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Recap: Local moments in Motterials

I Band-theory of solids→ electron-waves occupying modes
determined by electrostatic potential of nuclear array

I Strong e-e interactions→ Failure of band picture
I Electron particles localized on lattice sites

charge frozen, spin remains dynamical



Recap: Antiferromagnetic exchange



Recap: A Goodenough description

I Without spin-orbit: Isotropic exchange interactions.
E = J

∑
〈ij〉 Si · Sj J > 0

When is J > 0, large?
Are nearest neighbour interactions dominant?
Difficult (quantum chemistry/ab-initio studies) questions
Thumb-rule answers: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)

Complications
I Spin-orbit coupling λ

spin anisotropy terms
I Orbital degeneracy

Interplay between orbital structure and spin physics
e.g. Vanadium spinels (Tsunetsugu & Motome 2003)



Recap: Néel order

I Bipartite lattice and nearest neighbour J > 0
Spins spontaneously pick axis n and 〈~S~r〉 = (−1)~rn
Néel (antiferromagnetic) Order



Geometric Frustration

Triangles on my mind...

?
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−n

I Triangles in nearest-neighbour
connectivity frustrate Néel order

I Geometry induces competition between
leading exchange interactions

Frustration spawns novel states
I Quenching of the leading exchange J

J cannot pick ground state at classical level
I Sub-dominant interactions & quantum fluctuations play major role

Opens the door for variety of novel low temperature states



Frustrated magnets: Plethora of lattices and materials

I Triangular lattice: S = 1 AgNiO2 (Ni2+), S = 1/2 Cs2CuCl4
(Cu2+)...

I Kagome: S = 5/2 Fe jarosite (Fe3+), S = 1/2 Herbertsmithite
ZnCu3(OH)6Cl2 (Cu2+), S = 1 Ni3V2O8 (Ni2+)...

I Pyrochlore, pyrochlore-slapb S = 3/2 SrCr9pGa12−9pO19 Cr3+

(SCGO)...



Single ion anisotropy can be large

I Single ion anisotropy −D(S · n)2can dominate over J

I Pyrochlore spin ice Ho2Ti2O7 (Ho3+, (L + S) = 8)
Easy axes n point outward from center of each tetrahedron
D ∼ 50K, J ∼ 1K
Harris et. al., Phys. Rev. Lett. 79, 2554 (1997)

I Kagome Nd-langasite Nd3Ga5SiO14 (Nd3+, (L + S) = 9/2)
Easy axis perpendicular to lattice plane, J ∼ 2K, D ∼ 10K
Robert et. al., Physica B 2006

I So it makes sense to study leading quantum effects in a J/D
expansion
Not our focus today



Anisotropy amplifies frustration

I Isotropic spins on a triangle

I Easy-axis n and triangular motifs...
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Wannier’s triangular lattice model

I H = J
∑
〈ij〉 Si · Sj − D

∑
i(Sz

i )
2, with D >> J on the triangular

lattice.
I To leading order Sz

i = ±S→ σ = ±1
H ≈ JS2 ∑

〈ij〉 σiσj

I Minimum energy configurations?



Minimally frustrated configurations
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I One frustrated bond per triangle
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Honeycomb lattice dimer model: One dimer touching each
honeycomb vertex
Classic problem in graph-theory/combinatorics/statistical mechanics



Ising ‘liquid’ in T → 0 limit

I Calculation of Stephenson (64) gives

〈σ(r)σ(0)〉 ∼ A
r9/2 +

B cos (2π(x + y)/3)√
r

I Spins neither freeze, nor fluctuate independently.
I Instead, form highly correlated “spin liquid”.



