Melting of three-sublattice order in easy-axis antiferromagnets

Singular thermodynamics, multicriticality, and algorithms

Kedar Damle, LDQM Lausanne 2016
Tata Institute, Bombay

Geometric frustration and spin-orbit coupling

- Insulators with heavy magnetic ions \rightarrow spin-orbit coupling effects matter
- Anisotropic terms in low-energy H for spins
- Anisotropies can amplify effects of geometric frustration

Classical picture

- Isotropic spins on a triangle

- Easy-axis n and triangular motifs...

Focus: Easy-axis antiferromagnets with triangular lattice symmetry

Natural tripartite structure of lattice

Three-sublattice order minimizes frustration

Order parameter: $\psi=|\psi| e^{i \theta}=-\sum_{\vec{R}} e^{i Q \cdot \vec{R}} S_{\vec{R}}^{z}$
Two states at same \mathbf{Q}
Ferrimagnetic: $\theta=2 \pi m / 6$, Antiferromagnetic: $\theta=(2 m+1) \pi / 6$ ($m=0,1,2 \ldots 5$)

Three-sublattice order on the Kagome lattice

Order parameter: $\psi=|\psi| e^{i \theta}=-\sum_{\vec{R}} \sum_{\alpha=0,1,2} e^{i \mathbf{Q} \cdot \vec{R}-2 \pi i \frac{\alpha}{3}} S_{\vec{R}, \alpha}^{z}$ Again: Two states at same \mathbf{Q}
Ferrimagnetic: $\theta=2 \pi m / 6$, Antiferromagnetic: $\theta=(2 m+1) \pi / 6$ ($m=0,1,2 \ldots 5$)

Several realizations of this physics

- Transverse-field Ising antiferromagnet on the triangular lattice Quantum order-by-disorder effect (Isakov \& Moessner PRB 68 104409)
- $S=1$ triangular antiferromagnet with moderately strong single-ion anisotropy \rightarrow hard-core bosons with repulsion $V(\gg t)$ (KD \& Senthil PRL 97 067202) Bosons form three-sublattice ordered "supersolid" (Melko et. al. PRL 95 127207; Heidarian \& KD PRL 95 127206; Wessel \& Troyer PRL 95 127205)
- "Artificial Kagome Ice" systems
(Moller \& Moessner PRB 80 140409(R); Chern et. al. PRL 106 207202).
- Classical Ising models of adsorbed noble-gases on graphite substrates
(DP Landau PRB 27 5604).

In this talk...

- Review of well-known melting scenarios: Two-step melting (intermediate phase with power-law three-sublattice order) or 2d Three-state Potts criticality
- Results:

Physics:

- Thermodynamic signature of two-step melting: $\chi_{\text {uniform }}^{z z}(B) \sim 1 /|B|^{p(T)}$ with $p(T) \in\left(\frac{2}{3}, 0\right)$ for $T \in\left(T_{c 1}, T_{c 2}\right)$.
- Intervening multicritical point \mathcal{M} with $c_{\mathcal{M}} \in(1,3 / 2)$ (subleading) further-neighbour couplings could drive melting to multicritical point \mathcal{M} (?)
Algorithms:
- Efficient quantum cluster algorithm for frustrated transverse field Ising models.
- Efficient dual-worm construction(s) of clusters for frustrated classical models.
- Analytical theory for continuously varying persistence exponent of worms.

Review: Landau theory for ψ

- Bravais lattice symmetries: Translations, rotations and reflection $\psi \rightarrow \psi^{*}, \psi \rightarrow e^{2 \pi i / 3} \psi$
- In zero easy-axis field, Z_{2} spin symmetry of easy-axis spin-flip: $S_{r}^{z} \rightarrow-S_{r}^{z}$
$\psi \rightarrow-\psi$
- Landau potential: $r|\psi|^{2}+u|\psi|^{4}+\lambda_{6} \operatorname{Re}\left(\psi^{6}\right)+\ldots$

