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Geometric frustration and spin-orbit coupling

» Insulators with heavy magnetic ions — spin-orbit coupling
effects matter

» Anisotropic terms in low-energy H for spins

» Anisotropies can amplify effects of geometric frustration



Classical picture

» |sotropic spins on a triangle

» Easy-axis n and triangular motifs...
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Focus: Easy-axis antiferromagnets with triangular
lattice symmetry

Natural tripartite structure of lattice



Three-sublattice order minimizes frustration
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Order parameter: ¢ = |¢)]e? = — > 5 eiQ'ES%

Two states at same Q

Ferrimagnetic: 0 = 27m/6, Antiferromagnetic: 0 = 2m + 1)7/6
(m=0,1,2...5)



Three-sublattice order on the Kagome lattice
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Order parameter: ¢ = [¢]e” = =35> o5 eiQ‘E‘Z”i%S%7a
Again: Two states at same Q

Ferrimagnetic: 6 = 27m/6, Antiferromagnetic: 6§ = 2m + 1)7/6
(m=0,1,2...5)



Several realizations of this physics

» Transverse-field Ising antiferromagnet on the triangular lattice
Quantum order-by-disorder effect
(Isakov & Moessner PRB 68 104409)

» § = 1 triangular antiferromagnet with moderately strong
single-ion anisotropy — hard-core bosons with repulsion V (> 1)

(KD & Senthil PRL 97 067202)
Bosons form three-sublattice ordered “supersolid”

(Melko et. al. PRL 95 127207; Heidarian & KD PRL 95 127206;
Wessel & Troyer PRL 95 127205)

» “Artificial Kagome Ice” systems
(Moller & Moessner PRB 80 140409(R); Chern et. al. PRL 106
207202).

» Classical Ising models of adsorbed noble-gases on graphite
substrates
(DP Landau PRB 27 5604).



In this talk...

» Review of well-known melting scenarios: Two-step melting
(intermediate phase with power-law three-sublattice order) or
2d Three-state Potts criticality

» Results:
Physics:

» Thermodynamic signature of two-step melting:
Xinitorm(B) ~ 1/|BIP") with p(T) € (3,0) for T € (Te1, Ta).

» Intervening multicritical point M with ¢y € (1,3/2)
(subleading) further-neighbour couplings could drive
melting to multicritical point M (?)

Algorithms:

» Efficient quantum cluster algorithm for frustrated transverse
field Ising models.

» Efficient dual-worm construction(s) of clusters for frustrated
classical models.

» Analytical theory for continuously varying persistence
exponent of worms.



Review: Landau theory for

» Bravais lattice symmetries: Translations, rotations and reflection
’L/) N 1/}*, w N 627ri/3,¢)

» In zero easy-axis field, Z, spin symmetry of easy-axis spin-flip:
§&— 87
Y= =1

» Landau potential: r[¢|* + u|i)|[* + A¢Re(1) + . ..

Symmetries of the six-state clock model universality class



Review: Coarse-grained effective model

» (Classical) effective model for finite-temperature melting
transitions: Heoek = — 32 V(0 — 0;) — A6 > cos(6;)
V(x) = K| cos(x) + K> cos(2x) + Kj3 cos(3x)
(Cardy J. Phys. A 13 1507)



Review: Melting scenarios

» Analysis of Cardy
— Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase for
T € (T\,T)
OR
3-state Potts transition
OR
First-order transition (always possible!)

Multiplicity of possibilities related to details of domain-wall energetics
— each realization needs separate analysis



Review: A closer look at various systems
Heasy—axis =J 35 Si - §j = DY ()2 +J' ... with § > 1/2.and D > J
» When D > J: Ising antiferromagnet at low energies
Hising = JS? Z<ij> oiof + J' -+ + negligible
Small ferromagnetic J’ induces three-sublattice order (DP
Landau)
Transverse field —B, - 3,5+ — —I'Y, o; with
I' ~SB, x (B./D)*
Small transverse field induces three-sublattice order on
triangular lattice (Isakov & Moessner)
» When D dominates over J, but J/D non-negligible: Low energy
theory depends on §
S = 1: hard-core bosons with repulsive V > ¢ (KD & Senthil)
Hy = —5 3 (b1by + he) + 75y (m = )y — 1)+
Three-sublattice ordered on triangular lattice (Wessel & Troyer;
Melko et. al.; Heidarian & KD)
S > 1: Classical Ising antiferromagnet with additional multi-spin
interaction (Sen et. al. PRL 102, 227001)
Not three-sublattice ordered (lattice nematic statg)



Melting of three-sublattice order in various examples

» Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting (Isakov & Moessner)

» Ferrimagn. three-sublattice order in triangular lattice Ising
models with ferro. J’
Two-step melting (D.P. Landau)

» Ferrimagn. three-sublattice order in Kagome Ising
antiferromagnets
With ferro. J’ (second-neighbour) : Two step melting (Wolf &
Schotte J. Phys. A 21 2195)
With long-range dipolar couplings: Three-state Potts transition
(Moller & Moessner; Chern et. al.)



