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Impurities yield information about host materials

» Impurities can be useful probes of interesting low
temperature states of matter
Alloul et. al. Rev. Mod. Phys. 81, 45 (2009).
e.g Zn and Ni doping in CuO;, planes of high-T.
superconductors
non-magnetic impurities that cut spin-chains in
guasi-l1dimensional systems.

» Impurities change the state of system in immediate vicinity
Changes can be picked up by local probes such as NMR

» Particularly interesting if system has ‘nearby’ competing
ground-states

Impurities can locally ‘seed’ a competing ground state with
different ordering and symmetry properties



Borrowing from experiments

From experiments to numerical computations

» Use impurity effects to probe character of correlated
ground state.
» Need: Efficient numerical techniques allowing computation
for systems with impurities
In this talk:

» Impurity spin effects in an antiferromagnet on the verge of
transition to a valence-bond solid (quantum paramagnet)



An unusual phase transition

» Antiferromagnet on verge of transition to a quantum
paramagnet

Neel ordered AF Valence-bond solid
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(S=1/2 spins on a square lattice)
Sandvik 2007, Melko & Kaul 2007.



Why so unusual?

» J term favours Neel ordered state that spontaneously
breaks spin rotation symmetry

» Q term favours valence bond solid that spontaneously
breaks lattice translation symmetry

» Standard Landau theory argument — First order transition
or intermediate phase with co-existing orders
Apparently second order direct transition between two phases
» Sandvik 2007, using a new singlet-sector ground-state projection
algorithm in valence bond basis (T = 0 results directly)

» Melko & Kaul 2007, using Quantum Monte Carlo at inverse
temperature 5Q = L for L x L square lattice



Theoretical framework

» Senthil et. al. 2004: Landau theory does not work due to
Berry phases in the action

» Critical region not well-described using standard action
written in terms of order-parameter fields

» Instead: ‘Natural’ variables are S = 1/2 Z, vortices in the

four-fold symmetry breaking VBS order. Coupled at critical

point to emergent U(1) gauge field ( ‘sound-mode’ in order
parameter phase)



Consequences

» Direct second order quantum critical point between Neel
and VBS phases

» Critical Neel order parameter correlations:

(A(r)A(0))erit ~ r~1+m) with large 7, unlike usual critical
points

» Pinning potential for phase ¢ of the VBS order parameter
is irrelevant at transition — System cannot immediately
choose between columnar VBS order and plaquette VBS
order upon entering VBS phase
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Deconfined critical point scenario:

» Claim of Melko and Kaul, and Sandvik:
Hjo provides an example of this physics

» Reasonably sharp, apparently second-order transition
Reasonably good scaling behaviour at low temperatures above
T = 0 quantum critical point

» Melko & Kaul (07): Large 7, ~ 0.35 4+ 0.03 in agreement with
expectations
( Sandvik (07): n, = nves ~ 0.26 £ 0.03)

» Kaul & Melko (07): Correlation length exponent v =~ 0.68 + 0.04
( Sandvik (07): v ~ 0.78 4+ 0.03)

Sandvik 2009 (better data): n,, v agree with Kaul & Melko;
nves =~ 0.20 + 0.02 (unpublished)



Controversy:

» Jiang, Chandrasekharan, Nyeffler & Wiese 2008: Very
similar numerical data

» But: Analysis by ‘flowgram’ method (Kuklov et. al. 2006) —
apparent indication of (weakly) first order direct transition
If Q. determined by some ‘crossing criterion’ (ps vs Q/J for
various sizes L), crossing point drifts as size gets large
‘Universal’ value of ps at putative critical point increases with L
beyond some system size L
Finite chance to be superfluid even at ‘critical’ point — first order
transition

» Results inconsistent with deconfined critical point scenario
favoured by Melko and Kaul, and by Sandvik

Our goal: Look at impurity physics at putative critical point



Adding an impurity

> HJQ + Jimpsimp : So
> Is Jimp a ‘relevant perturbation’ at bulk transition?
» What effect does it have on the bulk?



Singlet sector algorithm of Sandvik

» Singlet sector {|s)} of 2N spin S = 1/2 moments spanned
by overcomplete basis.
Decompose into N A-sublattice sites, and N B-sublattice sites
{Is)} spanned by {|P) = @a|AP(A))}
|AP(A)) is singlet state of spin at A with spin at B = P(A)
Basis is (very) overcomplete

> Start with arbitrary singlet state |vo) and compute
(Vo|(—H)™O(=H)™|vo) / {Vo|(—H)*™|vo).

» Gives ground state expectation value of operator O for
‘large enough’ m (in practice m ~ N x Ag%h).

Crucial: Efficient importance sampling algorithm for computing
(Vol(—H)™|vo) exploiting overcompleteness of basis
Sandvik 2007; Sandvik & Beach 2007, Sandvik & Evertz 2008



Key ingredient of Sandvik’s method

» Action of P,g is either a rearrangement of valence bonds
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Generalizing to Sy = 1/2

» Simple but powerful generalization possible for
{|Sg; = +1/2; Siot = 1/2)} sector of 2N + 1 S = 1/2 moments
(N + 1) A-sublattice sites and N B-sublattice sites

> Basis: {|Afree; Py =182, = +1) arare |A7>(A)>}

» What makes it work:

B
ls.

