Using defects to probe strongly-correlated many-body states

Kedar Damle, Tata Institute, Mumbai RPMBT-15 OSU 2009

With A. Banerjee (Tata Institute) Acknowledgements: Discussions: S. Chandrasekharan, M. Metliski, O. Motrunich & S. Sachdev

Impurities yield information about host materials

- Impurities can be useful probes of interesting low temperature states of matter
 Alloul et. al. Rev. Mod. Phys. 81, 45 (2009).
 e.g Zn and Ni doping in CuO₂ planes of high-T_c superconductors
 non-magnetic impurities that cut spin-chains in quasi-1dimensional systems.
- Impurities change the state of system in immediate vicinity Changes can be picked up by local probes such as NMR

 Particularly interesting if system has 'nearby' competing ground-states
 Impurities can locally 'seed' a competing ground state with different ordering and symmetry properties

Borrowing from experiments

From experiments to numerical computations

- Use impurity effects to probe character of correlated ground state.
- Need: Efficient numerical techniques allowing computation for systems with impurities

In this talk:

 Impurity spin effects in an antiferromagnet on the verge of transition to a valence-bond solid (quantum paramagnet)

An unusual phase transition

 Antiferromagnet on verge of transition to a quantum paramagnet

Why so unusual?

- J term favours Neel ordered state that spontaneously breaks spin rotation symmetry
- Q term favours valence bond solid that spontaneously breaks lattice translation symmetry
- Standard Landau theory argument → First order transition or intermediate phase with co-existing orders

Apparently second order direct transition between two phases

- Sandvik 2007, using a new singlet-sector ground-state projection algorithm in valence bond basis (T = 0 results directly)
- Melko & Kaul 2007, using Quantum Monte Carlo at inverse temperature βQ ≈ L for L × L square lattice

Theoretical framework

- Senthil et. al. 2004: Landau theory does not work due to Berry phases in the action
- Critical region not well-described using standard action written in terms of order-parameter fields
- Instead: 'Natural' variables are S = 1/2 Z₄ vortices in the four-fold symmetry breaking VBS order. Coupled at critical point to emergent U(1) gauge field ('sound-mode' in order parameter phase)

Consequences

- Direct second order quantum critical point between Neel and VBS phases
- Critical Neel order parameter correlations:
 (*n*(*r*)*n*(0))_{crit} ~ *r*^{-(1+η_n)} with large η_n unlike usual critical points
- ► Pinning potential for phase φ of the VBS order parameter is irrelevant at transition → System cannot immediately choose between columnar VBS order and plaquette VBS order upon entering VBS phase

Deconfined critical point scenario:

- Claim of Melko and Kaul, and Sandvik:
 H_{JQ} provides an example of this physics
- Reasonably sharp, apparently second-order transition
 Reasonably good scaling behaviour at low temperatures above
 T = 0 quantum critical point
- ▶ Melko & Kaul (07): Large $\eta_n \approx 0.35 \pm 0.03$ in agreement with expectations

(Sandvik (07): $\eta_n = \eta_{\mathrm{VBS}} pprox 0.26 \pm 0.03$)

Kaul & Melko (07): Correlation length exponent ν ≈ 0.68 ± 0.04
 (Sandvik (07): ν ≈ 0.78 ± 0.03)

Sandvik 2009 (better data): η_n , ν agree with Kaul & Melko; $\eta_{\rm VBS} \approx 0.20 \pm 0.02$ (unpublished)

Controversy:

- Jiang, Chandrasekharan, Nyeffler & Wiese 2008: Very similar numerical data
- ► But: Analysis by 'flowgram' method (Kuklov *et. al.* 2006) \rightarrow apparent indication of (weakly) first order direct transition If Q_c determined by some 'crossing criterion' (ρ_S vs Q/J for various sizes *L*), crossing point drifts as size gets large 'Universal' value of ρ_s at putative critical point increases with *L* beyond some system size *L* Finite chance to be superfluid even at 'critical' point \rightarrow first order transition
- Results inconsistent with deconfined critical point scenario favoured by Melko and Kaul, and by Sandvik

Our goal: Look at impurity physics at putative critical point

Adding an impurity

- $\blacktriangleright H_{JQ} + J_{imp} \vec{S}_{imp} \cdot \vec{S}_0$
- Is J_{imp} a 'relevant perturbation' at bulk transition?
- What effect does it have on the bulk?

