# Vacancy-induced low-energy states in undoped graphene 

Bhatt-Lee physics in the Kitaev model \& crossover behaviour in Chiral Orthogonal universality class. . .

Kedar Damle, Group Seminar OIST May '17
Tata Institute, Bombay


Sambuddha Sanyal

## Motivation

- Random impurity potentials localize electron wavefunctions in $d=1$
Weak-localization in $d=2$, mobility edge in $d=3 \ldots$
(Gang of Four 1979)
- What about hopping disorder?
- Right way to ask this question: Are symmetries preserved by disordered Hamiltonian different?


## Bipartite random hopping problem

- Random (real) nearest neighbour hopping on bipartite lattices $H$ has bipartite or "chiral" symmetry: Every state at energy $\epsilon$ has partner at energy $-\epsilon$ (wavefunction changes sign on one sublattice)
- Bipartite symmetry broken by random potentials or next-nearest neighbour hops


## The question

- $\epsilon=0$ is special in such problems

Natural question: Does anything interesting happen?

## Some answers in $d=1$

- Density of states diverges very strongly as $\epsilon \rightarrow 0$
$\rho(\epsilon) \sim|\epsilon|^{-1} \frac{1}{\log ^{3}(\Omega /|\epsilon|)}$
Dyson ('53), Theodorou \& Cohen ('76), Eggarter \& Riedinger ('78)
Simplest example of strong-disorder renormalization group fixed point
Motrunich, KD, Huse ('00,'01)
- Also: Diverging length scale as $\epsilon \rightarrow 0$ limit—Loosely identified with localization length (not-quite ...)


## Some answers in $d=2$

- Gade \& Wegner ('91-93): Density of states diverges somewhat less strongly as $\epsilon \rightarrow 0$ $\rho(\epsilon) \sim|\epsilon|^{-1} \exp \left(-b \log ^{1 / x}(\Omega /|\epsilon|)\right)$ with $x=2$
Think this is arcane?
- Then try this:

Real answer has $x=3 / 2$, due to a strong-disorder effect. Motrunich, KD, Huse ('02); Motrunich, Ph.D thesis ('01). confirmed field-theoretically by Mudry, Ryu, Furusaki ('03)

## Vacancy-disorder

- Another kind of disorder: Missing sites in tight-binding model Natural if substitutional impurities correspond to missing orbital
- Question: Does vacancy-disorder change the asymptotic low-energy behaviour of $\rho(\epsilon)$ ?
Notice: No change in symmetries of microscopic $H$


## Our focus today

- Vacancies in tight-binding model for graphene
- Vacancies modeled by deleteting sites

No interactions, no warping, no substrate charges, single-band model...
Simplest possible abstraction of complicated system

## Switch topics: Bhatt-Lee physics in Si:P



- Low density of P dopants in $\mathrm{Si} \rightarrow$ Half-filled "Hubbard model" on random lattice
Electrical insulator
- At low energies: Physics of $S=1 / 2$ local moments


## Low energy spin physics



- $\sum_{i, j} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}$ with broad distribution of $J_{i j}$
- Singlet pairs with broad distribution of binding energies
- $T \chi(T)$ : Pairs with binding energy $<T$
$\chi(T) \sim \frac{N(T)}{T} \sim \frac{1}{T^{\alpha}}$ with $\alpha$ set by concentration of P (Bhatt \& Lee)


## Asymptotically exact?

- In $d=1$, picture asymptotically exact for the random-exchange antiferromagnetic chain
$\chi(T)=\frac{\Gamma_{T}^{-2}}{T}$ as $T \rightarrow 0$.
( $\Gamma_{T} \equiv \log (J / T)[J$ : overall scale of antiferromagnetic exchange].)
(Dasgupta \& Ma, D. S. Fisher)
- For $d>1$, status unclear (strong-disorder RG inconclusive) (Motrunich \& Huse)


## Bhatt-Lee physics of diluted $\mathrm{SU}(2)$ symmetric Majorana spin liquid

- Tractable example of a disordered $\operatorname{SU}(2)$ symmetric Majorana spin liquid in $d=2$
with $\chi(T)=\frac{\mathcal{C}}{4 T}+\frac{N\left(\Gamma_{T}\right)}{4 T}$ as $T \rightarrow 0$
- $N\left(\Gamma_{T}\right)$ consistent with Bhatt-Lee physics

$$
\begin{aligned}
& N\left(\Gamma_{T}\right) \sim \Gamma_{T}^{-y} \text { for } T_{\text {cr }} \ll T \ll J \\
& N\left(\Gamma_{T}\right) \sim \Gamma_{T}^{1 / 3} \exp \left(-c \Gamma_{T}^{2 / 3}\right) \text { for } T \ll T_{\text {cr }}
\end{aligned}
$$

