
Frustrated quantum magnetism
Emergent gauge fields, fractional moments, critical phases...

Kedar Damle, TIFR

SINP Colloquium July 31 2019



Electron waves in crystals

Band theory
I Band-structure εµ(k): Eigenstates in periodic crystal potential.
I Pauli principle and Fermi distribution: e− occupy |εµ(k)〉 with
εµ(k) < εF

I Insulators and metals: Completely filled last bandZ Insulator.
Partially filled last bandZ metal

Landau Fermi liquid theory
I What about e−—e− interactions? Landau: low energy

‘quasiparticles’ with charge e− and spin 1/2

No qualitative change from band picture



Electron particles in crystals

Mott insulators
I Band theory: metal with a half-filled conduction band.
I But: e−—e− interactions dominate.
I Charge frozen (gapped)→ Insulator

Local moments in Motterials
I Interactions localize 1 electron in each ‘conduction band’ orbital
I Low energy physics: Spin of localized electrons
I Virtual hopping of charge→ Low-energy effective Hamiltonian



Recap: Antiferromagnetic exchange



Generalities on exchange interactions

A Goodenough description
I Without spin-orbit: Isotropic exchange interactions.

E = J
∑
〈ij〉 Si · Sj J > 0

When is J > 0, large?
Are nearest neighbour interactions dominant?
Difficult (quauntum chemistry) questions
Thumb-rule answers: Goodenough-Kanamori-Anderson rules
J.B. Goodenough, Magnetism and the Chemical Bond (1963)

Complications
I Spin-orbit coupling λ
I Orbital degeneracy

Interplay between orbital structure and spin physics



Néel order

I Bipartite lattice and nearest neighbour J > 0
Néel order: n (spontaneously chosen) and 〈~S~r 〉 = (−1)~r n



A (famous) example

Cu-O planes in high Tc parent compound: La2CuO4



Strong e−-e− interactions

Cu-O planes with strong interactions



Effective Hamiltonian for Cu-O plane

Effective Hamiltonian for Cu-O plane

I Written in terms of operators c†jσ that create a hole in the Cu
dx2−y2 orbital:
H = −teff

∑
〈ij〉σ(c†iσcjσ + h.c.) + U

∑
i ni↑ni↓

Large U limit at x = 0: S = 1/2 spin Hamiltonian
I Second order perturbation theory at x = 0 gives:

Hspin = J
∑
〈ij〉 Si · Sj with J = 4t2/U.



Antiferromagnetism at small x

Antiferromagnetic long-range order at x = 0
Classical ground state: Collinear, antiparallel neighbours
Neel order breaks global SU(2) symmetry: Axis n chosen
Exact for large spin length S
Numerical evidence for S = 1/2:
Stable to quantum mechanical fluctuations on square lattice
(Large-S expansion qualitatively correct even at S = 1/2)

The t − J model for hole motion
HtJ =
Hole motion scrambles up antiferromagnetic background
At small x , unusual correlated metal with antiferromagnetic order
‘Small’ Fermi surface: Area ∝ x .
For x > xc , becomes a high-temperature superconductor(!)



Quasiparticle fractionalization?

Spin-charge separation in one-dimensional metals
I e− breaks up into spin and charge carrying parts

Spin and charge move with different velocities.
I No sharp quasiparticle peak in spectral function A(k, ω)

A(k, ω): Probability of finding electron occupying state
with momentum ~k & energy ε = εF − ~ω

Speculation in cuprate superconductors
I Does this happen to holes doped into Mott insulator?

No sharp peaks in spectral function A(k , ω) for small x(?)
I Materials with quasiparticle fractionalization?

‘Emergent’ excitations: ‘fractions’ of elementary constituents



The story so far . . .

I Breakdown of band-theory
I Mott insulators with low energy spin degrees of freedom
I Antiferromagnetic exchange interactions between spins
I Neel ordered antiferromagnets on bipartite lattices
I Doped Mott insulators: Unusual, correlated metals.



Geometric frustration of exchange interactions

Triangles on my mind...

?

+n

−n

I Triangles frustrate Néel order
I GeometryZ competition between

leading exchange interactions

Frustration spawns novel states
I Quenching of leading J Z

J cannot pick ground state at classical level
I Sub-dominant interactions & quantum fluctuationsZ Variety of novel

low temperature states



Lattices with triangles...
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Frustrated magnets: Plethora of materials

I Triangular lattice: S = 1 AgNiO2 (Ni2+), S = 1/2 Cs2CuCl4
(Cu2+)...
Wheeler et. al. 2009; Coldea et. al. 2001...

I Kagome: S = 5/2 Fe jarosite (Fe3+), S = 1/2 Herbertsmithite
ZnCu3(OH)6Cl2 (Cu2+)... (Han et. al. 2012; Fak et. al. 2007...)

I Pyrochlore spin ice Ho2Ti2O7, pyrochlore-slab S = 3/2
SrCr9pGa12−9pO19 Cr3+ (SCGO)...
(Harris et. al. 97; Limot et. al. 01......)