Singlet sector algorithm of Sandvik

- Singlet sector {|s⟩} of 2N spin S = 1/2 moments spanned by overcomplete basis.
 Decompose into N A-sublattice sites, and N B-sublattice sites {|s⟩} spanned by {|P⟩ = ⊗_A|AP(A)⟩}
 |AP(A)⟩ is singlet state of spin at A with spin at B = P(A) Basis is (very) overcomplete
- Start with arbitrary singlet state $|v_0\rangle$ and compute $\langle v_0|(-H)^m \hat{O}(-H)^m |v_0\rangle / \langle v_0|(-H)^{2m} |v_0\rangle$.
- ► Gives ground state expectation value of operator \hat{O} for 'large enough' *m* (in practice $m \sim N \times \Delta_s^{-1}$).

Crucial: Efficient importance sampling algorithm for computing $\langle v'_0 | (-H)^m | v_0 \rangle$ exploiting overcompleteness of basis Sandvik 2007; Sandvik & Beach 2007, Sandvik & Evertz 2008

Key ingredient of Sandvik's method

Action of *P_{AB}* is either a rearrangement of valence bonds
P_{A1}B2
P_{A1}B2
P_{A1}B2
P_{A1}B1
P_{A1}B1</li

・ロト ・ 戸 ・ ・ ヨ ・ ・ 日 ・

Generalizing to $S_{tot} = 1/2$

Simple but powerful generalization possible for $\{|S_{tot}^z = +1/2; S_{tot} = 1/2\rangle\}$ sector of 2N + 1 S = 1/2 moments (N + 1) A-sublattice sites and N B-sublattice sites

► Basis:
$$\left\{ |A_{\text{free}}; \mathcal{P} \rangle = |S_{A_{\text{free}}}^z = +\frac{1}{2} \rangle \otimes_{A \neq A_{\text{free}}} |A\mathcal{P}(A) \rangle \right\}$$

What makes it work:

 ⟨v'_{1/2}|(−H)^{2m}|v_{1/2}⟩ can be efficiently computed by efficient generalization of singlet sector method of Sandvik & Evertz.

Banerjee & KD 2009

Is small $J_{\rm imp}$ relevant at $Q_c \approx 25.64$?

► For small J_{imp} , $\langle S_{tot}^z \rangle_{bulk}$ is quadratic in scaling variable $J_{imp}L^{0.31}$ for $L \times L$ system.

 J_{imp} is relevant perturbation with eigenvalue $\lambda_{imp} = 0.31 \pm 0.03$ What is the interpretation of λ_{imp} ?

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Interpreting λ_{imp}

•
$$\vec{S}(r=0,\tau) = c_n \vec{n}(r=0,\tau) + c_L \vec{L}(r=0,\tau)$$

- Assuming \vec{n} is dominant piece: $H_{imp} = J_{imp} \int d\tau \vec{S}_{imp} \cdot \vec{n}(r = 0, \tau)$
- $[J_{imp}] = 1 [\vec{n}]$ assuming time scales like space (z = 1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

$$\blacktriangleright \ \left[\vec{n}\right] = (1 + \eta_n)/2$$

$$\lambda_{\rm imp} = (1 - \eta_n)/2$$

• Implies $\eta_n \approx 0.38 \pm 0.06$

Going with the flow...

J_{imp} relevant and flows to J_{imp} = ∞ fixed point
 S_{imp} binds S₀ into a singlet → L × L system with center site missing

Scaling at $J_{imp} = \infty$

 Standard scaling (Hoglund, Sandvik & Sachdev 2007, Metliski & Sachdev 2008):

Vacancy-induced Neel order at critical point $\sim L^{2-(1+\eta_n)/2}$:

Gives $\eta_n = 0.28 \pm 0.05$

Caveat emptor: slightly outside of error bars of $(1 - 2\lambda_{imp})$

Back to weak-coupling: $\langle S_{\text{bulk}}^{z}(\mathbf{Q} = (\pi/a, \pi/a)) \rangle$

Look at ⟨S^z_{bulk}(**Q**)⟩L^{(3-η_n)/2} for small J_{imp}. Use the value of η_n obtained from J_{imp} = ∞ results

Going with the flow...

A twist at ∞ : Induced VBS order has phase winding

- ► Look at $\langle V_x(\vec{r}) \rangle = \langle (-1)^x \vec{S}_{\vec{r}} \cdot (\vec{S}_{\vec{r}+\hat{x}} \vec{S}_{\vec{r}-\hat{x}}) \rangle$ and $\langle V_y(\vec{r}) \rangle = \langle (-1)^y \vec{S}_{\vec{r}} \cdot (\vec{S}_{\vec{r}+\hat{y}} - \vec{S}_{\vec{r}-\hat{y}}) \rangle$ Local site-centered complex VBS order parameter $V = V_x + iV_y$
- Phase φ_V = arctan(V_y/V_x) is linear function of angular coordinate θ

Snapshot of the spinon vortex

Scaling with size of induced VBS order

• How does $V_{00} = \sum_{r} V_r \exp(-i\theta_r)$ scale with *L*?

