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Background: Random singlet physics in Si:P
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I Low density of P dopants in Si→ Half-filled “Hubbard model” on
random lattice
Electrical insulator

I At low energies: Physics of S = 1/2 local moments



Random singlet phenomenology of χ(T)
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I
∑

i,j Jij~Si ·~Sj with broad distribution of Jij > 0

I RG: Singlet pairs with broad distribution of binding energies
I N(T): Pairs with binding energy < T
χ(T) ∼ N(T)

T ∼ Tα−1

1 > α(T) > 0 «effective» exponent
Varies slowly with fitting range, depends on concentration of P
(Bhatt & Lee)



Asymptotically exact?

I In d = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
χ(T) =

Γ−2
T
T as T → 0.

(ΓT ≡ log(J/T))
[J: scale of antiferromagnetic exchange]
Multiplicative log shows up as effective exponent α(T) in fits
(Dasgupta & Ma, D. S. Fisher)

I For d > 1, distributions do not broaden under RG
(Bhatt & Lee; Motrunich & Huse)
But random-singlet phenomenology in broad temperature/field
range



Recent interest in random-singlet phenomenology in
d > 1

I Possibility of random-singlet physics in bond disordered VBS
phases proximate to spin liquid states
(Kimchi, Nahum, Senthil 2018)
partially motivated by properties of triangular lattice S=1/2
magnet YbMgGaO4

I Numerical evidence for bond disordered VBS phase in JQ model
(with multispin interactions)
(Liu, Shao, Lin, Guo, Sandvik 2018)



Apparently wide applicability of phenomenology

I Random singlet phenomenology for Cv(H,T) and χ(H,T) (or
M(H,T)) in variety of disordered frustrated magnets
H3LiIr2O6, LiZn2Mo3O8, ZnCu3(OH)6Cl2 and 1T-TaS2

(Kimchi, Sheckleton, McQueen, Lee 2018)
Argument’: When distributions don’t broaden indefinitely, also
get few large local moments→
Curie tail + random-singlet phenomenology



In this talk...

Random-singlet-like susceptibility of diluted SU(2)-symmetric
Majorana spin liquid

I Tractable example of a disordered SU(2)-symmetric Majorana
spin liquid in d = 2
with χ(T) = C

4T + N(ΓT )
4T as T → 0

I N(ΓT) consistent with random-singlet physics
N(ΓT) ∼ Γ−y

T for T∗ � T � J (y nonuniversal)
N(ΓT) ∼ Γ

1/3
T exp(−cΓ

2/3
T ) for T � T∗

N(ΓT) factor gives effective exponent α(T)



Natural interpretation and question

I C
Density of “forever-free” moments
Composite’ large-lengthscale objects

I N(ΓT)

Density of singlet-pairs with binding energies smaller than T

Results raise question:
How literally should we take this interpretation?
Alternate strong-disorder RG approach to go beyond solvable limit?



Source of these results...

Free-fermion physics of bipartite random hopping problem with
vacancy and flux disorder

I χ(T) ∝ κ(T) (compressibility)
N(ΓT)→
integrated DOS for single-particle energies 0 < |ε| < J × 10−ΓT

C →
density of protected zero modes of single-particle problem



Setting: Honeycomb model of Yao & Lee

H = J
∑
〈~r~r′〉λ

τλ~r τ
λ
~r′
~S~r ·~S~r′ −

∑
~r

~B ·~S~r . (1)

I ~τ : “Orbital degrees of freedom that remain dynamical at low
energy

I ~S = ~σ
2 : spin-half moments

I Effective H for S = 1/2 antiferromagnet on decorated
honeycomb lattice
Strong AF exchange within each triangle; multi-spin interactions
between triangles
Each ~Sr: Total spin on each triangle r.
Chirality τ z

r = ±1: Two different doublet states of a triangle r



Majorana representation

I σz
~r = −icx

~rcy
~r

τ z
~r = −ibx

~rby
~r

and cyclic permutations
I cλ~r and bλ~r are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation
(Shastry-Sen, Tsvelik)



Constraint on fermion states

I D~r ≡ −icx
~rcy
~rcz
~rb

x
~rby
~rbz
~r = +1 at each site ~r

Curious fact: D = −1 sector also provides faithful representation
of ~σ and ~τ .
→
No “unphysical” states. Instead: Two copies of physical states at
each site

I In D = +1 sector: σα~r τ
β
~r = icα~r bβ~r

Similar reduction in D = −1 sector



Reduction leads to exact solution

I On bond 〈rr′〉λ (orientation λ = x, y, z) get term:
u〈rr′〉λ(i~cr ·~cr′)

where u〈rr′〉λ = −ibλr bλr′
I Three copies of Kitaev’s non-interacting Majorana model, all

coupled to same static Z2 gauge field



Majorana fermion Hamiltonian

H =
J
2

∑
α=x,y,z

∑
〈~r~r′〉λ

u〈~r~r′〉λ(icα~r cα~r′ + h.c.) + B
∑
~r

icx
~rcy
~r (2)

where ~B = Bẑ.
I Convenient: Canonical fermions f~r = (cx

~r − icy
~r)/2

I Sz
~r = i

2 cx
~rcy
~r = f †~r f~r − 1/2

I Want to compute: mz ≡
∑

r〈S
z
~r〉/2L2 as function of B and obtain

χ(T) = dmz

dB at B = 0



Calculating susceptibility

I Hamiltonian H for f fermions:
Tight-binding model with static Z2 gauge-fields u determining
signs of each hopping matrix element t = u|J|

I χ(T)→ f fermion compressibility κ(T) at µ ≡ B = 0.
I cz Majorana plays no role in susceptibility calculation
I χ(T) = 1

T

∫ +Ω

−Ω
dερtot.(ε)

eε/T

(eε/T +1)2

where ρtot(ε) is full DOS of H



Projection issues?

