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Motivation

» Random impurity potentials localize electron wavefunctions in
d=1
Weak-localization in d = 2, mobility edge ind =3 ...
(Gang of Four 1979)

» What about hopping disorder?

» Right way to ask this question: Are symmetries preserved by
disordered Hamiltonian different?



Bipartite random hopping problem

» Random (real) nearest neighbour hopping on bipartite lattices
H has bipartite or “chiral” symmetry: Every state at energy ¢ has
partner at energy —e (wavefunction changes sign on one
sublattice)

» Bipartite symmetry broken by random potentials or next-nearest
neighbour hops



The question

» ¢ =0 is special in such problems
Natural question: Does anything interesting happen?



Some answersind = 1

» Density of states diverges very strongly as ¢ — 0

ple) ~ le[ 7'

Dyson (53)1 icYI'P(1Qe/c‘)dD0rou & Cohen ('76), Eggarter & Riedinger
(78)
Simplest example of strong-disorder renormalization group fixed
point
Motrunich, KD, Huse ('00,01)

» Also: Diverging length scale as ¢ — 0 limit—Loosely identified
with localization length (not-quite .. .)



Some answers ind =2

» Gade & Wegner ('91-93): Density of states diverges somewhat
less strongly as e — 0
p(€) ~ |e|~Yexp(—blog!/*(Q/|e])) with x = 2
Think this is arcane?

» Then try this:
Real answer has x = 3/2, due to a strong-disorder effect.
Motrunich, KD, Huse ('02); Motrunich, Ph.D thesis ('01).
confirmed field-theoretically by Mudry, Ryu, Furusaki ('03)



Vacancy-disorder

» Another kind of disorder: Missing sites in tight-binding model
Natural if substitutional impurities correspond to missing orbital
» Question: Does vacancy-disorder change the asymptotic
low-energy behaviour of p(e)?
Notice: No change in symmetries of microscopic H



Our focus today

» Vacancies in tight-binding model for graphene

» Vacancies modeled by deleteting sites
No interactions, no warping, no substrate charges, single-band
model ...
Simplest possible abstraction of complicated system



Switch topics: Bhatt-Lee physics in Si:P
o—

» Low density of P dopants in Si — Half-filled “Hubbard model” on
random lattice
Electrical insulator

> At low energies: Physics of S = 1/2 local moments



Low energy spin physics

s s

> 3., J5Si - S; with broad distribution of J;
» Singlet pairs with broad distribution of binding energies
> Tx(T): Pairs with binding energy < T
X(T) ~ @ ~ -~ with « set by concentration of P
(Bhatt & Lee)



Asymptotically exact?

» Ind = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
x(T) = F;Z as T — 0.
(I'r =1og(J/T) [J: overall scale of antiferromagnetic exchange].)

(Dasgupta & Ma, D. S. Fisher)

» For d > 1, status unclear (strong-disorder RG inconclusive)
(Motrunich & Huse)




Bhatt-Lee physics of diluted SU(2) symmetric
Majorana spin liquid

» Tractable example of a disordered SU(2) symmetric Majorana
spin liquidind =2
with x(T) = & + ¥ as 7 — 0
» N(T'r) consistent with Bhatt-Lee physics
N(7)~T; for T, < T < J
N(T7) ~ T}/ exp(—cl'3/?) for T < T




Asymptotically exact realization of Bhatt-Lee physics

» Following Bhatt-Lee—
C — Density of free-moments
N(I'r) — Density of singlet-pairs with binding energies smaller
than T

Raises (interesting?) question: Alternate Strong-disorder RG
approach to go beyond tractable limit?



Connection to chiral orthogonal universality class and
Graphene

> x(T) x x(T) for particle-hole-symmetric canonical free-fermions
with vacancy disorder.
N(T") — integrated DOS for single-particle energies
0 < |e| <J x 107" (i.e. excluding zero modes)

» Vacancy-induced crossover in DOS in chiral orthogonal
universalitty class
Another example of same crossover: Undoped graphene with
vacancy disorder



Setting: Honeycomb model of Yao & Lee

H:JZT,—,/»\T;%/\S:,?-S);/—ZE-S’;. (1)
(FF')A 7

» 7: “Orbital degrees of freedom that remain dynamical at low
energy

» § = Z: spin-half moments

» Original motivation: Low-energy effective Hamiltonian for a
frustrated S = 1/2 model on the decorated honeycomb lattice
with multi-spin interactions
Each S: Low-energy projection of total spin of three spins.
¢ = +1: Two different low energy doublets that make up low
energy sector



Majorana representation

.
> oL = —ickc)
I
R

and cyclic permutations

» ¢ and b2 are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation



Constraint on fermion states

> Dy = —icicLcibibib = +1 at each site 7
Curious fact: D = —1 sector also provides faithful representation
of ¢ and 7.
-
No “unphysical” states. Instead: Two copies of physical states at
each site

> InD = +1 sector: 097 = ic2b
Similar reduction in D = —1 sector



Reduction leads to exact solution

» On bond with orientation A (A = x,y,z) (r')A, get term:
u(rr’))\(igr : 8r’)
W|th u(rr’))\ = —lbi\bf\/

» Three copies of Kitaev’s non-interacting Majorana model, all
coupled to same static Z, gauge field



Majorana fermion Hamiltonian

Z Z gy (icg ey + h.c.) —&—BZlcac’ 2)

where B = B3.
» Convenient: Canonical fermions f; = (c& — ic)/2
> Si=ickel=flfr—1/2
» Want to compute: m* = " (S%)/2L* as function of B and obtain
X(T) =4 at B =0



Calculating susceptibility

» Hamiltonian H for f fermions:
Tight-binding model with static Z, gauge-fields u determining
signs of each hopping matrix element ¢ = u|J|
> x(T) related to f fermion compressibility (7T at
particle-hole-symmetric chemical potential © = B = 0.
» ¢* Majorana plays no role in susceptibility calculation
e/
> X(T) = %fdeptot.(E)ﬁ
where pi(€) is full DOS of H



Projection issues?

