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Geometric frustration and spin-orbit coupling

I Insulators with heavy magnetic ions → spin-orbit coupling
effects matter

I Anisotropic terms in low-energy H for spins
I Anisotropies can amplify effects of geometric frustration



Classical picture

I Isotropic spins on a triangle

I Easy-axis n and triangular motifs...
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Huge degeneracy of minimally frustrated
configurations

��

�
�
�
�

����

S n

S n S n

+ve

+ve −ve

I On planar lattices—parametrization in terms of (generalized)
dimer models



Easy-axis antiferromagnets on Kagome and triangular
lattices
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Three-sublattice order on the triangular lattice
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Ferri vs antiferro order distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



Three-sublattice order on the Kagome lattice
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Again: Ferri vs antiferro distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



In this talk...

I Two well-known ways in which this order melts on heating
Two-step melting (intermediate phase with power-law order for
T ∈ (Tc1,Tc2))
OR
Three-state Potts criticality

I Main message(s) of talk—
I Thermodynamic signature of two-step melting:
χn̂(B) ∼ 1/|B|p(T) with p(T) ∈ ( 2

3 , 0) for T ∈ (Tc1,Tc2).
I Intervening multicritical pointM

Central charge cM ∈ (1, 3/2)
I (speculation: M accessible in “artificial Kagome-ice”

systems...)



Wannier’s triangular lattice Ising antiferromagnet

I HIsing = J
∑
〈ij〉 σ

z
iσ

z
j on the triangular lattice

(Wannier 1950)
I T → 0 limit characterized by power-law correlations:
〈σz

rσ
z
0〉 ∼

cos(Q·r)
r1/2

Incipient order at three-sublattice wavevector Q = (2π/3, 2π/3)

Stephenson (1964)
Power-law spin-liquid in the T → 0 limit



Lattice-gas models for monolayer films on graphite

I Three-sublattice long-range order of noble-gas monolayers on
graphite
Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990)
HJ1J2 = J

∑
〈ij〉 σ

z
iσ

z
j − J1

∑
〈〈ij〉〉 σ

z
iσ

z
j − J2 · · · − B

∑
i σ

z
i

Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Prototypical example of order-by-(quantum) disorder

I HTFIM = J
∑
〈ij〉 σ

z
iσ

z
j − Γ

∑
i σ

x
i on the triangular lattice

Long-range order at three-sublattice wavevector Q
I Ordering of “antiferro” type→ (+,−, 0)

antiferro order provides maximum “room” for quantum
fluctuations
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



S = 1 antiferromagnets with single-ion anisotropy

I HAF = J
∑
〈ij〉
~Si ·~Sj − D

∑
i(Sz

i )
2 on triangular lattice

I Low-energy physics for D� J:
Hb = − J2

D

∑
〈ij〉(b†i bj + h.c.) + J

∑
〈ij〉(ni − 1

2)(nj − 1
2) + . . .

KD & Senthil (06)
I Low-temperature state for D� J: “supersolid” state of hard-core

bosons at half-filling.
Auerbach & Murthy (97), Heidarian, Melko, Wessel...(05)

I Implies: Three-sublattice order in Sz + “ferro-nematic” order in
~S2
⊥

(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Is three-sublattice ordering of Sz in HAF ferri or
antiferro?

I Natural expectation: Quantum fluctuations induce antiferro order
(like in the transverse field Ising model)
→
Prediction: Ordering will be antiferro three-sublattice order
e. g. Melko et. al. (2005)



QMC evidence: Ferri three-sublattice order of Sz
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Ising models for “Artificial Kagome-ice”

I HKagome = J
∑
〈ij〉 σ

z
iσ

z
j − J1

∑
〈〈ij〉〉 σ

z
iσ

z
j − J2 . . .

I Only nearest-neighbour couplings→ classical short-range spin
liquid (Kano & Naya 1950)

I Second-neighbour ferromag. couplings destabilize spin liquid
(Wolf & Schotte 88)
Ferrimagnetic three-sublattice order at low T.

I “Artificial Kagome-ice: Moments Mi = σz
i ni

(ni at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern et. al. (2011)



Symmetry breaking transitions: Generalities

I Symmetry-breaking state characterized by long-range
correlations of “order-parameter” Ô

I phenomenological Landau free energy density F [Ô]

Expanding F in powers of Ô (symmetry allowed terms)
I Neglecting derivatives (fluctuations):

phase transition→ change in minimum of F



Fluctuation effects at continuous transitions:

I More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F

I In most cases: Corrections to mean-field exponents
I In rare cases: Fluctuation-induced first-order behaviour



Symmetries are (usually) decisive:

I Transformation properties of Ô determine nature of continuous
transition



Landau-theory for melting of three-sublattice order

I F = K|∇ψ|2 + r|ψ|2 + u|ψ|4 + λ6(ψ6 + ψ∗6) + . . .

