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Background: Random singlet physics in Si:P
o—

» Low density of P dopants in Si — Half-filled “Hubbard model” on
random lattice
Electrical insulator

> At low energies: Physics of S = 1/2 local moments



Random singlet phenomenology of x(T)

s s

> 3., J5Si - S; with broad distribution of J; > 0
» RG: Singlet pairs with broad distribution of binding energies
» N(T): Pairs with binding energy < T
X(T) ~ S~ 7o
1 > a(T) > 0 «effective» exponent
Varies slowly with fitting range, depends on concentration of P
(Bhatt & Lee)



Asymptotically exact?

» In d = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
X(T) = as T 0.
(I'r = log(J/T))
[J: scale of antiferromagnetic exchange]
Multiplicative log shows up as effective exponent «(T) in fits
(Dasgupta & Ma, D. S. Fisher)

» For d > 1, distributions do not broaden under RG
(Bhatt & Lee; Motrunich & Huse)
But random-singlet phenomenology in broad temperature/field
range



Recent interest in random-singlet phenomenology in
d>1

» Possibility of random-singlet physics in bond disordered VBS
phases proximate to spin liquid states
(Kimchi, Nahum, Senthil 2018)
partially motivated by properties of triangular lattice S=1/2
magnet YoMgGaO,

» Numerical evidence for bond disordered VBS phase in JQ model
(with multispin interactions)
(Liu, Shao, Lin, Guo, Sandvik 2018)



Apparently wide applicability of phenomenology

» Random singlet phenomenology for C,(H,T) and x(H,T) (or
M(H,T)) in variety of disordered frustrated magnets
H;Lilr,Og, LiZn,Mo5;0g, ZnCus(OH)sCl, and 1T-TaS,

(Kimchi, Sheckleton, McQueen, Lee 2018)

Argument’: When distributions don’t broaden indefinitely, also
get few large local moments —

Curie tail + random-singlet phenomenology



In this talk...

Random-singlet-like susceptibility of diluted SU(2)-symmetric
Majorana spin liquid
» Tractable example of a disordered SU(2)-symmetric Majorana
spin liquidind =2
with x(T) = & + Y1)
» N(T'r) consistent W|th random-singlet physics

asT —0

N(I'7) ~ T for T* << T < J (y nonuniversal)
N(T'y) ~ Ty 15 exp(—cT¥?) for T < T*
N(I'r) factor gives effective exponent a(T)



Natural interpretation and question

> C
Density of “forever-free” moments
Composite’ large-lengthscale objects
> N(T'7)
Density of singlet-pairs with binding energies smaller than T

Results raise question:
How literally should we take this interpretation?
Alternate strong-disorder RG approach to go beyond solvable limit?



Source of these resulis...

Free-fermion physics of bipartite random hopping problem with
vacancy and flux disorder
> x(T) x k(T) (compressibility)
NT7) —
integrated DOS for single-particle energies 0 < |e| < J x 10717
C—
density of protected zero modes of single-particle problem



Setting: Honeycomb model of Yao & Lee

H=T> 727288y —> B-S:. (1)
(FF)x r

» 7: “Orbital degrees of freedom that remain dynamical at low
energy

> § = Z: spin-half moments

» Effective H for S = 1/2 antiferromagnet on decorated
honeycomb lattice
Strong AF exchange within each triangle; multi-spin interactions
between triangles
Each S,: Total spin on each triangle r.
Chirality 72 = +1: Two different doublet states of a triangle r



Majorana representation

> 0p = —icic
7 = —ib;
and cyclic permutations
» ¢ and b2 are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation
(Shastry-Sen, Tsvelik)



Constraint on fermion states

> Dy = —icicLcibibib = +1 at each site 7
Curious fact: D = —1 sector also provides faithful representation
of ¢ and 7.
-
No “unphysical” states. Instead: Two copies of physical states at
each site

> InD = +1 sector: 097 = ic2b
Similar reduction in D = —1 sector



Reduction leads to exact solution

» On bond (rr') X (orientation A = x,y,z) get term:
I/l(,.,-/>)\(l.(?,« : E’r’)
Where u{rr’))\ = —lbi\bf\/

» Three copies of Kitaev’s non-interacting Majorana model, all
coupled to same static Z, gauge field



Majorana fermion Hamiltonian

Z Z gy (icg ey + h.c.) —&—BZlcac’ 2)

where B = B3.
» Convenient: Canonical fermions f; = (c& — ic)/2
> 8= gae=fif—1/2
» Want to compute: m* = " (S%)/2L* as function of B and obtain
X(T) =4 atB =0



Calculating susceptibility

» Hamiltonian H for f fermions:
Tight-binding model with static Z, gauge-fields u determining
signs of each hopping matrix element r = u|J|

> x(T) — f fermion compressibility «(T) at y =B = 0.
» ¢ Majorana plays no role in susceptibility calculation

+Q oe/T
> X(T) = %f—Q dfpa;r.(dm
where pi(€) is full DOS of H



Projection issues?

