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Background: Bhatt-Lee physics in Si:P
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I Low density of P dopants in Si→ Half-filled “Hubbard model” on
random lattice
Electrical insulator

I At low energies: Physics of S = 1/2 local moments



Low energy spin physics
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I
∑

i,j Jij~Si ·~Sj with broad distribution of Jij

I Singlet pairs with broad distribution of binding energies
I Tχ(T): Pairs with binding energy < T
χ(T) ∼ N(T)

T ∼ 1
Tα with α set by concentration of P

(Bhatt & Lee)



Asymptotically exact?

I In d = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
χ(T) =

Γ−2
T
T as T → 0.

(ΓT ≡ log(J/T) [J: overall scale of antiferromagnetic exchange].)
(Dasgupta & Ma, D. S. Fisher)

I For d > 1, status unclear (strong-disorder RG inconclusive)
(Motrunich & Huse)



In this talk: Diluted SU(2) symmetric Majorana spin
liquid

I Tractable example of a disordered SU(2) symmetric Majorana
spin liquid in d = 2
with χ(T) = C

4T + N(ΓT )
4T as T → 0

I N(ΓT) displays advertised crossover:
N(ΓT) ∼ Γ−y

T for Tcr � T � J
N(ΓT) ∼ Γ

1/3
T exp(−cΓ

2/3
T ) for T � Tcr



Asymptotically exact realization of Bhatt-Lee physics

I Following Bhatt-Lee—
C → Density of free-moments
N(ΓT)→ Density of singlet-pairs with binding energies smaller
than T

Raises (interesting?) question: Alternate Strong-disorder RG
approach to go beyond tractable limit?



Connection to chiral orthogonal universality class

I χ(T) ∝ κ(T) for particle-hole-symmetric canonical free-fermions
with vacancy disorder.
N(Γ)→ integrated DOS for single-particle energies
0 < |ε| < J × 10−Γ (i.e. excluding zero modes)

I Vacancy-induced crossover in DOS in chiral orthogonal
universalitty class
Another example of same crossover: Undoped graphene with
vacancy disorder



Setting: Honeycomb model of Yao & Lee

H = J
∑
〈~r~r′〉λ

τλ~r τ
λ
~r′
~S~r ·~S~r′ −

∑
~r

~B ·~S~r . (1)

I ~τ : “Orbital degrees of freedom that remain dynamical at low
energy

I ~S = ~σ
2 : spin-half moments

I Original motivation: Low-energy effective Hamiltonian for a
frustrated S = 1/2 model on the decorated honeycomb lattice
with multi-spin interactions
Each ~S: Low-energy projection of total spin of three spins.
τ z = ±1: Two different low energy doublets that make up low
energy sector



Majorana representation

I σz
~r = −icx

~rcy
~r

τ z
~r = −ibx

~rby
~r

and cyclic permutations
I cλ~r and bλ~r are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation



Constraint on fermion states

I D~r ≡ −icx
~rcy
~rcz
~rb

x
~rby
~rbz
~r = +1 at each site ~r

Curious fact: D = −1 sector also provides faithful representation
of ~σ and ~τ .
→
No “unphysical” states. Instead: Two copies of physical states at
each site

I In D = +1 sector: σα~r τ
β
~r = icα~r bβ~r

Similar reduction in D = −1 sector



Reduction leads to exact solution

I On bond with orientation λ (λ = x, y, z) 〈rr′〉λ, get term:
u〈rr′〉λ(i~cr ·~cr′)

with u〈rr′〉λ = −ibλr bλr′
I Three copies of Kitaev’s non-interacting Majorana model, all

coupled to same static Z2 gauge field



Majorana fermion Hamiltonian

H =
J
2

∑
α=x,y,z

∑
〈~r~r′〉λ

u〈~r~r′〉λ(icα~r cα~r′ + h.c.) + B
∑
~r

icx
~rcy
~r (2)

where ~B = Bẑ.
I Convenient: Canonical fermions f~r = (cx

~r − icy
~r)/2

I Sz
~r = icx

~rcy
~r = f †~r f~r − 1/2

I Want to compute: mz ≡
∑

r〈S
z
~r〉/2L2 as function of B and obtain

χ(T) = dmz

dB at B = 0



Calculating susceptibility

I Hamiltonian H for f fermions:
Tight-binding model with static Z2 gauge-fields u determining
signs of each hopping matrix element t = u|J|

I χ(T) related to f fermion compressibility κ(T) at
particle-hole-symmetric chemical potential µ ≡ B = 0.

I cz Majorana plays no role in susceptibility calculation
I χ(T) = 1

T

∫
dερtot.(ε)

eε/T

(eε/T +1)2

where ρtot(ε) is full DOS of H



Projection issues?

