimer(g, D)
D



Cluster expansion for V(g, D)

» Natural decomposition of V(g, D): Sum of n-body potential
energies V(D) of subconfigurations D, consisting of n distinct
dimers from D:

V(g: D)= Y Va(Dn)

n Dp,eD

» V), determined recursively from w3:,..(g, Dn) of Dy in the
interacting dimer model on the finite subgraph G,(D,) of the
square lattice

» Calculated from loop model defined on G,(Dj)
» Subgraph G,(Dp): 2n vertices covered by dimers in D, + all
allowed edges between these vertices



Cluster expansion: Details

» V, obtained recursively

n—1
—log Wd/mer(g, Dn)} = Vn(Dn) + Z Z Vm(Dm)

m=1Dn€Dy

Dm € Dp: all m-dimer subconfigurations Dy, of D,
and Gn(Dm): corresponding subgraphs of G,(Dj).

Vi (=) = Vi (I) = —log(g)

non-interacting dimer model in large-g limit



Leading non-trivial order in g~

Vo (D) = Vo (L)) =—log(1+g7")

v

Classical interacting dimer model with aligning interaction
between parallel dimers on the same plaquette

v

Luckily: Well-studied in past numerical work (Alet et al 2006,
Papanikolaou et al 2007)

v

Read off results...



Behaviour of classical model

» As Vs increased fro zero, stiffness p* in height description
increases

Eventually, transition to columnar ordered state
((Alet et al 2006, Papanikolaou et al 2007)
» Transition not relevant for our purposes—V, small in our case

» Read of magnitude of p*, and prediction for energy energy
correlators



“Operator correspondence”

» Need to know how to transform energy correlator to dimer
variables
» Formal rule:

1 Wloop(gv L)PG(L)

Wdimer(g7 D) L‘,|D 2”’(‘6’) ’

Po(D) = (2)

Pe(L) = contribution of £ to (W(g)|O|W(g)) in loop-gas language
» For leading long-distance behaviour: Replace energy density by
dimer occupation



Reality check: Set g =2

Dimer-dimer correlators at Vo = Iog(g) (with attractive sign)

_ (=1)
CEX(F) = <S S(H_XS Sr+x> = |F|°‘

with o =~ 1.22!
Compares well with exact numerics finding « ~ 1.20



Adding further neighbour bonds

» Stick to bipartite valence bonds
g = oo: Bipartite but non-planar dimer model
Power-law dimer correlations not destroyed (Sandvik &
Moessner 2000)

» nnRVB wavefunction represents a point in a critical phase(?)
with variable «
Caveat Emptor: No detailed understanding of dimer interactions
+ longer-range dimers
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