Connection to physics of six-state clock models
Z =

∑
{pi} exp[

∑
〈ij〉 V( 2π

6 (pi − pj))]

Each pi = 0, 1, 2, ...5
V(x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

Cardy (1980)



Coarse-grained lattice model

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) .

where 〈~r~r′〉 are nearest-neighbour links of our coarse-grained
triangular lattice, and higher harmonics J(p) (p = 2, 3) left out of Hxy

displayed here



Melting scenarios for three-sublattice order

I Analysis (Cardy 1980) of generalized six-state clock models
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition to ferromagnetic phase followed by loss
of ferromagnetism via Ising transition at higher temperature..
OR
First-order transition (always possible!)



Melting of three-sublattice order in various examples

I Antiferro three-sublattice order in transverse field Ising model
Two-step melting
Isakov & Moessner (2001)

I Ferrimagn. three-sublattice order in lattice gas models of
monolayer films
Two-step melting
D.P. Landau (83)

I Ferri three-sublattice order in Kagome Ising antiferromagnets
With second-neighbour ferro couplings: Two step melting
Wolf & Schotte (88)
With long-range dipolar couplings: Three-state Potts transition
Moller & Moessner (09), Chern, Mellado, Tchernyshyov (11)



Nature of melting transition in S = 1 HAF?

I Prediction of Boninsegni & Prokofiev (2005)
Three-state Potts transition
Prediction based on argument about relative energies of
different kinds of domain walls
hard to get right at quantitative level



Our answer from large-scale QMC simulations

KD & Heidarian ((unpublished))



Detecting power-law order?

Need scattering experiment to detect power-law version of Bragg
peaks
Or
Real-space data by scanning some local probe + Lots of
image-processing



Alternate thermodynamic signature(!)

I Singular thermodynamic susceptibility to uniform easy-axis field
B:
χu(B) ∼ 1

|B|p(T)

I p(T) = 4−18η(T)
4−9η(T) for η(T) ∈ ( 1

9 ,
2
9 )

So p(T) varies from 1/3 to 0 as T increases from Tc1 to just
below Tc2

(KD arXiv:1507.08393)



Review: picture for power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)
potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < Tc1

I In power-law three-sublattice ordered state for T ∈ (Tc1,Tc2), λ6

does not pin phase θ
θ spread uniformly (0, 2π)

I But vortices continue to be irrelevant
Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (Tc1,Tc2)



Review: more formal RG description

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (T1,T2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T)

with η(T) = g(T)

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument for result—I

I Landau theory admits term λ3m(ψ3 + ψ∗3)

m is uniform magnetization mode
I Formally irrelevant along fixed line FKT

→
Physics of two-step melting unaffected—m “goes for a ride...”

But ...



General argument for result—II

I m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T)

I χL ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I χL = χreg + bL2−9η(T) for η(T) ∈ ( 1
9 ,

2
9 )

Diverges with system size at B = 0



General argument for result—III

I Uniform field B > 0→ additional term h3 cos(3θ) in FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2

I Implies finite correlation length ξ(B) ∼ |B|−
2

4−9η

I χu(B) ∼ |B|−
4−18η
4−9η for η(T) ∈ ( 1

9 ,
2
9 )



The proof of the pudding...I

J2 = 0.0
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In power-law ordered phase of HTFIM (Biswas, KD (unpublished))



The proof of the pudding...II

In power-law ordered phase of Hb (KD, Heidarian (unpublished))



More complete coarse-grained description

Heff = Hxy + HIsing − Jθτ
∑
~r

τ~r cos(3θ~r) ,

where HIsing = −JIsing

∑
〈~r~r′〉

τ~rτ~r′ − h
∑
~r

τ~r ,

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) ,

with h ∝ B.
(KD arXiv:1507.08393)



Phase diagram of Heff
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The argument...

I Start with known phase diagrams of Hxy and HIsing and build in
effects of Jθτ

I When τ orders, Hxy sees effective three-fold symmetric
perturbation h3eff cos(3θ~r) with h3eff ∼ 〈τ〉

I When eiθ orders, HIsing sees effective field heffτ~r with
heff ∼ 〈cos(3θ)〉



The multicritical point

I c-theorem argument: 1 ≤ c ≤ 3
2

I To search:
Jxy = h6 = 1.0, Jθτ = 0.25
Parametrize: JIsing = fxyTθ1/Tτ and T = fI fxyTθ1 [with Tθ1 = 1.04
and Tτ = 3.6409]



Multicritical melting
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M
I ] ≈ [1.5570(8), 1.0061(5)]

C2θ [C3θ] rescaled by a factor of 7 [factor of 10]
η3θ = ητ = 0.201(20), ηθ = 0.258(5), and η2θ = 0.353(6).
(KD arXiv:1507.08393)
Any guesses about CFT description?...



Speculation (aka wishful thinking?)

I If relative strength of first/second neighbour exchange tunable
relative to long-range dipolar part in artificial kagome-ice:
Could tune melting to multicritical point...
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