## Asymptotically exact realization of Bhatt-Lee physics

- Following Bhatt-Lee-
$\mathcal{C} \rightarrow$ Density of free-moments
$N\left(\Gamma_{T}\right) \rightarrow$ Density of singlet-pairs with binding energies smaller than $T$

Raises (interesting?) question: Alternate Strong-disorder RG approach to go beyond tractable limit?

## Connection to chiral orthogonal universality class and Graphene

- $\chi(T) \propto \kappa(T)$ for particle-hole-symmetric canonical free-fermions with vacancy disorder.
$N(\Gamma) \rightarrow$ integrated DOS for single-particle energies
$0<|\epsilon|<J \times 10^{-\Gamma}$ (i.e. excluding zero modes)
- Vacancy-induced crossover in DOS in chiral orthogonal universalitty class
Another example of same crossover: Undoped graphene with vacancy disorder


## Setting: Honeycomb model of Yao \& Lee

$$
\begin{equation*}
\mathcal{H}=J \sum_{\left\langle\overrightarrow{r^{\prime}}\right\rangle_{\lambda}} \tau_{\vec{r}}^{\lambda} \tau_{\vec{r}}^{\lambda} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}^{\prime}}-\sum_{\vec{r}} \vec{B} \cdot \vec{S}_{\vec{r}} . \tag{1}
\end{equation*}
$$

- $\vec{\tau}$ : "Orbital degrees of freedom that remain dynamical at low energy
- $\vec{S}=\frac{\vec{\sigma}}{2}$ : spin-half moments
- Original motivation: Low-energy effective Hamiltonian for a frustrated $S=1 / 2$ model on the decorated honeycomb lattice with multi-spin interactions
Each $\vec{S}$ : Low-energy projection of total spin of three spins.
$\tau^{z}= \pm 1$ : Two different low energy doublets that make up low energy sector


## Majorana representation

- $\sigma_{\vec{r}}^{z}=-i c_{\vec{r}}^{x} c_{\vec{r}}^{y}$
$\tau_{\vec{r}}^{z}=-i b_{\vec{r}}^{x} b_{\vec{r}}^{y}$
and cyclic permutations
- $c_{\vec{r}}^{\lambda}$ and $b_{\vec{r}}^{\lambda}$ are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation

## Constraint on fermion states

- $D_{\vec{r}} \equiv-i c_{\vec{r}}^{x} y_{\vec{r}}^{y} c_{\vec{r}}^{z} b_{\vec{r}}^{x} b_{\vec{r}}^{y} b_{\vec{r}}^{z}=+1$ at each site $\vec{r}$

Curious fact: $D=-1$ sector also provides faithful representation of $\vec{\sigma}$ and $\vec{\tau}$.
$\rightarrow$
No "unphysical" states. Instead: Two copies of physical states at each site

- In $D=+1$ sector: $\sigma_{\vec{r}}^{\alpha} \tau_{\vec{r}}^{\beta}=i c_{\vec{r}}^{\alpha} b_{\vec{r}}^{\beta}$

Similar reduction in $D=-1$ sector

## Reduction leads to exact solution

- On bond with orientation $\lambda(\lambda=x, y, z)\left\langle r r^{\prime}\right\rangle \lambda$, get term: $u_{\left\langle r r^{\prime}\right\rangle \lambda}\left(i \vec{c}_{r} \cdot \vec{c}_{r^{\prime}}\right)$ with $u_{\left\langle r r^{\prime}\right\rangle \lambda}=-i b_{r}^{\lambda} b_{r^{\prime}}^{\lambda}$
- Three copies of Kitaev's non-interacting Majorana model, all coupled to same static $Z_{2}$ gauge field


## Majorana fermion Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{J}{2} \sum_{\alpha=x, y, z, z} \sum_{\left\langle\vec{r} \vec{r}^{\prime}\right\rangle_{\lambda}} u_{\left\langle\overrightarrow{r^{\prime}}\right\rangle_{\lambda}}\left(i c_{\vec{r}}^{\alpha} c_{\vec{r}^{\prime}}^{\alpha}+\text { h.c. }\right)+B \sum_{\vec{r}} i c_{\vec{r}}^{x} c_{\vec{r}}^{y} \tag{2}
\end{equation*}
$$

where $\vec{B}=B \hat{z}$.

