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Geometric frustration and spin-orbit coupling

I Insulators with heavy magnetic ions → spin-orbit coupling
effects matter

I Anisotropic terms in low-energy H for spins
I Anisotropies can amplify effects of geometric frustration



Classical picture

I Isotropic spins on a triangle

I Easy-axis n and triangular motifs...
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Focus: Easy-axis antiferromagnets with triangular
lattice symmetry
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Three-sublattice order minimizes frustration
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Order parameter: ψ = |ψ|eiθ = −
∑
~R eiQ·~RSz

~R
Two states at same Q
Ferrimagnetic: θ = 2πm/6, Antiferromagnetic: θ = (2m + 1)π/6
(m = 0, 1, 2 . . . 5)



Three-sublattice order on the Kagome lattice
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Order parameter: ψ = |ψ|eiθ = −
∑
~R

∑
α=0,1,2 eiQ·~R−2πi α3 Sz

~R,α
Again: Two states at same Q
Ferrimagnetic: θ = 2πm/6, Antiferromagnetic: θ = (2m + 1)π/6
(m = 0, 1, 2 . . . 5)



Several realizations of this physics

I Transverse-field Ising antiferromagnet on the triangular lattice
Quantum order-by-disorder effect
(Isakov & Moessner PRB 68 104409)

I S = 1 triangular antiferromagnet with moderately strong
single-ion anisotropy→ hard-core bosons with repulsion V (� t)
(KD & Senthil PRL 97 067202)
Bosons form three-sublattice ordered “supersolid”
(Melko et. al. PRL 95 127207; Heidarian & KD PRL 95 127206;
Wessel & Troyer PRL 95 127205)

I “Artificial Kagome Ice” systems
(Moller & Moessner PRB 80 140409(R); Chern et. al. PRL 106
207202).

I Classical Ising models of adsorbed noble-gases on graphite
substrates
(DP Landau PRB 27 5604).



In this talk...

I Review of well-known melting scenarios: Two-step melting
(intermediate phase with power-law three-sublattice order) or
2d Three-state Potts criticality

I Results:
Physics:

I Thermodynamic signature of two-step melting:
χzz

uniform(B) ∼ 1/|B|p(T) with p(T) ∈ ( 2
3 , 0) for T ∈ (Tc1,Tc2).

I Intervening multicritical pointM with cM ∈ (1, 3/2)
(subleading) further-neighbour couplings could drive
melting to multicritical pointM (?)

Algorithms:
I Efficient quantum cluster algorithm for frustrated transverse

field Ising models.
I Efficient dual-worm construction(s) of clusters for frustrated

classical models.
I Analytical theory for continuously varying persistence

exponent of worms.



Review: Landau theory for ψ

I Bravais lattice symmetries: Translations, rotations and reflection
ψ → ψ∗, ψ → e2πi/3ψ

I In zero easy-axis field, Z2 spin symmetry of easy-axis spin-flip:
Sz

r → −Sz
r

ψ → −ψ
I Landau potential: r|ψ|2 + u|ψ|4 + λ6Re(ψ6) + . . .

Symmetries of the six-state clock model universality class



Review: Coarse-grained effective model

I (Classical) effective model for finite-temperature melting
transitions: Hclock = −

∑
〈ij〉 V(θi − θj)− λ6

∑
j cos(θj)

V(x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

(Cardy J. Phys. A 13 1507)



Review: Melting scenarios

I Analysis of Cardy
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase for
T ∈ (T1,T2)

OR
3-state Potts transition
OR
First-order transition (always possible!)

