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Background: Bhatt-Lee physics in Si:P
o—

» Low density of P dopants in Si — Half-filled “Hubbard model” on
random lattice
Electrical insulator

> At low energies: Physics of S = 1/2 local moments



Low energy spin physics

s s

> 3., J5Si - S; with broad distribution of J;
» Singlet pairs with broad distribution of binding energies
> Tx(T): Pairs with binding energy < T
X(T) ~ @ ~ -~ with « set by concentration of P
(Bhatt & Lee)



Asymptotically exact?

» Ind = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
x(T) = F;Z as T — 0.
(I'r =1og(J/T) [J: overall scale of antiferromagnetic exchange].)

(Dasgupta & Ma, D. S. Fisher)

» For d > 1, status unclear (strong-disorder RG inconclusive)
(Motrunich & Huse)




In this talk: Diluted SU(2) symmetric Majorana spin
liquid

» Tractable example of a disordered SU(2) symmetric Majorana
spin liquid ind = 2
with x(T) = & + ¥ as 7 — 0
» N(T'r) displays advertised crossover:
N(7) ~T/ forT, < T < J
N(T7) ~ T}/ exp(—cl'3/?) for T < T




Asymptotically exact realization of Bhatt-Lee physics

» Following Bhatt-Lee—
C — Density of free-moments
N(I'r) — Density of singlet-pairs with binding energies smaller
than T

Raises (interesting?) question: Alternate Strong-disorder RG
approach to go beyond tractable limit?



Connection to chiral orthogonal universality class

> x(T) x x(T) for particle-hole-symmetric canonical free-fermions
with vacancy disorder.
N(I') — integrated DOS for single-particle energies
0 < |e| <J x 1071 (i.e. excluding zero modes)

» Vacancy-induced crossover in DOS in chiral orthogonal
universalitty class
Another example of same crossover: Undoped graphene with
vacancy disorder



Setting: Honeycomb model of Yao & Lee

H:JZT,—,/»\T;%/\S:,?-S);/—ZE-S’;. (1)
(FF')A 7

» 7: “Orbital degrees of freedom that remain dynamical at low
energy

» § = Z: spin-half moments

» Original motivation: Low-energy effective Hamiltonian for a
frustrated S = 1/2 model on the decorated honeycomb lattice
with multi-spin interactions
Each S: Low-energy projection of total spin of three spins.
¢ = +1: Two different low energy doublets that make up low
energy sector



Majorana representation

.
> oL = —ickc)
I
R

and cyclic permutations

» ¢ and b2 are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation



Constraint on fermion states

> Dy = —icicLcibibib = +1 at each site 7
Curious fact: D = —1 sector also provides faithful representation
of ¢ and 7.
-
No “unphysical” states. Instead: Two copies of physical states at
each site

> InD = +1 sector: 097 = ic2b
Similar reduction in D = —1 sector



Reduction leads to exact solution

» On bond with orientation A (A = x,y,z) (r')A, get term:
u(rr’))\(igr : 8r’)
W|th u(rr’))\ = —lbi\bf\/

» Three copies of Kitaev’s non-interacting Majorana model, all
coupled to same static Z, gauge field



Majorana fermion Hamiltonian

Z Z gy (icg ey + h.c.) —&—BZlcac’ 2)

where B = B3.
» Convenient: Canonical fermions f; = (c& — ic)/2
> Si=ickel=flfr—1/2
» Want to compute: m* = " (S%)/2L* as function of B and obtain
X(T) =4 at B =0



Calculating susceptibility

» Hamiltonian H for f fermions:
Tight-binding model with static Z, gauge-fields u determining
signs of each hopping matrix element ¢ = u|J|
> x(T) related to f fermion compressibility (7T at
particle-hole-symmetric chemical potential © = B = 0.
» ¢* Majorana plays no role in susceptibility calculation
e/
> X(T) = %fdeptot.(E)ﬁ
where pi(€) is full DOS of H



Projection issues?

» In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
Subtle for impurity susceptibility etc
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)
(building on: Willans-Chalker-Moessner,
Baskaran-Mandal-Shankar, Yao-Zhang-Kivelson)

» What happens here?
Again: Only subleading corrections in general.