- Convenient: Canonical fermions $f_{\vec{r}}=\left(c_{\vec{r}}^{x}-i c_{\vec{r}}^{y}\right) / 2$
- $S_{\vec{r}}^{z}=i c_{\vec{r}}^{x} c_{\vec{r}}^{y}=f_{\vec{r}}^{\dagger} f_{\vec{r}}-1 / 2$
- Want to compute: $m^{z} \equiv \sum_{r}\left\langle S_{\vec{r}}^{z}\right\rangle / 2 L^{2}$ as function of $B$ and obtain $\chi(T)=\frac{d m^{2}}{d B}$ at $B=0$


## Calculating susceptibility

- Hamiltonian $H$ for $f$ fermions:

Tight-binding model with static $Z_{2}$ gauge-fields $u$ determining signs of each hopping matrix element $t=u|J|$

- $\chi(T)$ related to $f$ fermion compressibility $\kappa(T)$ at particle-hole-symmetric chemical potential $\mu \equiv B=0$.
- $c^{z}$ Majorana plays no role in susceptibility calculation
- $\chi(T)=\frac{1}{T} \int d \epsilon \rho_{\text {tot. }}(\epsilon) \frac{e^{\epsilon / T}}{\left(e^{\epsilon / T}+1\right)^{2}}$
where $\rho_{\mathrm{tot}}(\epsilon)$ is full DOS of $H$


## Projection issues?

- In usual Kitaev model: Projection gives subleading corrections in thermodynamic limit
Subtle for impurity susceptibility etc
(Pedrocchi-Chesi-Loss, Zschocke-Vojta)
(building on: Willans-Chalker-Moessner, Baskaran-Mandal-Shankar, Yao-Zhang-Kivelson)
- What happens here?

Again: Only subleading corrections in general.

- For specific boundary conditions: Coefficient of subleading corrections zero


## Flux-binding

- Lieb-Loss heuristics:

Each vacancy binds static $\pi$-flux in ground-state sector. Gap to other flux sectors
(Kitaev, Willans-Chalker-Moessner)

- At low temperature, $\chi$ dominated by this flux-sector


## Flux-attachment

- Send flux-strings off to one open edge



## Connection to vacancy-impurities in Graphene

- Without flux-attachment, $H$ is tight-binding model for graphene with compensated vacancies
- Study numerically with and without flux attachment


## Dilution

- Remove honeycomb lattice sites at random
- Global "compensation": Equal number of vacancies on $A$ and $B$ sublattices
Protocol: Randomly/alternately pick sublattice, then pick random site to remove, ensure global compensation
- Exclusion constraints on vacancies-prevent disconnecting lattice into clusters, prevent dangling bonds.
- Choices eliminate "graph zeroes"


## Choice of geometry

- Semi-open $L \times L$ unit cells ( $2 L^{2}$ sites in undiluted sample) and armchair edges
- Vacancies excluded from interrupting armchair edge
- $L$ chosen even and antiperiodic boundary conditions or odd and periodic boundary conditions
- Choices eliminate boundary-induced graph zeroes.
- Any zero modes will now be "nontrivial"


## Computational details

- Form $H^{2}$, the square of the tight-binding Hamiltonian $H$ (with hopping amplitude $t=1$ between nearest-neighbours), and work with the $\left(1-n_{v}\right) L^{2} \times\left(1-n_{v}\right) L^{2}$ block $\left(T_{A B}\right)^{\dagger} T_{A B}$ where $T_{A B}$ is the matrix of hopping amplitudes from undeleted $B$ sublattice sites to undeleted $A$ sublattice sites
- Fully multiprecision implementation of the ALGOL routines in Wilkinson's handbook to count eigenvalues of $\left(T_{A B}\right)^{\dagger} T_{A B}$ below $10^{-2 \Lambda}$.
- Results checked at moderate $L$ and moderate $\Lambda$ against LAPACK routines.