2
Pr B, 1/2 X ﬂ I
[ — )
A, B A, B

> <vi/2\(—H)2m|v1/2> can be efficiently computed by efficient
generalization of singlet sector method of Sandvik &
Evertz.

Banerjee & KD 2009



Is small Jimp relevant at Q. ~ 25.64?

» For small Jimp, (Sfor)buik IS quadratic in scaling variable
JimpL%3! for L x L system.
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Jimp IS relevant perturbation with eigenvalue Aimp = 0.31 £ 0.03
What is the interpretation of A\jmp?



Interpreting Aimp

v

S(r =0,7) = cofi(r =0,7) + ¢ L(r =0,7)
Assuming n is dominant piece:

Himp = Jimpdeéimp “A(r =0,7)

[Jimp] =1 — [1]

assuming time scales like space (z = 1)
(] = (1 +m)/2

Aimp = (1 —mn)/2

Implies 7, ~ 0.38 4+ 0.06
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Going with the flow...

> Jimp relevant and flows to Jinp = oo fixed point
Simp binds Sy into a singlet — L x L system with center site
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Scaling at Jimp = o0

» Standard scaling (Hoglund, Sandvik & Sachdev 2007, Metliski

& Sachdev 2008):
Vacancy-induced Neel order at critical point ~ L2~ (1+m)/2:
5 X-1.358
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Gives np = 0.28 +0.05
Caveat emptor: slightly outside of error bars of (1 — 2Aimp)



Back to weak-coupling: (S¢,(Q = (7/a,m/a)))

> Look at (S, (Q))LE=™)/2 for small Jimp.
Use the value of 7, obtained from Jimp = oo results

aes
0.03125 .
oo}
3 LR
,;' 0.015625 | 5
= N
@ 24
[ ¥ 32
L 48
0.0078125 64 —e
B
10
Jimp 031

Scaling collapse as linear function of Jimp(L) = JimpL?3!



Going with the flow...

Understand flow with Jimp(L) quite well
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A twist at co: Induced VBS order has phase winding

> Look at (Vx(F)) = ((~1)"S¢ - (Srsz — Sr—s))
and (Vy(r)) = ((=1)Sr - (Sr4y — Sr—y))
Local site-centered complex VBS order parameter V = Vy + iVy

» Phase ¢y = arctan(Vy /Vy) is linear function of angular
coordinate ¢
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Snapshot of the spinon vortex
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Scaling with size of induced VBS order

» How does Voo = ), V; exp(—if,) scale with L?
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Voo ~ LP with p = 1.08 & 0.03 (imaginary part of Vo negligible
What exponent(s) is p related to?



Interpreting p

» Power p not straightforward to interpret
Metliski & Sachdev 2008

» Depends on numerical values of bulk and boundary
exponents nves and 7gs.

((V(r = 0,7)V(r = 0,0))c ~ 1/r"Nes
> Case 1: n{gg < 2
p=2—("=+3)
> Case 2: ngg > 2
p—2— (g2 + 22— 1)
» Our interpretation: Case 1 unlikely
(Gives nvgs very diferent from Sandvik (09): nygs ~ 0.20 + 0.02)
» Case 2: implies 7gg = 2.64 + 0.06

(for what it is worth...)



Scaling of (S*(r)) at Jimp = o0

At second order critical point:

> (S4(N) = qrrzfo (f) forr >>1

> (SE(r) = Sfo (f) forr >>1
Numerical tests: To avoid relying on arbitrariness in definition of
(S5(r)) and (Sg(r)), Fourier transform (S*(r)) and translate
predictions to q space

> (S*(q)) = go(aL) for [q] < =

> (S7(Q+q)) = L2~ (Hm)/2gq(gL) for |q| < 7

How well does this work?



Test near zero wavevector
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m = gxL/27—Scaling not very good
Check on systematic error: L = 64 calculation done with two
projection powers



Test near zero wavevector
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my = my = m = qL/27—Scaling not very good
Check on systematic error: L = 80 calculation done with two
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Zoom in on deviations from scaling
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Test near wavevector Q

5 32,80 o
48,120 o
64,160 —e—
0.1t 80,200 — & —
&) 96, 240
S 64,512
=
N|: =
iy
<
o 0.01 ¢
To)
:L ~
I_I =
A
[ ]
0.001 | ‘
0 2 4
m

m = gxL/27—Scaling not very good

Check on systematic error: L = 64 calculation done with two

projection powers




Test near wavevector Q
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Zoom in on deviations from scaling
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Similar results of V, exp(—i6;)

Fourier transform of V, exp(—ié,) should scale like LPgy (qL) for

lql < 7
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Similar results of V, exp(—i6;)
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Again: scaling has corrections that go away very slowly with size



What have we learnt?

» Bulk properties at transition seem to agree with
expectations at the deconfined critical point of Senthil et.
al. (up to sizes L ~ 100).
no direct evidence of first-order transition

» Impurity scaling predictions not as successful:

Slow transients that seem to violate scaling at least up to size
L ~ 100

» Real question: What is this very slow crossover?

Is this again a signature of a weakly-first order transition at
asymptotically large sizes?

Or is there some irrelevant impurity operator (at r = 0) causing
this slow crossover?



V; exp(—ié;) along diagonal
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V; exp(—ié;) along y axis
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