Understanding this result:

I Dimers, heights, and Ising models of frustration
I (Obvious) connection to odd Ising gauge theories
I Connection to Kosterlitz-Thouless theory



From dimers to microscopic heights H(R)
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From microscopic H(R) to coarse-grained h(r)

I Locality: What happens “outside” cannot affect what happens
“inside”.
h(r)→ h(r) + 1
More of a redundancy than a symmetry. (Field theorists:
“compactification radius”)

I Translation symmetry: h(r)→ h(r) + 1/3

I Rotation by 2π/6 about triangular site: h(r)→ −h(r)



Effective action for coarse-grained h(r)

I Fewer flippable plaquettes→ larger “tilt”
Seff = π

g (∇h)2 + λ6 cos(6πh) + . . .



Ising spins in terms of h(r)
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σ(R) = exp(−3πiH(R)) = exp( 2π
3 i(X + Y)− iπH(R))

σ(r) ∼ AeiQ·re−iπh(r) + Be−3iπh(r) + h.c.



KT vortices and “odd Ising gauge theory”

I Nonzero temperature: Heights no longer single valued
Vortex: h→ h± 2 ambiguity when three dimers touch
honeycomb site (fully frustrated Ising triangle)

I Configuration space not dimer model, but model with odd
number of dimers touching each honeycomb site

I “Electric field EA→B = nAB − 1/3 no longer divergence-free
But violations are 0 mod 2
Field-theory language: Configuration space of odd-Ising gauge
theory



Our focus: Easy-axis antiferromagnets on Kagome
and triangular lattices
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Three-sublattice order on the triangular lattice
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Ferri vs antiferro order distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



Three-sublattice order on the Kagome lattice
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Again: Ferri vs antiferro distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



On general symmetry grounds:

I Three ways in which this order can melt on heating
Two-step melting (intermediate KT phase with power-law order
for T ∈ (Tc1,Tc2))
OR
Three-state Potts transition followed by Ising transition
OR
Single first-order transition (always possible!)



Our results—Landau-Ginzburg analysis:

I Thermodynamic signature of KT phase:
χn̂(B) ∼ 1/|B|p(T) with p(T) ∈ ( 2

3 , 0) for T ∈ (Tc1,Tc2).
I KT phase can

Pinch-off at multicritical pointM?, giving way to three-state Potts
criticality. cM?

=?

OR
Pinch-off at multicritical pointMClock, giving way to first-order
transition line.

I MClock previously known, notM?

Note: Conjecture (Dorey-Tateo-Thompson ’96) relatesMClock to
self-dual Z6 c = 1.25 CFT (Zamolodchikov-Fateev ’85)
→ cMClock = 1.25



Our results—Computations for microscopic models:

I Existence of KT phase in S = 1 triangular lattice
antiferromagnets with moderate easy-axis (single-ion) anisotropy

I Quantitative verification of predicted singular susceptibility in KT
phase in several cases

I How does the KT phase pinch-off for specific cases?

I Preliminary evidence forMClock on the triangular lattice
Similar, more preliminary results on Kagome lattice systems

I Conjecture forM? in triangular bilayers



Incipient three-sublattice order in triangular Ising AFM

I Recall: Power-law correlator in T → 0 limit:
〈σz

rσ
z
0〉 ∼

cos(Q·r)
r1/2

Incipient order at three-sublattice wavevector Q = (2π/3, 2π/3)

Stephenson (1964)
I Perturbations can stabilize this order...



Triangular lattice-gas models for monolayer films on
graphite

I Three-sublattice long-range order of noble-gas monolayers on
graphite
Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990)
HJ1J2 = J

∑
〈ij〉 σ

z
iσ

z
j − J1

∑
〈〈ij〉〉 σ

z
iσ

z
j − J2 · · · − B

∑
i σ

z
i

Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Ising models for “Artificial Kagome-ice”

I HKagome = J
∑
〈ij〉 σ

z
iσ

z
j − J1

∑
〈〈ij〉〉 σ

z
iσ

z
j − J2 . . .

I Only nearest-neighbour couplings→ classical short-range spin
liquid (Kano & Naya 1950)

I Second-neighbour ferromag. couplings destabilize spin liquid
(Wolf & Schotte 88)
Ferrimagnetic three-sublattice order at low T.