» In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
Subtle for impurity susceptibility etc
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)
(building on: Willans-Chalker-Moessner,
Baskaran-Mandal-Shankar, Yao-Zhang-Kivelson)

» What happens here?
Again: Only subleading corrections in general.

» For specific boundary conditions: Coefficient of subleading
corrections zero



Flux-binding

> Lieb-Loss heuristics:
Each vacancy binds static 7-flux in ground-state sector.
Gap to other flux sectors
(Kitaev, Willans-Chalker-Moessner)

» At low temperature, y dominated by this flux-sector



Flux-attachment

» Send flux-strings off to one open edge
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Connection to vacancy-impurities in Graphene

» Without flux-attachment, H is tight-binding model for graphene
with compensated vacancies

» Study numerically with and without flux attachment



Dilution

» Remove honeycomb lattice sites at random

» Global “compensation”: Equal number of vacancies on A and B
sublattices
Protocol: Randomly/alternately pick sublattice, then pick random
site to remove, ensure global compensation

» Exclusion constraints on vacancies—prevent disconnecting
lattice into clusters, prevent dangling bonds.

» Choices eliminate “graph zeroes”



Choice of geometry

» Semi-open L x L unit cells (2L? sites in undiluted sample) and
armchair edges

» Vacancies excluded from interrupting armchair edge

» L chosen even and antiperiodic boundary conditions or odd and
periodic boundary conditions

» Choices eliminate boundary-induced graph zeroes.

» Any zero modes will now be “nontrivial”



Computational details

» Form H?, the square of the tight-binding Hamiltonian H (with
hopping amplitude ¢ = 1 between nearest-neighbours), and work
with the (1 —n,)L? x (1 — n,)L? block (Txz)!Tup Where Ty is the
matrix of hopping amplitudes from undeleted B sublattice sites to
undeleted A sublattice sites

» Fully multiprecision implementation of the ALGOL routines in
Wilkinson’s handbook to count eigenvalues of (Txz)' T4z below
10724,

» Results checked at moderate L and moderate A against
LAPACK routines.



Formulary

> puor(€) = p(e) +wo(e)
> NID) =21 ple)de
(I' = log,o(1/[€l))
» Modified Gade-Wegner form:
PE) ~ L ebinel”
equivalently:
NT) = al'—+ebrs
(x = 3/2, two free parameters a and b)
» Dyson form:

€)~ ———
)™ elogl1 e
equivalently:
N(T') = I'¥ (two free parameters ¢ and y)



Computational details—II

» For each sample, computations first done in a coarse-grid of
A =T, then N (T") “filled in” iteratively when needed. Final grid
spacing A(T") = 0.5.

» Lowest-nonzero gap 10~ "« in a given sample obtained with
accuracy of A(I'y) = 0.5.

> wy, (number of zero modes per unit volume) given by Ny (T', L)
after “last” downward step.

» “Last”: Grid extends to I';.x as high as 100—stability checked by
varying precision

» Study N.(T') = Nio(T', L) — wy, and wy, for ~ 3000 samples



Alternate (less painful) protocol

> Keep track of differences Niot(I'it+1) — Niot(I':)
» Obtain |e|p(e) directly
» Poorer statistical properties, but finesses zero mode question



Zero modes
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Zero modes
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Rigorous lower-bound on zero modes
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Implies w > na, (concentration of 4-triangles)




Robust to hopping disorder

» R mode robust to bond disorder (but not 4-triangles).

» More general R-type zero modes possible, also robust to bond
disorder

» Dominate over 4-triangles except for asymptotically small n, (out
of reach)



N(T) for n, = 0.05

n =0.05
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Taking the thermodynamic limit

n = 0.05
V
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Thermodynamic limit: n, = 0.05

n = 0.05
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N(T) for n, = 0.0625

n = 0.0625
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N(T) for n, = 0.075
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N(T) for n, = 0.1
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Physics:

» w depends on n, and correlations between positions of
vacancies

» |s crossover I'. and intermediate asymptotic exponent y
“quasi-universal”?

» Operational definition of “Quasi-Universality”:
Vary n,, vary correlations.
If resulting w is same, crossover I'. and y same...



Toy-model: Dilution by 4-triangles (n, = 0.0049)
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Check crossover systematics
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Another aspect of crossover systematics
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Kitaev: Zero modes
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Kitaev: Zero modes
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Kitaev: N(I)
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Kitaev: N(I)
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Kitaev: Crossover systematics
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Comments on other work

Evers group: 0 <y < 1

(Hafner et. al. 2014)

Mirlin group prediction: y = 0.5

(Ostrovsky et. al. 2014)

Willans-Chalker-Moessner (in gapped phase of Kitaev): y = 0.7
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