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Motivation

I Random impurity potentials localize electron wavefunctions in
d = 1
Weak-localization in d = 2, mobility edge in d = 3 . . .
(Gang of Four 1979)

I What about hopping disorder?
I Right way to ask this question: Are symmetries preserved by

disordered Hamiltonian different?



Bipartite random hopping problem

I Random (real) nearest neighbour hopping on bipartite lattices
H has bipartite or “chiral” symmetry: Every state at energy ε has
partner at energy −ε (wavefunction changes sign on one
sublattice)

I Bipartite symmetry broken by random potentials or next-nearest
neighbour hops



The question

I ε = 0 is special in such problems
Natural question: Does anything interesting happen?



Some answers in d = 1

I Density of states diverges very strongly as ε→ 0
ρ(ε) ∼ |ε|−1 1

log3(Ω/|ε|)
Dyson (’53), Theodorou & Cohen (’76), Eggarter & Riedinger
(’78)
Simplest example of strong-disorder renormalization group fixed
point
Motrunich, KD, Huse (’00,’01)

I Also: Diverging length scale as ε→ 0 limit—Loosely identified
with localization length (not-quite . . . )



Some answers in d = 2

I Gade & Wegner (’91-93): Density of states diverges somewhat
less strongly as ε→ 0
ρ(ε) ∼ |ε|−1 exp(−b log1/x(Ω/|ε|)) with x = 2
Think this is arcane?

I Then try this:
Real answer has x = 3/2, due to a strong-disorder effect.
Motrunich, KD, Huse (’02); Motrunich, Ph.D thesis (’01).
confirmed field-theoretically by Mudry, Ryu, Furusaki (’03)



Vacancy-disorder

I Another kind of disorder: Missing sites in tight-binding model
Natural if substitutional impurities correspond to missing orbital

I Question: Does vacancy-disorder change the asymptotic
low-energy behaviour of ρ(ε)?
Notice: No change in symmetries of microscopic H



Our focus today

I Vacancies in tight-binding model for graphene
I Vacancies modeled by deleteting sites

No interactions, no warping, no substrate charges, single-band
model . . .
Simplest possible abstraction of complicated system



Switch topics: Bhatt-Lee physics in Si:P
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I Low density of P dopants in Si→ Half-filled “Hubbard model” on
random lattice
Electrical insulator

I At low energies: Physics of S = 1/2 local moments



Low energy spin physics
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I
∑

i,j Jij~Si ·~Sj with broad distribution of Jij

I Singlet pairs with broad distribution of binding energies
I Tχ(T): Pairs with binding energy < T
χ(T) ∼ N(T)

T ∼ 1
Tα with α set by concentration of P

(Bhatt & Lee)



Asymptotically exact?

I In d = 1, picture asymptotically exact for the random-exchange
antiferromagnetic chain
χ(T) =

Γ−2
T
T as T → 0.

(ΓT ≡ log(J/T) [J: overall scale of antiferromagnetic exchange].)
(Dasgupta & Ma, D. S. Fisher)

I For d > 1, status unclear (strong-disorder RG inconclusive)
(Motrunich & Huse)



Bhatt-Lee physics of diluted SU(2) symmetric
Majorana spin liquid

I Tractable example of a disordered SU(2) symmetric Majorana
spin liquid in d = 2
with χ(T) = C

4T + N(ΓT )
4T as T → 0

I N(ΓT) consistent with Bhatt-Lee physics
N(ΓT) ∼ Γ−y

T for Tcr � T � J
N(ΓT) ∼ Γ

1/3
T exp(−cΓ

2/3
T ) for T � Tcr



Asymptotically exact realization of Bhatt-Lee physics

I Following Bhatt-Lee—
C → Density of free-moments
N(ΓT)→ Density of singlet-pairs with binding energies smaller
than T

Raises (interesting?) question: Alternate Strong-disorder RG
approach to go beyond tractable limit?