I “Artificial Kagome-ice: Moments Mi = σz
i ni

(ni at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern et. al. (2011)



Prototypical example of order-by-(quantum) disorder

I HTFIM = J
∑
〈ij〉 σ

z
iσ

z
j − Γ

∑
i σ

x
i on the triangular lattice

Long-range order at three-sublattice wavevector Q
I Ordering of “antiferro” type→ (+,−, 0)

antiferro order provides maximum “room” for quantum
fluctuations
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)

Prospects for experimental realization slim? (large moments, dipolar
couplings...)



S = 1 triangular lattice antiferromagnets with single-ion
anisotropy (more promising)

I HAF = J
∑
〈ij〉
~Si ·~Sj − D

∑
i(Sz

i )
2 on triangular lattice

I Low-energy physics for D� J:
Hb = − J2

D

∑
〈ij〉(b†i bj + h.c.) + J

∑
〈ij〉(ni − 1

2)(nj − 1
2) + . . .

KD & Senthil (06)
I Low-temperature state for D� J: “supersolid” state of hard-core

bosons at half-filling.
Auerbach & Murthy (97), Heidarian & KD, Melko, Wessel...(05)

I Implies: Three-sublattice order in Sz + “ferro-nematic” order in
~S2
⊥

(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)
(also related to Tsunetsugu-Arikawa (2006) proposal for
NiGa2S4)



Is three-sublattice ordering of Sz in HAF ferri or
antiferro?

I Natural expectation: Quantum fluctuations induce antiferro order
(like in the transverse field Ising model)
→
Initial confusion: Ordering will be antiferro three-sublattice order
e. g. Melko et. al. (2005)



Actual state has ferrimagnetic three-sublattice order
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Symmetry breaking transitions: Generalities

I Symmetry-breaking state characterized by long-range
correlations of “order-parameter” Ô

I phenomenological Landau free energy density F [Ô]

Expanding F in powers of Ô (symmetry allowed terms)
I Neglecting spatial variation & fluctuations:

phase transition→ change in minimum of F



Fluctuation effects at continuous transitions:

I More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F
Integrate over all possible order parameter configurations

I In most cases: Corrections to mean-field exponents



Symmetries are (usually) decisive:

I Transformation properties of Ô determine nature of continuous
transition



Landau-theory for melting of three-sublattice order

I F = K|∇ψ|2 + r|ψ|2 + u|ψ|4 + λ6(ψ6 + ψ∗6) + . . .

Connection with six-state clock models
Z =

∑
{pi} exp[

∑
〈ij〉 V( 2π

6 (pi − pj))]

Each pi = 0, 1, 2, ...5
V(x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

Cardy (1980)



Simplest lattice model

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) .

(higher harmonics J(p) (p = 2, 3) left out of Hxy for simplicity)



Melting scenarios for three-sublattice order

I Analysis (Cardy 1980) of generalized six-state clock models
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition to ferromagnetic phase followed by loss
of ferromagnetism via Ising transition at higher temperature..
or vice-versa...
OR
First-order transition (always possible!)



Melting of three-sublattice order in various examples

I Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting
Isakov & Moessner (2001)

I Ferrimagn. three-sublattice order in triangular lattice-gas models
of monolayer films
Two-step melting
D.P. Landau (83)

I Ferri. three-sublattice order in Kagome Ising antiferromagnets
With second-neighbour ferro couplings: Two step melting
Wolf & Schotte (88)
With long-range dipolar couplings: Three-state Potts transition
Moller & Moessner (09), Chern, Mellado, Tchernyshyov (11)



Nature of melting transition in S = 1 HAF?

I Prediction of Boninsegni & Prokofiev (2005)
Three-state Potts transition
Prediction based on argument about relative energies of
different kinds of domain walls
hard to get right at quantitative level



Our answer from large-scale QMC simulations

Heidarian & KD (submitted to PRB)



Detecting power-law order?

Need scattering experiment to detect power-law version of Bragg
peaks
Or
Real-space data by scanning some local probe + Lots of
image-processing



Alternate thermodynamic signature(!)