I In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)

I What happens here?
Again: Only subleading corrections in general.

I For specific boundary conditions: Coefficient of subleading
corrections zero



Flux-binding

I Lieb-Loss heuristics:
Each vacancy binds static π-flux in ground-state sector.
Numerical verification: Gap to other flux sectors
(Kitaev)

I At low temperature, χ dominated by this flux-sector



Features of free-fermion H

I Without flux-attachment: site-diluted tight-binding model for
graphene)

I In any flux sector, ρ(ε) = ρ(−ε)
“Chiral” (bipartite) symmetry: ε→ −ε, ΨB → −ΨB



d = 1 bipartite random-hopping: Dyson form of DOS

I ρ(ε) ∼ 1/[|ε| log3(1/|ε|)]
Defining: N(Γε) = 2

∫ 10−Γε

0 ρ(x)dx ,
dN/dΓε ∼ 1/Γ3

ε with Γε = log10(1/|ε|)
I Controlled strong-disorder RG rederivation:

Eliminate states at cutoff ±Ω→ Ji → J̃i

At cutoff scale Γ ≡ log(1/Ω)

Number of surviving sites: N(Γ) ∼ 1/Γ2

Fraction 1/Γ of ζi ≡ log(Ω/J̃i) have ζi = 0
Distribution of log-couplings becomes infinitely broad at low
energies
→ dN/dΓε ∼ N(Γε)/Γε

I Conversely: 1
N(Γ) × dN/dΓ ∼ 1/Γ→ Distributions broaden as ∼ Γ

(Motrunich, KD, Huse)



d = 2: Modified Gade-Wegner scaling

I ρ(E) ∼ 1
|ε| e−b| ln ε|1/x

equivalently: dN(Γε)/dΓε ∼ exp(−bΓ
1/x
ε )

N(Γε) ∼ Γ
1− 1

x
ε e−bΓ1/x

ε

Gade & Wegner prediction: x = 2

I 1
N(Γε)

× dN/dΓε ∼ 1/Γ1−1/x
ε → broad distributions

→ At cutoff scale Γ = log(1/Ω): width ∼ Γ1−1/x

Strong disorder effect: x = 3/2 (Motrunich, KD, Huse)
(field-theory confirmation: Mudry, Ryu, Furusaki)

I Distributions broaden as ∼ Γ1/3



What about vacancies?

I Usual Kitaev model with vacancies:
free fermion H has dilution and flux binding
Numerical result: N(Γε) ∼ 1/Γy

ε with y ≈ 0.7 at not-too-low
energies ε
(Willans, Chalker, Moessner)

I surprising violation of modified Gade-Wegner scaling?



Similar surprise in diluted graphene?

Perhaps motivated by Willans-Moessner-Chalker...
I New field-theoretical prediction: Vacancies change asymptotic

universality class
N(Γε) ∼ 1/Γy

ε with y = 0.5
(Ostrovsky, Protopopov, Konig, Gornyi, Mirlin, Skvortsov)

I concurrent numerical evidence: y ∼ 1/2
(Hafner, Schindler, Weik, Mayer, Balakrishnan, Narayanan,
Bera, Evers)



Actually: surprisingly long crossover...
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Revisiting calculation of Willans-Chalker-Moessner
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Same crossover in diluted system with π flux attached to each
vacancy
(Sanyal, KD, Chalker, Moessner, in preparation)



Crossover looks nonuniversal:

I Crossover Γc and intermediate asymptotic exponent y
nonuniversal:
depends on nv and correlations between vacancy positions



But: Zero mode density controls crossover

I Other generic feature of bipartite random hopping H on diluted
lattice:
Nonzero density w of zero modes
Robust to bond-disorder, flux attachment, boundary conditions
**not** associated with lattice imbalance, isolated sites or other
trivial effects

I w(nv), y(nv), Γc(nv) all depend on correlations between vacancy
positions
But y(w) and Γc(w) are universal
(Sanyal, KD, Motrunich ’16)



Zero modes in diluted graphene

0 0.002 0.004 0.006 0.008

1/L

0

0.002

0.004

0.006

0.008
w

L
n

v
= 0.05

n
v
= 0.0625

n
v
= 0.075

n
v
= 0.1

0.04 0.06 0.08 0.1

n
v

0

0.002

0.004

w

(Sanyal, KD, Motrunich ’16)



Kitaev: Zero modes
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(Sanyal, KD, Chalker, Moessner, in preparation)



Zero modes are robust large-lengthscale effect
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Conclusions

I Exactly solvable example of random-singlet physics in SU(2)
symmetric Majorana spin liquid state

I Key ingredients present:
Low-temperature susceptibility controlled by flows to «strong»
disorder
«Large-lengthscale» cooperative effect controls Curie coefficient
associated with emergent free moments
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