Connection to chiral orthogonal universality class and
Graphene

I χ(T) ∝ κ(T) for particle-hole-symmetric canonical free-fermions
with vacancy disorder.
N(Γ)→ integrated DOS for single-particle energies
0 < |ε| < J × 10−Γ (i.e. excluding zero modes)

I Vacancy-induced crossover in DOS in chiral orthogonal
universalitty class
Another example of same crossover: Undoped graphene with
vacancy disorder



Setting: Honeycomb model of Yao & Lee

H = J
∑
〈~r~r′〉λ

τλ~r τ
λ
~r′
~S~r ·~S~r′ −

∑
~r

~B ·~S~r . (1)

I ~τ : “Orbital degrees of freedom that remain dynamical at low
energy

I ~S = ~σ
2 : spin-half moments

I Original motivation: Low-energy effective Hamiltonian for a
frustrated S = 1/2 model on the decorated honeycomb lattice
with multi-spin interactions
Each ~S: Low-energy projection of total spin of three spins.
τ z = ±1: Two different low energy doublets that make up low
energy sector



Majorana representation

I σz
~r = −icx

~rcy
~r

τ z
~r = −ibx

~rby
~r

and cyclic permutations
I cλ~r and bλ~r are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation



Constraint on fermion states

I D~r ≡ −icx
~rcy
~rcz
~rb

x
~rby
~rbz
~r = +1 at each site ~r

Curious fact: D = −1 sector also provides faithful representation
of ~σ and ~τ .
→
No “unphysical” states. Instead: Two copies of physical states at
each site

I In D = +1 sector: σα~r τ
β
~r = icα~r bβ~r

Similar reduction in D = −1 sector



Reduction leads to exact solution

I On bond with orientation λ (λ = x, y, z) 〈rr′〉λ, get term:
u〈rr′〉λ(i~cr ·~cr′)

with u〈rr′〉λ = −ibλr bλr′
I Three copies of Kitaev’s non-interacting Majorana model, all

coupled to same static Z2 gauge field



Majorana fermion Hamiltonian

H =
J
2

∑
α=x,y,z

∑
〈~r~r′〉λ

u〈~r~r′〉λ(icα~r cα~r′ + h.c.) + B
∑
~r

icx
~rcy
~r (2)

where ~B = Bẑ.
I Convenient: Canonical fermions f~r = (cx

~r − icy
~r)/2

I Sz
~r = icx

~rcy
~r = f †~r f~r − 1/2

I Want to compute: mz ≡
∑

r〈S
z
~r〉/2L2 as function of B and obtain

χ(T) = dmz

dB at B = 0



Calculating susceptibility

I Hamiltonian H for f fermions:
Tight-binding model with static Z2 gauge-fields u determining
signs of each hopping matrix element t = u|J|

I χ(T) related to f fermion compressibility κ(T) at
particle-hole-symmetric chemical potential µ ≡ B = 0.

I cz Majorana plays no role in susceptibility calculation
I χ(T) = 1

T

∫
dερtot.(ε)

eε/T

(eε/T +1)2

where ρtot(ε) is full DOS of H



Projection issues?

I In usual Kitaev model: Projection gives subleading corrections in
thermodynamic limit
Subtle for impurity susceptibility etc
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)
(building on: Willans-Chalker-Moessner,
Baskaran-Mandal-Shankar, Yao-Zhang-Kivelson)

I What happens here?
Again: Only subleading corrections in general.

I For specific boundary conditions: Coefficient of subleading
corrections zero



Flux-binding

I Lieb-Loss heuristics:
Each vacancy binds static π-flux in ground-state sector.
Gap to other flux sectors
(Kitaev, Willans-Chalker-Moessner)

I At low temperature, χ dominated by this flux-sector



Flux-attachment

I Send flux-strings off to one open edge
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Connection to vacancy-impurities in Graphene

I Without flux-attachment, H is tight-binding model for graphene
with compensated vacancies

I Study numerically with and without flux attachment



Dilution

I Remove honeycomb lattice sites at random
I Global “compensation”: Equal number of vacancies on A and B

sublattices
Protocol: Randomly/alternately pick sublattice, then pick random
site to remove, ensure global compensation

I Exclusion constraints on vacancies—prevent disconnecting
lattice into clusters, prevent dangling bonds.