## Formulary

- $\rho_{\mathrm{tot}}(\epsilon)=\rho(\epsilon)+w \delta(\epsilon)$
- $N(\Gamma)=2 \int_{0}^{10^{-\Gamma}} \rho(\epsilon) d \epsilon$
$\left(\Gamma=\log _{10}(1 /|\epsilon|)\right)$
- Modified Gade-Wegner form:
$\rho(E) \sim \frac{1}{|\epsilon|} e^{-b|\ln \epsilon|^{1 / x}}$
equivalently:
$N(\Gamma)=a \Gamma^{1-\frac{1}{x}} e^{-b \Gamma^{\frac{1}{x}}}$
( $x=3 / 2$, two free parameters $a$ and $b$ )
- Dyson form:
$\rho(\epsilon) \sim \frac{1}{|\epsilon|[\log [1 /|\epsilon|]]^{1+y}}$
equivalently:
$N(\Gamma)=c \Gamma^{-y}$ (two free parameters $c$ and $y$ )


## Computational details-II

- For each sample, computations first done in a coarse-grid of $\Lambda=\Gamma_{i}$, then $N_{\text {tot }}(\Gamma)$ "filled in" iteratively when needed. Final grid spacing $\Delta(\Gamma)=0.5$.
- Lowest-nonzero gap $10^{-\Gamma_{s}}$ in a given sample obtained with accuracy of $\Delta\left(\Gamma_{g}\right)=0.5$.
- $w_{L}$ (number of zero modes per unit volume) given by $N_{\text {tot }}(\Gamma, L)$ after "last" downward step.
- "Last": Grid extends to $\Gamma_{\max }$ as high as 100 -stability checked by varying precision
- Study $N_{L}(\Gamma)=N_{\text {tot }}(\Gamma, L)-w_{L}$ and $w_{L}$ for $\sim 3000$ samples


## Alternate (less painful) protocol

- Keep track of differences $N_{\text {tot }}\left(\Gamma_{i+1}\right)-N_{\text {tot }}\left(\Gamma_{i}\right)$
- Obtain $|\epsilon| \rho(\epsilon)$ directly
- Poorer statistical properties, but finesses zero mode question


## Zero modes



## Zero modes



## Rigorous lower-bound on zero modes



4-triangle and $\mathcal{R}_{6}$ motifs
$w_{L}^{(i)} \geq\left[\max \left(N_{\Delta_{4 A}}^{(i)}, N_{\Delta_{4 B}}^{(i)}\right] / L^{2}\right.$
Implies $w \geq n_{\Delta_{4}}$ (concentration of 4-triangles)

## Robust to hopping disorder

- $\mathcal{R}_{6}$ mode robust to bond disorder (but not 4-triangles).
- More general $\mathcal{R}$-type zero modes possible, also robust to bond disorder
- Dominate over 4-triangles except for asymptotically small $n_{v}$ (out of reach)


## $N(\Gamma)$ for $n_{v}=0.05$



## Taking the thermodynamic limit




## Thermodynamic limit: $n_{v}=0.05$




## $N(\Gamma)$ for $n_{v}=0.0625$



## $N(\Gamma)$ for $n_{v}=0.075$



## $N(\Gamma)$ for $n_{v}=0.1$





## Physics:

- $w$ depends on $n_{v}$ and correlations between positions of vacancies
- Is crossover $\Gamma_{c}$ and intermediate asymptotic exponent $y$ "quasi-universal"?
- Operational definition of "Quasi-Universality": Vary $n_{v}$, vary correlations.
If resulting $w$ is same, crossover $\Gamma_{c}$ and $y$ same...


## Toy-model: Dilution by 4-triangles ( $n_{v}=0.0049$ )



## Check crossover systematics



Filled symbol: 4-triangle diluted sample

## Another aspect of crossover systematics


$l_{c} \equiv 1 / \sqrt{N\left(\Gamma_{c}\right)}$
$l_{w} \equiv 1 / \sqrt{w}$
Caution: Not claiming $l_{c}=l_{w}$, only $l_{c} \sim l_{w}$.

## Kitaev: Zero modes



## Kitaev: Zero modes



## Kitaev: $N(\Gamma)$



## Kitaev: $N(\Gamma)$



## Kitaev: Crossover systematics



## Comments on other work

Evers group: $0<y<1$
(Hafner et. al. 2014)
Mirlin group prediction: $y=0.5$
(Ostrovsky et. al. 2014)
Willans-Chalker-Moessner (in gapped phase of Kitaev): $y=0.7$

## Acknowledgements

- Collaborators:

Graphene: Sambuddha Sanyal (ICTS-TIFR) and Olexei Motrunich (Caltech)
Revisiting Kitaev: Sambuddha Sanyal (ICTS-TIFR), John
Chalker (Oxford) \& Roderich Moessner (MPIPKS)

- Computational resources at TIFR and ICTS-TIFR