Symmetries of the six-state clock model universality class

Review: Coarse-grained effective model

- (Classical) effective model for finite-temperature melting transitions: $H_{\text {clock }}=-\sum_{\langle i j\rangle} V\left(\theta_{i}-\theta_{j}\right)-\lambda_{6} \sum_{j} \cos \left(\theta_{j}\right)$ $V(x)=K_{1} \cos (x)+K_{2} \cos (2 x)+K_{3} \cos (3 x)$ (Cardy J. Phys. A 13 1507)

Review: Melting scenarios

- Analysis of Cardy
\rightarrow Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase for
$T \in\left(T_{1}, T_{2}\right)$
OR
3-state Potts transition
OR
First-order transition (always possible!)
Multiplicity of possibilities related to details of domain-wall energetics
\rightarrow each realization needs separate analysis

Review: A closer look at various systems

$$
H_{\text {easy-axis }}=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}-D \sum_{i}\left(S_{i}^{z}\right)^{2}+J^{\prime} \ldots \text { with } S>1 / 2 \text { and } D>J
$$

- When $D \gg J$: Ising antiferromagnet at low energies
$H_{\text {Ising }}=J S^{2} \sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}+J^{\prime} \cdots+$ negligible
Small ferromagnetic J^{\prime} induces three-sublattice order (DP
Landau)
Transverse field $-\vec{B}_{\perp} \cdot \sum_{j} \vec{S}_{j}^{\perp} \rightarrow-\Gamma \sum_{j} \sigma_{j}$ with
$\Gamma \sim S B_{\perp} \times\left(B_{\perp} / D\right)^{2 S}$
Small transverse field induces three-sublattice order on triangular lattice (Isakov \& Moessner)
- When D dominates over J, but J / D non-negligible: Low energy theory depends on S
$S=1$: hard-core bosons with repulsive $V \gg t$ (KD \& Senthil)
$H_{b}=-\frac{J^{2}}{D} \sum_{\langle i j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c.\right)+J \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)+\ldots$
Three-sublattice ordered on triangular lattice (Wessel \& Troyer;
Melko et. al.; Heidarian \& KD)
$S>1$: Classical Ising antiferromagnet with additional multi-spin interaction (Sen et. al. PRL 102, 227001)
Not three-sublattice ordered (lattice nematic_state),

Melting of three-sublattice order in various examples

- Antiferro three-sublattice order in triangular lattice transverse field Ising model
Two-step melting (Isakov \& Moessner)
- Ferrimagn. three-sublattice order in triangular lattice Ising models with ferro. J^{\prime}
Two-step melting (D.P. Landau)
- Ferrimagn. three-sublattice order in Kagome Ising antiferromagnets
With ferro. J^{\prime} (second-neighbour) : Two step melting (Wolf \& Schotte J. Phys. A 21 2195)
With long-range dipolar couplings: Three-state Potts transition (Moller \& Moessner; Chern et. al.)

New physics: Uniform magnetization mode m

- Symmetries allow term $\lambda_{3} m \operatorname{Re}\left(\psi^{3}\right)$ in Landau theory
- For $T \in\left(T_{1}, T_{2}\right)$ (in power-law phase of two-step melting), λ_{6} irrelevant $\rightarrow \theta$ fluctuates uniformly over $(0,2 \pi)$
Contrast: $\lambda_{6} \cos (6 \theta)$ locks θ to $2 \pi m / 6((2 m+1) \pi / 6)$ in ferri (antiferro) ordered state ($T<T_{1}$)
- Distinction between ferri and antiferro three-sublattice order lost for $T \in\left(T_{1}, T_{2}\right)$
\rightarrow
Thermodynamic signature of order-parameter fluctuations in uniform easy-axis susceptibility

RG analysis-I

- Fixed point free-energy density: $\frac{\mathcal{F}_{\mathrm{KT}}}{k_{B} T}=\frac{1}{4 \pi g}(\nabla \theta)^{2}$ with $g(T) \in\left(\frac{1}{9}, \frac{1}{4}\right)$ corresponding to $T \in\left(T_{c 1}, T_{c 2}\right)$
- $\lambda_{6} \cos (6 \theta)$ irrelevant along fixed line
- $\left\langle\psi^{*}(r) \psi(0)\right\rangle \sim \frac{1}{r^{\eta(T)}}$ with $\eta(T)=g(T)$
(Jose et. al. Phys. Rev. B 16 1217)

RG analysis-II

- λ_{3} formally irrelevant along fixed line $\mathcal{F}_{\mathrm{KT}}$

Correlators of ψ unaffected.