» In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)

» What happens here?
Again: Only subleading corrections in general.

» For specific boundary conditions: Coefficient of subleading
corrections zero



Flux-binding

» Lieb-Loss heuristics:
Each vacancy binds static 7-flux in ground-state sector.
Numerical verification: Gap to other flux sectors
(Kitaev)

» At low temperature, y dominated by this flux-sector



Features of free-fermion H

» Without flux-attachment: site-diluted tight-binding model for
graphene)

> In any flux sector, p(e) = p(—e¢)
“Chiral” (bipartite) symmetry: ¢ — —¢, Up — —Up



d = 1 bipartite random-hopping: Dyson form of DOS

> ple) ~ 1/[fe| log (1/1eD]
Defining: N(T.) = 2]010 p(x)dx
dN/dT. ~ 1/1“* with T = loglo(l/\ b
» Controlled strong-disorder RG rederivation:
Eliminate states at cutoff £Q — J; — J;
At cutoff scale T = log(1/92)
Number of surviving sites: N(T') ~ 1/T?
Fraction 1/T of ¢; = log(©2/J;) have ¢; = 0
Distribution of log-couplings becomes infinitely broad at low
energies
— dN/dT, ~N( e)/Te
» Conversely: N(F x dN/dl" ~ 1/T' — Distributions broaden as ~ T’
(Motrunich, KD, Huse)



: Modified Gade-Wegner scaling

pE) ~ - e~tnel”
equivalently: dN(T,)/dT. ~ exp(—bT'}/¥)

N(T.) ~ T\ remtr

Gade & Wegner prediction: x =2

Sy X dAN/dTc ~ 1/T " — broad distributions

— At cutoff scale T' = log(1/Q): width ~ "'~/
Strong disorder effect: x = 3/2 (Motrunich, KD, Huse)
(field-theory confirmation: Mudry, Ryu, Furusaki)

Distributions broaden as ~ I'!/3



What about vacancies?

» Usual Kitaev model with vacancies:
free fermion H has dilution and flux binding
Numerical result: N(T'.) ~ 1/T% with y =~ 0.7 at not-too-low
energies ¢
(Willans, Chalker, Moessner)

» surprising violation of modified Gade-Wegner scaling?



Similar surprise in diluted graphene?

Perhaps motivated by Willans-Moessner-Chalker...

» New field-theoretical prediction: Vacancies change asymptotic
universality class
N(T¢) ~ 1/IY withy = 0.5
(Ostrovsky, Protopopov, Konig, Gornyi, Mirlin, Skvortsov)

» concurrent numerical evidence: y ~ 1/2
(Hafner, Schindler, Weik, Mayer, Balakrishnan, Narayanan,
Bera, Evers)



Actually: surprisingly long crossover...

n = 0.05
1072F : e —
® o L=220
C A L=200
S < L=180
T T — N, y=1.56(1)
107°F = New
g C
[
Z L
107°E
—5 | | | | TR I T TR R SN O N N N B R S|
1075 4 8 12 16 20 24
r

(Sanyal, KD, Motrunich ’16)



Revisiting calculation of Willans-Chalker-Moessner
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Same crossover in diluted system with 7 flux attached to each
vacancy

(Sanyal, KD, Chalker, Moessner, in preparation)



Crossover looks nonuniversal:

» Crossover I'. and intermediate asymptotic exponent y
nonuniversal:
depends on n, and correlations between vacancy positions



But: Zero mode density controls crossover

» Other generic feature of bipartite random hopping H on diluted
lattice:
Nonzero density w of zero modes
Robust to bond-disorder, flux attachment, boundary conditions
**not** associated with lattice imbalance, isolated sites or other
trivial effects

> w(n,), y(n,), I'c(n,) all depend on correlations between vacancy
positions
But y(w) and T'.(w) are universal
(Sanyal, KD, Motrunich '16)



Zero modes in diluted graphene
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Kitaev: Zero modes
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(Sanyal, KD, Chalker, Moessner, in preparation)



Zero modes are robust large-lengthscale effect
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(Biswas, Islam, KD, in preparation)



Conclusions

» Exactly solvable example of random-singlet physics in SU(2)
symmetric Majorana spin liquid state

» Key ingredients present:
Low-temperature susceptibility controlled by flows to «strong»
disorder
«Large-lengthscale» cooperative effect controls Curie coefficient
associated with emergent free moments
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