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Impurities yield information about host materials

◮ Impurities can be useful probes of interesting low
temperature states of matter
Alloul et. al. Rev. Mod. Phys. 81, 45 (2009).
e.g Zn and Ni doping in CuO2 planes of high-Tc

superconductors
non-magnetic impurities that cut spin-chains in
quasi-1dimensional systems.

◮ Impurities change the state of system in immediate vicinity
Changes can be picked up by local probes such as NMR

◮ Particularly interesting if system has ‘nearby’ competing
ground-states
Impurities can locally ‘seed’ a competing ground state with
different ordering and symmetry properties



Borrowing from experiments

From experiments to numerical computations

◮ Use impurity effects to probe character of correlated
ground state.

◮ Need: Efficient numerical techniques allowing computation
for systems with impurities

In this talk:

◮ Impurity spin effects in an antiferromagnet on the verge of
transition to a valence-bond solid (quantum paramagnet)



An unusual phase transition

◮ Antiferromagnet on verge of transition to a quantum
paramagnet

(Q/J)0 (Q/J)_c = 25.64

Neel ordered AF Valence−bond solid

HJQ = −J
∑

〈ij〉

P〈ij〉 − Q
∑

〈ij〉||〈kl〉

P〈ij〉P〈kl〉

where P〈ij〉 = (1
4 − ~Si · ~Sj)

(S=1/2 spins on a square lattice)
Sandvik 2007, Melko & Kaul 2007.



Why so unusual?

◮ J term favours Neel ordered state that spontaneously
breaks spin rotation symmetry

◮ Q term favours valence bond solid that spontaneously
breaks lattice translation symmetry

◮ Standard Landau theory argument → First order transition
or intermediate phase with co-existing orders

Apparently second order direct transition between two phases

◮ Sandvik 2007, using a new singlet-sector ground-state projection
algorithm in valence bond basis (T = 0 results directly)

◮ Melko & Kaul 2007, using Quantum Monte Carlo at inverse
temperature βQ ≈ L for L × L square lattice



Theoretical framework
◮ Senthil et. al. 2004: Landau theory does not work due to

Berry phases in the action
◮ Critical region not well-described using standard action

written in terms of order-parameter fields
◮ Instead: ‘Natural’ variables are S = 1/2 Z4 vortices in the

four-fold symmetry breaking VBS order. Coupled at critical
point to emergent U(1) gauge field ( ‘sound-mode’ in order
parameter phase)



Consequences

◮ Direct second order quantum critical point between Neel
and VBS phases

◮ Critical Neel order parameter correlations:
〈~n(r)~n(0)〉crit ∼ r−(1+ηn) with large ηn unlike usual critical
points

◮ Pinning potential for phase φ of the VBS order parameter
is irrelevant at transition → System cannot immediately
choose between columnar VBS order and plaquette VBS
order upon entering VBS phase

phase angle = π/4 phase angle = 0



Deconfined critical point scenario:

◮ Claim of Melko and Kaul, and Sandvik:
HJQ provides an example of this physics

◮ Reasonably sharp, apparently second-order transition
Reasonably good scaling behaviour at low temperatures above
T = 0 quantum critical point

◮ Melko & Kaul (07): Large ηn ≈ 0.35 ± 0.03 in agreement with
expectations
( Sandvik (07): ηn = ηVBS ≈ 0.26 ± 0.03)

◮ Kaul & Melko (07): Correlation length exponent ν ≈ 0.68 ± 0.04
( Sandvik (07): ν ≈ 0.78 ± 0.03)

Sandvik 2009 (better data): ηn, ν agree with Kaul & Melko;
ηVBS ≈ 0.20 ± 0.02 (unpublished)



Controversy:

◮ Jiang, Chandrasekharan, Nyeffler & Wiese 2008: Very
similar numerical data

◮ But: Analysis by ‘flowgram’ method (Kuklov et. al. 2006) →
apparent indication of (weakly) first order direct transition
If Qc determined by some ‘crossing criterion’ (ρS vs Q/J for
various sizes L), crossing point drifts as size gets large
‘Universal’ value of ρs at putative critical point increases with L
beyond some system size L
Finite chance to be superfluid even at ‘critical’ point → first order
transition

◮ Results inconsistent with deconfined critical point scenario
favoured by Melko and Kaul, and by Sandvik

Our goal: Look at impurity physics at putative critical point



Adding an impurity

Jimp

Simp

S0

◮ HJQ + Jimp
~Simp · ~S0

◮ Is Jimp a ‘relevant perturbation’ at bulk transition?
◮ What effect does it have on the bulk?



Singlet sector algorithm of Sandvik

◮ Singlet sector {|s〉} of 2N spin S = 1/2 moments spanned
by overcomplete basis.
Decompose into N A-sublattice sites, and N B-sublattice sites
{|s〉} spanned by {|P〉 = ⊗A |AP(A)〉}
|AP(A)〉 is singlet state of spin at A with spin at B = P(A)

Basis is (very) overcomplete

◮ Start with arbitrary singlet state |v0〉 and compute
〈v0|(−H)mÔ(−H)m|v0〉/〈v0|(−H)2m|v0〉.

◮ Gives ground state expectation value of operator Ô for
‘large enough’ m (in practice m ∼ N × ∆−1

S ).

Crucial: Efficient importance sampling algorithm for computing
〈v

′

0|(−H)m|v0〉 exploiting overcompleteness of basis
Sandvik 2007; Sandvik & Beach 2007, Sandvik & Evertz 2008



Key ingredient of Sandvik’s method

◮ Action of PAB is either a rearrangement of valence bonds

A1

B2

B1

A2

B2 A2
A1

B1

1 2
PA B

1/2 X

◮ Or trivial
B1

A1A1

B1
PA1B1



Generalizing to Stot = 1/2

◮ Simple but powerful generalization possible for
{|Sz

tot = +1/2; Stot = 1/2〉} sector of 2N + 1 S = 1/2 moments
(N + 1) A-sublattice sites and N B-sublattice sites

◮ Basis:
{

|Afree;P〉 = |Sz
Afree

= +1
2〉 ⊗A 6=Afree |AP(A)〉

}

◮ What makes it work:

A1 B1

B2
A1B2P

A1
B1

B2

1/2 X

◮ 〈v
′

1/2|(−H)2m|v1/2〉 can be efficiently computed by efficient
generalization of singlet sector method of Sandvik &
Evertz.

Banerjee & KD 2009



Is small Jimp relevant at Qc ≈ 25.64?

◮ For small Jimp, 〈Sz
tot〉bulk is quadratic in scaling variable

JimpL0.31 for L × L system.
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Jimp is relevant perturbation with eigenvalue λimp = 0.31 ± 0.03
What is the interpretation of λimp?



Interpreting λimp

◮ ~S(r = 0, τ) = cn~n(r = 0, τ) + cL
~L(r = 0, τ)

◮ Assuming ~n is dominant piece:
Himp = Jimp

∫

dτ ~Simp · ~n(r = 0, τ)

◮

[

Jimp
]

= 1 −
[

~n
]

assuming time scales like space (z = 1)
◮

[

~n
]

= (1 + ηn)/2
◮ λimp = (1 − ηn)/2
◮ Implies ηn ≈ 0.38 ± 0.06



Going with the flow...

◮ Jimp relevant and flows to Jimp = ∞ fixed point
Simp binds S0 into a singlet → L × L system with center site
missing
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Scaling at Jimp = ∞

◮ Standard scaling (Hoglund, Sandvik & Sachdev 2007, Metliski
& Sachdev 2008):

Vacancy-induced Neel order at critical point ∼ L2−(1+ηn)/2:
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Gives ηn = 0.28 ± 0.05
Caveat emptor: slightly outside of error bars of (1 − 2λimp)



Back to weak-coupling: 〈Sz
bulk(Q = (π/a, π/a))〉

◮ Look at 〈Sz
bulk(Q)〉L(3−ηn)/2 for small Jimp.