New physics: Uniform magnetization mode m

» Symmetries allow term A\;mRe(¢°) in Landau theory

» For T € (T, T») (in power-law phase of two-step melting), Aq
irrelevant — ¢ fluctuates uniformly over (0, 27)
Contrast: A cos(60) locks 6 to 2wm/6 ((2m + 1)m/6) in ferri
(antiferro) ordered state (T < Ty)

» Distinction between ferri and antiferro three-sublattice order lost
forT € (T}, T»)
—
Thermodynamic signature of order-parameter fluctuations in
uniform easy-axis susceptibility



RG analysis—I

» Fixed point free-energy density: = fKT = W(ve)
with ¢(T) € (3, 1) corresponding to T e (Ta,Tea)
> )\ cos(60) irrelevant along fixed line
> (Y () (0) ~ iy
with n(T') = g(T)

(Jose et. al. Phys. Rev. B 16 1217)



RG analysis—II

» \; formally irrelevant along fixed line Fxr
_>
Correlators of ¢ unaffected.

» But m “inherits” power-law correlations of cos(36):
Cu(r) = (m(r)m(0)) ~ e
> Uniform x. (B, = 0) ~ fL d*rC,(r) in a finite-size system at B =0

> Uniform xu (B, = 0) ~ 1~1(0) for n(7) € (4,3)



RG analysis—III

» Uniform easy-axis field B, > 0 — additional term &3 cos(36) in
]:KT
» Strongly relevant along fixed line, with RG eigenvalue 2 — 9g/2
» Implies finite correlation length £(B;) ~ |BZ|‘ﬁ
4—18n
> Xeasyfaxis(Bz) ~ ‘Bz|7m for 77(T) € (év %)
Thermodynamic signature of power-law three-sublatttice order
(KD PRL 115 127204)
Order parameter fluctuations at nonzero Q picked up in the
uniform susceptibility!



Implication: “Ferromagnetism” of transverse field Ising
antiferromagnet

» Perhaps most dramatic manifestation:
Heat up antiferromagnetically ordered triangular lattice
transverse field Ising antiferromagnet to enter phase with
divergent ferromagnetic susceptibility



QMC evidence:

I'=0.8,J1 =1.0,J2 =0.0
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Left panel fit: L2=7("), Right panel fit: L>~7(1)
(Biswas & KD arXiv:1603.06473)



Needed new quantum cluster algorithm to probe effect
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New quantum cluster algorithm: Basic idea
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Performance advantage

L =48,1'=0.8,7=0.1,J; = 1.0, J2 = 0.0
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‘ Conventional algorithm —a—

L =48,T =0.8,7 =0.1,.J; = 1.0, J2 = 0.0

Conventional algorithm ——a—

Plaquette-based algorithm —e—

L]
[ 104, A 2
L :. L ] ? e ° . a Y
L e 10 ot o + °
e _ 097 . 097 )
0.8 0.85 0.9 0.95

e/ ot




Relevance for § = 1 on triangular lattice with
moderately strong D > J?

Maps to hard-core bosons with n.n. repulsion — ferimagnetic
three-sublattice order
But: Conflicting predictions about nature of melting transition

» Three-state Potts (Boninsegni &Prokof’ev PRL 95 237204)
» Two-step melting (Heidarian & KD)
Educated guesswork

Hard to get right without high-precision QMC mapping of phase
diagram



Recent QMC verdict: Two-step melting
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Singular ferromagnetic susceptibility in power-law
phase
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Effective model incorporating new physics

Her = Hyy + Hising — Jor Z T?COS(39?) )

where HISing = _Jlsing Z T — h Z Tz,
() 7
Hy = —Jy Z cos(0r — 67 ) — he Z cos(667) ,
FF) 7
with i < B.

(KD PRL 115 127204)



Effect of further neighbour couplings on effective
coupling strengths

» J, expected to increase if further-neighbour ferromagnetic
couplings present.



Phase diagram of effective model
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The argument...

» Start with known phase diagrams of Hy, and Hi,e @and build in
effects of Jy,

» When 7 orders, H,, sees effective three-fold symmetric
perturbation e cos(367) With hsegr ~ (1)

» When ¢ orders, Higing €€ effective field A7 with
hegr ~ {(cos(30))



The multicritical point

» c-theorem argument: 1 < ¢ < 3

» To search:
Jxy = hg = 1.0, Jg, = 0.25
Parametrize: Jiing = fyTo, /T and T = fify,To1 [with Ty, = 1.04
and 7, = 3.6409]



Multicritical melting
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L
[FM M) ~ [1.5570(8), 1.0061(5)]

C,9 [C39] rescaled by a factor of 7 [factor of 10]
me = - = 0.201(20), 79 = 0.258(5), and 7,9 = 0.353(6).

(KD PRL 115 127204)



Scenario for realizing M?

» Start with system undergoing three-state Potts transition

» Turn on transverse field to combat further-neighbour
ferromagnetic couplings

» Drive system back to two-step melting via M??7?



Not entirely fanciful?

» Artificial Kagome Ice

» Classical triangular lattice Ising models with further neighbour
ferromagnetic couplings
Caveat: Extreme D > J limit associated with strongly
one-dimensional geometries.
New systems with more two-dimensional character?
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Dual worm algorithm for frustrated Ising models

» Represent system in terms of dual bond variables —
generalized dimer interacting model

» Design efficient worm update for dimer variables

» Precursor: For T — 0, used previously in multiple contexts.
S > 3/2 Kagome and triangular lattice easy-axis
antiferromagnets in 7 = 0 limit (Sen et. al. PRL 102, 227001)
(More recently: T = 0 limit of frustrated triangular lattice Ising
models (Smerald, Korshunov, Mila PRL 116 197201))
(For T > 0 unfrustrated systems: original work of Alet et. al.
(2003))



New ingredient—I

Onew = 11
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New ingredient—I|
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Analytical theory of worm statistics—I
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Analytical theory for worm statistics—III
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