I Singular thermodynamic susceptibility to uniform easy-axis field
B:
χu(B) ∼ 1

|B|p(T)

I p(T) = 4−18η(T)
4−9η(T) for η(T) ∈ ( 1

9 ,
2
9 )

So p(T) varies from 2/3 to 0 as T increases from Tc1 to just
below Tc2

KD (PRL 2015)



Recall: picture for power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)
potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < Tc1

I In power-law three-sublattice ordered state for T ∈ (Tc1,Tc2), λ6

does not pin phase θ
θ spread uniformly (0, 2π)

I But vortices continue to be irrelevant
Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (Tc1,Tc2)



More formal RG description

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (T1,T2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T)

with η(T) = g(T)

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument—I

Starting point: Ferrimagnetic three-sublattice order also involves
uniform magnetization m
More complete theory should treat m and ψ on equal footing

I Symmetries allow coupling term λ̃3m(ψ3 + ψ∗3)

augment FKT
kBT with gapped free-energy density Fferro(m):

Fferro(m) + λ3m cos(3θ)

I λ3 formally irrelevant along fixed line FKT

→
Physics of two-step melting unaffected—m “goes for a ride...”

But ...



General argument—II

I m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T)

I χL ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I χL = χreg + bL2−9η(T) for η(T) ∈ ( 1
9 ,

2
9 )

Diverges with system size at B = 0



General argument—III

I Uniform field B > 0→ additional term h3 cos(3θ) in FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2

I Implies finite correlation length ξ(B) ∼ |B|−
2

4−9η

I χu(B) ∼ |B|−
4−18η
4−9η for η(T) ∈ ( 1

9 ,
2
9 )



Test in prototypical example

J2 = 0.0

1500

3000

4500

6000

50 70 90

χ Q

L

50 70 90

1.5

2.5

χ 0

L

T = 0.28
T = 0.31
T = 0.33

T = 0.28
T = 0.31
T = 0.33

In power-law ordered phase of HTFIM on triangular lattice
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More complete coarse-grained description

Heff = Hxy + HIsing − Jθτ
∑
~r

τ~r cos(3θ~r) ,

where HIsing = −JIsing

∑
〈~r~r′〉

τ~rτ~r′ − h
∑
~r

τ~r ,

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) ,

with h ∝ B.
KD (PRL 2015)



Phase diagram of Heff
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The argument...

I Start with known phase diagrams of Hxy and HIsing and build in
effects of Jθτ

I When τ orders, Hxy sees effective three-fold symmetric
perturbation h3eff cos(3θ~r) with h3eff ∼ 〈τ〉

I When eiθ orders, HIsing sees effective field heffτ~r with
heff ∼ 〈cos(3θ)〉



The “new” multicritical pointM?

I c-theorem argument: 1 ≤ c ≤ 3
2

I To search:
Jxy = h6 = 1.0, Jθτ = 0.25
Parametrize: JIsing = fxyTθ1/Tτ and T = fI fxyTθ1 [with Tθ1 = 1.04
and Tτ = 3.6409]



Multicritical melting atM?
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Speculation (aka wishful thinking?)

I If relative strength of first/second neighbour exchange tunable
relative to long-range dipolar part in artificial kagome-ice:
Could tune melting to multicritical pointM?...

I Computations challenging due to long-range interactions



M? vsMclock

I Conjecture (Dorey ’96): Mclock corresponds to c = 1.25 self-dual
Z6 CFT constructed by Zamolodchikov-Fateev (’85).

I Conjecture yields exponents atMclock: η3θ = 3/8, η2θ = 1/3, and
ηθ = 5/24.
η2θ and η3θ very different from values atM?

Recall: atM?, η3θ = ητ = 0.201(20), ηθ = 0.258(5), and
η2θ = 0.353(6).



Test of conjectured exponents forMclock
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Preliminary results on Cardy’s six-state clock model (S. Shivam)



Schematic of pinch-off in triangular lattice Ising AFM
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Evidence forMclock in triangular Ising AFM
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