 $V_{00} \sim L^{p}$ with $p = 1.08 \pm 0.03$ (imaginary part of V_{00} negligible What exponent(s) is *p* related to?

Interpreting p

- Power p not straightforward to interpret Metliski & Sachdev 2008
- Depends on numerical values of bulk and boundary exponents η_{VBS} and η'_{VBS}.

$$(\langle V(r=0, au)V(r=0,0)
angle_{C}\sim 1/ au^{\prime}_{
m VBS}$$

- Case 1: $\eta_{\text{VBS}}^{\prime\prime} < 2$ $p = 2 - (\frac{\eta_{\text{VBS}}}{2} + \frac{1}{2})$
- ► Case 2: $\eta_{\text{VBS}}' > 2$ $p = 2 - \left(\frac{\eta_{\text{VBS}}'}{2} + \frac{\eta_{\text{VBS}}}{2} - \frac{1}{2}\right)$
- Our interpretation: Case 1 unlikely (Gives η_{VBS} very diferent from Sandvik (09): η_{VBS} ≈ 0.20 ± 0.02)

• Case 2: implies
$$\eta'_{\rm VBS} =$$
 2.64 \pm 0.06

(for what it is worth...)

Scaling of $\langle S^{z}(r) \rangle$ at $J_{imp} = \infty$

At second order critical point:

$$\langle S_{\mathbf{Q}}^{z}(\mathbf{r}) \rangle = \frac{1}{L^{(1+\eta_{n})/2}} f_{\mathbf{Q}}\left(\frac{\mathbf{r}}{L}\right) \text{ for } r >> 1$$
$$\langle S_{\mathbf{0}}^{z}(\mathbf{r}) \rangle = \frac{1}{L^{2}} f_{\mathbf{0}}\left(\frac{\mathbf{r}}{L}\right) \text{ for } r >> 1$$

Numerical tests: To avoid relying on arbitrariness in definition of $\langle S_{Q}^{z}(r) \rangle$ and $\langle S_{0}^{z}(r) \rangle$, Fourier transform $\langle S^{z}(r) \rangle$ and translate predictions to *q* space

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・
 </p

•
$$\langle S^z(\mathbf{q})
angle = g_0(\mathbf{q}L)$$
 for $|\mathbf{q}| \ll \pi$

►
$$\langle S^{z}(\mathbf{Q} + \mathbf{q}) \rangle = L^{2-(1+\eta_{n})/2} g_{\mathbf{Q}}(\mathbf{q}L)$$
 for $|\mathbf{q}| \ll \pi$

How well does this work?

Test near zero wavevector

 $m = q_x L/2\pi$ —Scaling not very good Check on systematic error: L = 64 calculation done with two projection powers

Test near zero wavevector

 $m_x = m_y = m = qL/2\pi$ —Scaling not very good Check on systematic error: L = 80 calculation done with two projection powers

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Zoom in on deviations from scaling

Test near wavevector **Q**

 $m = q_x L/2\pi$ —Scaling not very good Check on systematic error: L = 64 calculation done with two projection powers

Test near wavevector **Q**

 $m_x = m_y = m = qL/2\pi$ —Scaling not very good Check on systematic error: L = 80 calculation done with two projection powers Zoom in on deviations from scaling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Similar results of $V_r \exp(-i\theta_r)$

Fourier transform of $V_r \exp(-i\theta_r)$ should scale like $L^p g_V(\mathbf{q}L)$ for $|\mathbf{q}| \ll \pi$

Similar results of $V_r \exp(-i\theta_r)$

Again: scaling has corrections that go away very slowly with size

What have we learnt?

- Bulk properties at transition seem to agree with expectations at the deconfined critical point of Senthil *et. al.* (up to sizes L ~ 100).
 no direct evidence of first-order transition
- Impurity scaling predictions not as successful: Slow transients that seem to violate scaling at least up to size L ~ 100
- Real question: What is this very slow crossover? Is this again a signature of a weakly-first order transition at asymptotically large sizes? Or is there some irrelevant impurity operator (at r = 0) causing this slow crossover?

 $V_r \exp(-i\theta_r)$ along diagonal

 $V_r \exp(-i\theta_r)$ along y axis

<u>ି</u> ଅ ୬ ଏ ୯