- But m "inherits" power-law correlations of $\cos (3 \theta)$: $C_{m}(r)=\langle m(r) m(0)\rangle \sim \frac{1}{r^{9 n(T)}}$
- Uniform $\chi_{L}\left(B_{z}=0\right) \sim \int^{L} d^{2} r C_{m}(r)$ in a finite-size system at $B=0$
- Uniform $\chi_{L}\left(B_{z}=0\right) \sim L^{2-9 \eta(T)}$ for $\eta(T) \in\left(\frac{1}{9}, \frac{2}{9}\right)$

RG analysis-III

- Uniform easy-axis field $B_{z}>0 \rightarrow$ additional term $h_{3} \cos (3 \theta)$ in $\mathcal{F}_{\mathrm{KT}}$
- Strongly relevant along fixed line, with RG eigenvalue $2-9 g / 2$
- Implies finite correlation length $\xi\left(B_{z}\right) \sim\left|B_{z}\right|^{-\frac{2}{4-9 \eta}}$
- $\chi_{\text {easy }- \text { axis }}\left(B_{z}\right) \sim\left|B_{z}\right|^{-\frac{4-18 \eta}{4-9 \eta}}$ for $\eta(T) \in\left(\frac{1}{9}, \frac{2}{9}\right)$

Thermodynamic signature of power-law three-sublatttice order (KD PRL 115 127204)
Order parameter fluctuations at nonzero \mathbf{Q} picked up in the uniform susceptibility!

Implication: "Ferromagnetism" of transverse field Ising antiferromagnet

- Perhaps most dramatic manifestation:

Heat up antiferromagnetically ordered triangular lattice transverse field Ising antiferromagnet to enter phase with divergent ferromagnetic susceptibility

QMC evidence:

$$
\Gamma=0.8, J_{1}=1.0, J_{2}=0.0
$$

Left panel fit: $L^{2-\eta(T)}$. Right panel fit: $L^{2-9 \eta(T)}$
(Biswas \& KD arXiv:1603.06473)

Needed new quantum cluster algorithm to probe effect

$$
L=48, \Gamma=0.8, T=0.1, J_{1}=1.0, J_{2}=0.0
$$

(Biswas Rakala \& KD Phys. Rev. B 93 235103)

New quantum cluster algorithm: Basic idea

Performance advantage

Relevance for $S=1$ on triangular lattice with moderately strong $D>J$?

Maps to hard-core bosons with n.n. repulsion \rightarrow ferimagnetic three-sublattice order
But: Conflicting predictions about nature of melting transition

- Three-state Potts (Boninsegni \&Prokof'ev PRL 95 237204)
- Two-step melting (Heidarian \& KD)

Educated guesswork
Hard to get right without high-precision QMC mapping of phase diagram

Recent QMC verdict: Two-step melting

$V=4 D / J$ and T measured in units of J^{2} / D (Heidarian \& KD arXiv:1512.01346)

Singular ferromagnetic susceptibility in power-law phase

$\chi_{\text {easy }- \text { axis }}=4 \kappa($ Heidarian \& KD arXiv:1512.01346)