I In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
Subtle for impurity susceptibility etc
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)
(building on: Willans-Chalker-Moessner,
Baskaran-Mandal-Shankar, Yao-Zhang-Kivelson)

I What happens here?
Again: Only subleading corrections in general.

I For specific boundary conditions: Coefficient of subleading
corrections zero



Dilution

I Remove honeycomb lattice sites at random (modeling
non-magnetic impurities.)

I Global “compensation”: Equal number of vacancies on A and B
sublattices

I Short-distance correlations on impurity ensemble—prevent
disconnecting small clusters



Flux-binding

I Lieb-Loss heuristics:
Each vacancy binds static π-flux in ground-state sector.
Gap to other flux sectors
(Kitaev, Willans-Chalker-Moessner)

I At low temperature, χ dominated by this flux-sector



Choice of geometry

I Semi-open L× L unit cells (2L2 sites in undiluted sample) and
armchair edges (to avoid boundary-induced low-energy modes)

I L chosen even, so loop wrapping around periodic direction has
length zero mod 4.

I To preserve precise connection to dimer enumeration,
antiperiodic boundary conditions



Flux-attachment

I Send flux-strings off to one open edge
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Connection to vacancy-impurities in Graphene

I Without flux-attachment, H is tight-binding model for graphene
with compensated vacancies

I Study numerically with and without flux attachment



Computational details

I Form H2, the square of the tight-binding Hamiltonian H (with
hopping amplitude t = J = 1 between nearest-neighbours), and
work with the (1− p)L2 × (1− p)L2 block (MAB)TMAB where MAB

is the matrix of connectivity between A and B sublattice sites in
the depleted lattice

I Fully multiprecision implementation of the ALGOL routines in
Wilkinson’s handbook to count eigenvalues of (MAB)TMAB below
10−2Γ.

I Results checked at moderate L and moderate Γ against
LAPACK routines.



Computational details—II

I For each sample, computations first done in a coarse-grid of Γ,
then Ntot(Γ) “filled in” iteratively when needed. Final grid spacing
∆(Γ) = 0.5.

I So lowest-nonzero gap 10−Γg in a given sample obtained with
accuracy of ∆(Γg) = 0.5.

I w0, the number of zero modes per unit volume in a given sample
empirically equated to value of Ntot(Γ) after last downward step
in this quantity.

I Our grid extends to Γmax as high as 100 in some cases—stability
in these cases checked by varying precision

I Study N(Γ) = Ntot(Γ)− w0 and w0 for ∼ 4000 samples



Formulary

I ρtot(ε) = ρ(ε) + w0δ(ε)

I N(Γ) = 2
∫ 10−Γ

0 ρ(ε)dε
I Universal asymptotics of chiral-orthogonal universality class
ρ(E) ∼ 1

ε e−b| ln ε|1/x

equivalently:

N(Γ) = aΓ1− 1
x e−bΓ

1
x

(x = 3/2, two free parameters a and b)
(Gade-Wegner, Motrunich-KD-Huse, Mudry-Ryu-Furusaki)

I Analogous d = 1 result (Dyson):

ρ(ε) ∼ 1
ε[log[1/ε]]1+y

equivalently:
N(Γ) = qΓ−y (two free parameters q and y)



Graphene: Zero modes
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Graphene: Zero modes
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Graphene: N(Γ)
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Graphene: N(Γ)
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Graphene: Γ∗gap
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Graphene: Crossover systematics
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Kitaev: Zero modes
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Kitaev: Zero modes
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Kitaev: N(Γ)
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Kitaev: N(Γ)
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Kitaev: Crossover systematics
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Graphene: Lower-bound on zero modes
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Kitaev: Lower-bound on zero modes
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Comments on other work

Evers group (graphene data): 0 < y < 1
(Hafner et. al. 2014)
Mirlin group prediction (for graphene): y = 0.5
(Ostrovsky et. al. 2014)
Willans-Chalker-Moessner (in gapped phase of Kitaev): y = 0.7
Dynamical range too small to see crossover??
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Data analysis

I Fits of N(Γ) attempted to three two-parameter forms: “Gade”,
“Dyson” and “Griffiths” (see formulary on next page to fix
notation)

I For “Gade”, exponent in DOS fixed at our value of 2/3, and
subleading terms dropped in converting DOS prediction to
prediction for N(Γ)

I Fits made to largest-size data, using data with Γ < Γ∗gap, where
Γ∗gap is defined as the most probable value of the lowest non-zero
gap Γg (from peaks in histograms of this quantity)

I Thermodynamic limit of N(Γ) obtained at each Γ < Γgap by
straight line fits in 1/L for three largest sizes.

I Nthermo obtained in this way also fit to the same three alternate
forms, to see if conclusions change: We accept fit parameters
will change, but ask: does the type of best-fit curve change?