I Choices eliminate “graph zeroes”



Choice of geometry

I Semi-open L× L unit cells (2L2 sites in undiluted sample) and
armchair edges

I Vacancies excluded from interrupting armchair edge
I L chosen even and antiperiodic boundary conditions or odd and

periodic boundary conditions
I Choices eliminate boundary-induced graph zeroes.
I Any zero modes will now be “nontrivial”



Computational details

I Form H2, the square of the tight-binding Hamiltonian H (with
hopping amplitude t = 1 between nearest-neighbours), and work
with the (1− nv)L2 × (1− nv)L2 block (TAB)†TAB where TAB is the
matrix of hopping amplitudes from undeleted B sublattice sites to
undeleted A sublattice sites

I Fully multiprecision implementation of the ALGOL routines in
Wilkinson’s handbook to count eigenvalues of (TAB)†TAB below
10−2Λ.

I Results checked at moderate L and moderate Λ against
LAPACK routines.



Formulary

I ρtot(ε) = ρ(ε) + wδ(ε)
I N(Γ) = 2

∫ 10−Γ

0 ρ(ε)dε
(Γ = log10(1/|ε|))

I Modified Gade-Wegner form:
ρ(E) ∼ 1

|ε| e−b| ln ε|1/x

equivalently:

N(Γ) = aΓ1− 1
x e−bΓ

1
x

(x = 3/2, two free parameters a and b)
I Dyson form:

ρ(ε) ∼ 1
|ε|[log[1/|ε|]]1+y

equivalently:
N(Γ) = cΓ−y (two free parameters c and y)



Computational details—II

I For each sample, computations first done in a coarse-grid of
Λ = Γi, then Ntot(Γ) “filled in” iteratively when needed. Final grid
spacing ∆(Γ) = 0.5.

I Lowest-nonzero gap 10−Γg in a given sample obtained with
accuracy of ∆(Γg) = 0.5.

I wL (number of zero modes per unit volume) given by Ntot(Γ,L)

after “last” downward step.
I “Last”: Grid extends to Γmax as high as 100—stability checked by

varying precision
I Study NL(Γ) = Ntot(Γ,L)− wL and wL for ∼ 3000 samples



Alternate (less painful) protocol

I Keep track of differences Ntot(Γi+1)− Ntot(Γi)

I Obtain |ε|ρ(ε) directly
I Poorer statistical properties, but finesses zero mode question



Zero modes
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Zero modes
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Rigorous lower-bound on zero modes
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Implies w ≥ n∆4 (concentration of 4-triangles)



Robust to hopping disorder

I R6 mode robust to bond disorder (but not 4-triangles).
I More general R-type zero modes possible, also robust to bond

disorder
I Dominate over 4-triangles except for asymptotically small nv (out

of reach)



N(Γ) for nv = 0.05
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Taking the thermodynamic limit
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Thermodynamic limit: nv = 0.05
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Γ∗gap
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N(Γ) for nv = 0.0625
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N(Γ) for nv = 0.075
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N(Γ) for nv = 0.1
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Γ∗gap
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Γ∗gap

0 5 10 15 20 25
Γ

g

0

0.02

0.04

0.06

0.08

0.1

0.12

P
(Γ

g)

L= 140
L= 160
L=180

0 10 20 30 40 50
Γ

g

0

0.01

0.02

0.03

0.04

0.05

P
(Γ

g)

L= 160
L= 180
L= 200

n
v
= 0.0625

n
v
= 0.1



Physics:

I w depends on nv and correlations between positions of
vacancies

I Is crossover Γc and intermediate asymptotic exponent y
“quasi-universal”?

I Operational definition of “Quasi-Universality”:
Vary nv, vary correlations.
If resulting w is same, crossover Γc and y same...



Toy-model: Dilution by 4-triangles (nv = 0.0049)
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Check crossover systematics
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Another aspect of crossover systematics
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Kitaev: Zero modes
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Kitaev: Zero modes
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Kitaev: N(Γ)
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Kitaev: N(Γ)
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Kitaev: Crossover systematics
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Comments on other work

Evers group: 0 < y < 1
(Hafner et. al. 2014)
Mirlin group prediction: y = 0.5
(Ostrovsky et. al. 2014)
Willans-Chalker-Moessner (in gapped phase of Kitaev): y = 0.7
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