» For specific boundary conditions: Coefficient of subleading
corrections zero



Dilution

» Remove honeycomb lattice sites at random (modeling
non-magnetic impurities.)

» Global “compensation”: Equal number of vacancies on A and B
sublattices

» Short-distance correlations on impurity ensemble—prevent
disconnecting small clusters



Flux-binding

> Lieb-Loss heuristics:
Each vacancy binds static 7-flux in ground-state sector.
Gap to other flux sectors
(Kitaev, Willans-Chalker-Moessner)

» At low temperature, y dominated by this flux-sector



Choice of geometry

» Semi-open L x L unit cells (2L sites in undiluted sample) and
armchair edges (to avoid boundary-induced low-energy modes)

» L chosen even, so loop wrapping around periodic direction has
length zero mod 4.

» To preserve precise connection to dimer enumeration,
antiperiodic boundary conditions



Flux-attachment

» Send flux-strings off to one open edge
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Connection to vacancy-impurities in Graphene

» Without flux-attachment, H is tight-binding model for graphene
with compensated vacancies

» Study numerically with and without flux attachment



Computational details

» Form H?, the square of the tight-binding Hamiltonian H (with
hopping amplitude t = J = 1 between nearest-neighbours), and
work with the (1 — p)L? x (1 — p)L? block (Map)" M,z Where Mg
is the matrix of connectivity between A and B sublattice sites in
the depleted lattice

» Fully multiprecision implementation of the ALGOL routines in
Wilkinson’s handbook to count eigenvalues of (M45)" M, below
10721,

» Results checked at moderate L and moderate I" against
LAPACK routines.



Computational details—II

» For each sample, computations first done in a coarse-grid of T,
then Ny, (T') “filled in” iteratively when needed. Final grid spacing
A(T) =0.5.

» So lowest-nonzero gap 107"« in a given sample obtained with
accuracy of A(T';) =0.5.

> wy, the number of zero modes per unit volume in a given sample
empirically equated to value of Ny (T") after last downward step
in this quantity.

» Our grid extends to I';,.x as high as 100 in some cases—stability
in these cases checked by varying precision

> Study N(I') = Niot(T') — wo and wy for ~ 4000 samples



Formulary

> pi(€) = p(e) + wod(e)
» N(I') = 2f0107F p(e)de
» Universal asymptotics of chiral-orthogonal universality class
pE) ~ et
equivalently:
N({) = a4 e=br*
(x = 3/2, two free parameters a and b)
(Gade-Wegner, Motrunich-KD-Huse, Mudry-Ryu-Furusaki)
» Analogous d = 1 result (Dyson):

)~ oglt /™
equivalently:
N(T') = gI'” (two free parameters ¢ and y)



Graphene: Zero modes
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Graphene: Zero modes
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Graphene: N(I')
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Graphene: N(I')
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Graphene: I';,,
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Graphene: Crossover systematics

50 N O Thermodynamic limit data
O Largest size data

30 |

20f

\
HeH

10




Kitaev: Zero modes
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Kitaev: Zero modes
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Kitaev: N(I)
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Kitaev: N(I)
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Kitaev: Crossover systematics
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Graphene: Lower-bound on zero modes
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Kitaev: Lower-bound on zero modes
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Comments on other work

Evers group (graphene data): 0 <y < 1

(Hafner et. al. 2014)

Mirlin group prediction (for graphene): y = 0.5

(Ostrovsky et. al. 2014)

Willans-Chalker-Moessner (in gapped phase of Kitaev): y = 0.7
Dynamical range too small to see crossover??
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Data analysis

» Fits of N(T") attempted to three two-parameter forms: “Gade”,
“Dyson” and “Griffiths” (see formulary on next page to fix
notation)

» For “Gade”, exponent in DOS fixed at our value of 2/3, and
subleading terms dropped in converting DOS prediction to
prediction for N(T")

» Fits made to largest-size data, using data with I' < I';,,, where
',y is defined as the most probable value of the lowest non-zero

gap I', (from peaks in histograms of this quantity)

» Thermodynamic limit of N(I') obtained at each I" < T'y,, by
straight line fits in 1/L for three largest sizes.

> Nuermo Obtained in this way also fit to the same three alternate

forms, to see if conclusions change: We accept fit parameters
will change, but ask: does the type of best-fit curve change?