Effective model incorporating new physics

$$
\begin{aligned}
H_{\mathrm{eff}} & =H_{\mathrm{xy}}+H_{\text {Ising }}-J_{\theta \tau} \sum_{\vec{r}} \tau_{\vec{r}} \cos \left(3 \theta_{\vec{r}}\right) \\
\text { where } \quad H_{\text {Ising }} & =-J_{\text {Ising }} \sum_{\left\langle\overrightarrow{r r^{\prime}}\right\rangle} \tau_{\vec{r}} \tau_{\vec{r}^{\prime}}-h \sum_{\vec{r}} \tau_{\vec{r}} \\
H_{\mathrm{xy}} & =-J_{\mathrm{xy}} \sum_{\left\langle\overrightarrow{r r^{\prime}}\right\rangle} \cos \left(\theta_{\vec{r}}-\theta_{\vec{r}^{\prime}}\right)-h_{6} \sum_{\vec{r}} \cos \left(6 \theta_{\vec{r}}\right)
\end{aligned}
$$

with $h \propto B$.
(KD PRL 115 127204)

Effect of further neighbour couplings on effective coupling strengths

- J_{τ} expected to increase if further-neighbour ferromagnetic couplings present.

Phase diagram of effective model

The argument...

- Start with known phase diagrams of H_{xy} and $H_{\text {Ising }}$ and build in effects of $J_{\theta \tau}$
- When τ orders, H_{xy} sees effective three-fold symmetric perturbation $h_{3 \text { eff }} \cos \left(3 \theta_{\vec{r}}\right)$ with $h_{3 \text { eff }} \sim\langle\tau\rangle$
- When $e^{i \theta}$ orders, $H_{\text {Ising }}$ sees effective field $h_{\text {eff }} \tau_{\vec{r}}$ with $h_{\text {eff }} \sim\langle\cos (3 \theta)\rangle$

The multicritical point

- c-theorem argument: $1 \leq c \leq \frac{3}{2}$
- To search:
$J_{\mathrm{xy}}=h_{6}=1.0, J_{\theta \tau}=0.25$
Parametrize: $J_{\text {Ising }}=f_{x y} T_{\theta_{1}} / T_{\tau}$ and $T=f_{1} f_{x y} T_{\theta 1}$ [with $T_{\theta 1}=1.04$ and $\left.T_{\tau}=3.6409\right]$

Multicritical melting

$\left[f_{\text {xy }}^{\mathcal{M}}, f_{I}^{\mathcal{M}}\right] \approx[1.5570(8), 1.0061(5)]$
$C_{2 \theta}$ [$C_{3 \theta}$] rescaled by a factor of 7 [factor of 10]
$\eta_{3 \theta}=\eta_{\tau}=0.201(20), \eta_{\theta}=0.258(5)$, and $\eta_{2 \theta}=0.353(6)$.
(KD PRL 115 127204)

Scenario for realizing \mathcal{M} ?

- Start with system undergoing three-state Potts transition
- Turn on transverse field to combat further-neighbour ferromagnetic couplings
- Drive system back to two-step melting via \mathcal{M} ???

Not entirely fanciful?

- Artificial Kagome Ice
- Classical triangular lattice Ising models with further neighbour ferromagnetic couplings
Caveat: Extreme $D \gg J$ limit associated with strongly one-dimensional geometries.
New systems with more two-dimensional character?

Acknowledgements

- Sounak Biswas and Geet Rakala (Quantum cluster algorithm)
- Geet Rakala (Dual worm algorithms for frustrated Ising models)
- Deepak Dhar (Statistical mechanics of worms)

Dual worm algorithm for frustrated Ising models

- Represent system in terms of dual bond variables \rightarrow generalized dimer interacting model
- Design efficient worm update for dimer variables
- Precursor: For $T \rightarrow 0$, used previously in multiple contexts.
$S>3 / 2$ Kagome and triangular lattice easy-axis antiferromagnets in $T=0$ limit (Sen et. al. PRL 102, 227001) (More recently: $T=0$ limit of frustrated triangular lattice Ising models (Smerald, Korshunov, Mila PRL 116 197201))
(For $T>0$ unfrustrated systems: original work of Alet et. al. (2003))

New ingredient—l

New ingredient—II

Analytical theory of worm statistics-।

Analytical theory for worm statistics-III