Multiplicity of possibilities related to details of domain-wall energetics
→ each realization needs separate analysis



Review: A closer look at various systems
Heasy−axis = J

∑
〈ij〉
~Si ·~Sj − D

∑
i(Sz

i )
2 + J′ . . . with S > 1/2 and D > J

I When D� J: Ising antiferromagnet at low energies
HIsing = JS2 ∑

〈ij〉 σ
z
iσ

z
j + J′ · · ·+ negligible

Small ferromagnetic J′ induces three-sublattice order (DP
Landau)
Transverse field −~B⊥ ·

∑
j
~S⊥j → −Γ

∑
j σj with

Γ ∼ SB⊥ × (B⊥/D)2S

Small transverse field induces three-sublattice order on
triangular lattice (Isakov & Moessner)

I When D dominates over J, but J/D non-negligible: Low energy
theory depends on S
S = 1: hard-core bosons with repulsive V � t (KD & Senthil)
Hb = − J2

D

∑
〈ij〉(b†i bj + h.c.) + J

∑
〈ij〉(ni − 1

2 )(nj − 1
2 ) + . . .

Three-sublattice ordered on triangular lattice (Wessel & Troyer;
Melko et. al.; Heidarian & KD)
S > 1: Classical Ising antiferromagnet with additional multi-spin
interaction (Sen et. al. PRL 102, 227001)
Not three-sublattice ordered (lattice nematic state)



Melting of three-sublattice order in various examples

I Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting (Isakov & Moessner)

I Ferrimagn. three-sublattice order in triangular lattice Ising
models with ferro. J′

Two-step melting (D.P. Landau)
I Ferrimagn. three-sublattice order in Kagome Ising

antiferromagnets
With ferro. J′ (second-neighbour) : Two step melting (Wolf &
Schotte J. Phys. A 21 2195)
With long-range dipolar couplings: Three-state Potts transition
(Moller & Moessner; Chern et. al.)



New physics: Uniform magnetization mode m

I Symmetries allow term λ3mRe(ψ3) in Landau theory
I For T ∈ (T1,T2) (in power-law phase of two-step melting), λ6

irrelevant→ θ fluctuates uniformly over (0, 2π)

Contrast: λ6 cos(6θ) locks θ to 2πm/6 ((2m + 1)π/6) in ferri
(antiferro) ordered state (T < T1)

I Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (T1,T2)

→
Thermodynamic signature of order-parameter fluctuations in
uniform easy-axis susceptibility



RG analysis—I

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (Tc1,Tc2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T)

with η(T) = g(T)

(Jose et. al. Phys. Rev. B 16 1217)



RG analysis—II

I λ3 formally irrelevant along fixed line FKT

→
Correlators of ψ unaffected.

I But m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T)

I Uniform χL(Bz = 0) ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I Uniform χL(Bz = 0) ∼ L2−9η(T) for η(T) ∈ ( 1
9 ,

2
9 )



RG analysis—III

I Uniform easy-axis field Bz > 0→ additional term h3 cos(3θ) in
FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2

I Implies finite correlation length ξ(Bz) ∼ |Bz|−
2

4−9η

I χeasy−axis(Bz) ∼ |Bz|−
4−18η
4−9η for η(T) ∈ ( 1

9 ,
2
9 )

Thermodynamic signature of power-law three-sublatttice order
(KD PRL 115 127204)
Order parameter fluctuations at nonzero Q picked up in the
uniform susceptibility!



Implication: “Ferromagnetism” of transverse field Ising
antiferromagnet

I Perhaps most dramatic manifestation:
Heat up antiferromagnetically ordered triangular lattice
transverse field Ising antiferromagnet to enter phase with
divergent ferromagnetic susceptibility



QMC evidence:
Γ = 0.8, J1 = 1.0, J2 = 0.0
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Needed new quantum cluster algorithm to probe effect
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(Biswas Rakala & KD Phys. Rev. B 93 235103)



New quantum cluster algorithm: Basic idea
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Performance advantage
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Relevance for S = 1 on triangular lattice with
moderately strong D > J?