Use the value of ηn obtained from Jimp = ∞ results
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Scaling collapse as linear function of Jimp(L) = JimpL0.31



Going with the flow...

Understand flow with Jimp(L) quite well
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A twist at ∞: Induced VBS order has phase winding
◮ Look at 〈Vx (~r)〉 = 〈(−1)x ~S~r · (

~S~r+x̂ − ~S~r−x̂ )〉

and 〈Vy (~r )〉 = 〈(−1)y ~S~r · (
~S~r+ŷ − ~S~r−ŷ )〉

Local site-centered complex VBS order parameter V = Vx + iVy

◮ Phase φV = arctan(Vy/Vx) is linear function of angular
coordinate θ
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Snapshot of the spinon vortex
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Scaling with size of induced VBS order

◮ How does V00 =
∑

r Vr exp(−iθr ) scale with L?
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V00 ∼ Lp with p = 1.08 ± 0.03 (imaginary part of V00 negligible
What exponent(s) is p related to?



Interpreting p

◮ Power p not straightforward to interpret
Metliski & Sachdev 2008

◮ Depends on numerical values of bulk and boundary
exponents ηVBS and η

′

VBS.
(〈V (r = 0, τ)V (r = 0, 0)〉C ∼ 1/τη

′

VBS

◮ Case 1: η′
′

VBS < 2
p = 2 −

(ηVBS
2 + 1

2

)

◮ Case 2: η′
′

VBS > 2

p = 2 −

(

η
′

VBS
2 + ηVBS

2 − 1
2

)

◮ Our interpretation: Case 1 unlikely
(Gives ηVBS very diferent from Sandvik (09): ηVBS ≈ 0.20 ± 0.02)

◮ Case 2: implies η
′

VBS = 2.64 ± 0.06

(for what it is worth...)



Scaling of 〈Sz(r)〉 at Jimp = ∞

At second order critical point:
◮ 〈Sz

Q(r)〉 = 1
L(1+ηn)/2 fQ

( r
L

)

for r >> 1

◮ 〈Sz
0(r)〉 = 1

L2 f0
( r

L

)

for r >> 1

Numerical tests: To avoid relying on arbitrariness in definition of
〈Sz

Q(r)〉 and 〈Sz
0(r)〉, Fourier transform 〈Sz(r)〉 and translate

predictions to q space

◮ 〈Sz(q)〉 = g0(qL) for |q| ≪ π

◮ 〈Sz(Q + q)〉 = L2−(1+ηn)/2gQ(qL) for |q| ≪ π

How well does this work?



Test near zero wavevector
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Test near zero wavevector
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Zoom in on deviations from scaling
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Test near wavevector Q
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Test near wavevector Q
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Zoom in on deviations from scaling
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Similar results of Vr exp(−iθr)

Fourier transform of Vr exp(−iθr ) should scale like LpgV (qL) for
|q| ≪ π
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Similar results of Vr exp(−iθr)
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Again: scaling has corrections that go away very slowly with size



What have we learnt?

◮ Bulk properties at transition seem to agree with
expectations at the deconfined critical point of Senthil et.
al. (up to sizes L ∼ 100).
no direct evidence of first-order transition

◮ Impurity scaling predictions not as successful:
Slow transients that seem to violate scaling at least up to size
L ∼ 100

◮ Real question: What is this very slow crossover?
Is this again a signature of a weakly-first order transition at
asymptotically large sizes?
Or is there some irrelevant impurity operator (at r = 0) causing
this slow crossover?



Vr exp(−iθr) along diagonal
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Vr exp(−iθr) along y axis
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