Maps to hard-core bosons with n.n. repulsion→ ferimagnetic
three-sublattice order
But: Conflicting predictions about nature of melting transition

I Three-state Potts (Boninsegni &Prokof’ev PRL 95 237204)
I Two-step melting (Heidarian & KD)

Educated guesswork
Hard to get right without high-precision QMC mapping of phase
diagram



Recent QMC verdict: Two-step melting

V = 4D/J and T measured in units of J2/D (Heidarian & KD
arXiv:1512.01346)



Singular ferromagnetic susceptibility in power-law
phase

χeasy−axis = 4κ (Heidarian & KD arXiv:1512.01346)



Effective model incorporating new physics

Heff = Hxy + HIsing − Jθτ
∑
~r

τ~r cos(3θ~r) ,

where HIsing = −JIsing

∑
〈~r~r′〉

τ~rτ~r′ − h
∑
~r

τ~r ,

Hxy = −Jxy

∑
〈~r~r′〉

cos(θ~r − θ~r′)− h6

∑
~r

cos(6θ~r) ,

with h ∝ B.
(KD PRL 115 127204)



Effect of further neighbour couplings on effective
coupling strengths

I Jτ expected to increase if further-neighbour ferromagnetic
couplings present.



Phase diagram of effective model

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Tc1

2cT

TcI

τ =0 iθe =0
TcP

Tθ2

1Tθ

iθe = 0
τ =0

τ = 0 iθe = 0

Tτ

JIsing

Tθ1

Tθ2

iθe = 0

iθe =0

3h

Tc(h3)
M

Power−law order

L

T
A)

T

L

B)



The argument...

I Start with known phase diagrams of Hxy and HIsing and build in
effects of Jθτ

I When τ orders, Hxy sees effective three-fold symmetric
perturbation h3eff cos(3θ~r) with h3eff ∼ 〈τ〉

I When eiθ orders, HIsing sees effective field heffτ~r with
heff ∼ 〈cos(3θ)〉



The multicritical point

I c-theorem argument: 1 ≤ c ≤ 3
2

I To search:
Jxy = h6 = 1.0, Jθτ = 0.25
Parametrize: JIsing = fxyTθ1/Tτ and T = fI fxyTθ1 [with Tθ1 = 1.04
and Tτ = 3.6409]



Multicritical melting
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Scenario for realizingM?

I Start with system undergoing three-state Potts transition
I Turn on transverse field to combat further-neighbour

ferromagnetic couplings
I Drive system back to two-step melting viaM???



Not entirely fanciful?

I Artificial Kagome Ice
I Classical triangular lattice Ising models with further neighbour

ferromagnetic couplings
Caveat: Extreme D� J limit associated with strongly
one-dimensional geometries.
New systems with more two-dimensional character?
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Dual worm algorithm for frustrated Ising models

I Represent system in terms of dual bond variables→
generalized dimer interacting model

I Design efficient worm update for dimer variables
I Precursor: For T → 0, used previously in multiple contexts.

S > 3/2 Kagome and triangular lattice easy-axis
antiferromagnets in T = 0 limit (Sen et. al. PRL 102, 227001)
(More recently: T = 0 limit of frustrated triangular lattice Ising
models (Smerald, Korshunov, Mila PRL 116 197201))
(For T > 0 unfrustrated systems: original work of Alet et. al.
(2003))



New ingredient—I
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New ingredient—II

s11

s10

s1

d2d1

s5

s4

s3

s2

s6s8s9 s7

s0

s11

s10

s1

d2d1

s5

s4

s3

s2

s6s8s9 s7

s0

d0

d0

s11

s10

s1

d2d1

s5

s4

s3

s2

s6s8s9 s7

s0

d0

s11

s10

s1

d2d1

s5

s4

s3

s2

s6s8s9 s7

s0

d0
enew = pc

pnew = n2

n1

enew = pc

Kpc
e,n2

(e)

Kpc
e,e(e)

Bounce

n2
pnew = n1Kpc

e,n1
(e)

onew = e

e

enew = pc

pc



Analytical theory of worm statistics—I

0.5

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6

η
m

on
om

er

ηspin

Triangular lattice

Using Cm(~R)
1/(4ηspin)



Analytical theory for worm statistics—III
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