Single ion anisotropy can be large

I Single ion anisotropy −D(S · n)2can dominate over J
I Pyrochlore spin ice Ho2Ti2O7 (Ho3+, (L + S) = 8)

Easy axes n point outward from center of each tetrahedron
D ∼ 50K , J ∼ 1K
Harris et. al., Phys. Rev. Lett. 79, 2554 (1997)

I Kagome Nd-langasite Nd3Ga5SiO14 (Nd3+, (L + S) = 9/2)
Easy axis perpendicular to lattice plane, J ∼ 2K , D ∼ 10K
Robert et. al., Physica B 2006

I J � D is classical
Z study leading quantum effects in a J/D expansion



Anisotropy amplies frustration

I Isotropic spins on a triangle

I Easy-axis n and triangular motifs...

?

+n

−n



Wannier’s triangular lattice model

I H = J
∑
〈ij〉 Si · Sj − D

∑
i (S

z
i )2, with D >> J on the triangular

lattice.
I To leading order Sz

i = ±S → σ = ±1
H ≈ JS2∑

〈ij〉 σiσj

I Minimum energy configurations?



Minimally frustrated configurations
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I One frustrated bond per triangle
I Honeycomb lattice dimer model (one dimer touching each

honeycomb site)
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Honeycomb lattice dimer model: One dimer touching each
honeycomb vertex
Classic problem in graph-theory/combinatorics/statistical mechanics



Ising ‘liquid’ in T → 0 limit

I Calculation of Stephenson (64) gives

〈σ(r)σ(0)〉 ∼ A
r9/2 +

B cos (2π(x + y)/3)√
r

I Spins neither freeze, nor fluctuate independently.
I Instead, form highly correlated “spin liquid”.



Understanding this result:

I Dimers, heights, and Ising models of frustration
I (Obvious) connection to odd Ising gauge theories
I Connection to Kosterlitz-Thouless theory



Spins to dimers to electric fields

“Electric field” eA→B = nAB − 1/3
dimer constraint: Gauss law (!).
Youngblood and Axe (1980)



From dimers to microscopic heights H(R)

el = HL(l) − HR(l) (1)

height field H on the original triangular lattice sites R
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From microscopic H(R) to coarse-grained h(r)

I Coarse-grain: Average over local rearrangements
I Locality: What happens “outside” cannot affect what happens

“inside”. h(r)→ h(r) + 1
(Field theorists: “compactification radius”)

I Lattice translations and 2π/6 rotationZ
h(r)→ h(r) + 1/3, h(r)→ −h(r)



Ising spins in terms of h(r)
3H jumps by odd (even) number whenever one crosses an
unfrustrated (frustrated) bond
σ(R) = exp(−3πiH(R)) (if σ(R = 0) = +1, and H(R = 0) = 0)

h_ L

h_R

(0,0)

(x,0)

(x,y)

e
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B
T0

T1

Dimer crossed→ spin unchanged; empty link→ spin flipped
σ(R) = exp (iπ

∑
l (1− nl ))σ(0)

σ(R) = exp( 2π
3 i(X + Y )− iπH(R))

Fradkin et al (2004), KD (2009)



Effective action and operators

I Fewer flippable plaquettes→ larger “tilt”
Seff = π

g (∇h)2 + λ6 cos(6πh) + . . .

Coarse-grained representation of spins:
σ(r) ∼ AeiQ·r e−iπh(r) + Be−3iπh(r) + h.c.
Three-sublattice order parameter ψ ∼ eiπh ≡ eiθ(!)



T > 0: Odd Ising gauge theory and
Kosterlitz-Thouless vortices

I Nonzero temperature: Fully frustrated triangle→ three dimers
touching honeycomb site.

I “Electric field EA→B = nAB − 1/3 no longer divergence-free
But violations are 0 mod 2
Field-theory language: Configuration space of odd-Ising gauge
theory

I Heights no longer single valued
Three dimers touching honeycomb site→ vortex/antivortex in
θ = πh

I T = 0: Vortex-free xy model for θ with 6-fold anisotropy
T > 0: Vortices allowed



Picture for T = 0 power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)

potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state

I In power-law three-sublattice ordered state λ6 does not pin
phase θ
θ spread uniformly (0,2π)

I But vortices absent.



RG description

I Fixed point action: S = 1
4πg (∇θ)2

I For g > 1
9

λ6 cos(6θ) irrelevant along fixed line
Z 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T ) with η = g
Relies on absence of vortices at T = 0

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



Easy-axis antiferromagnets on triangular lattices
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Perturbations/quantum fluctuations easily stabilize this order...



Three-sublattice order on the triangular lattice
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Ferri vs antiferro order distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0,1,2 . . . 5)
Very recent: TmMgGaO4 (Thulium [Xe] 4f13 6s2) Tm3+ Jz = ±6
Princeton, Augsburg, Fudan (2017-18)



Prototypical example of order-by-(quantum) disorder

I HTFIM = J
∑
〈ij〉 σ

z
i σ

z
j − Γ

∑
i σ

x
i on the triangular lattice

small ΓZ Long-range order at three-sublattice wavevector Q
I Ordering of “antiferro” type→ (+,−,0)

antiferro order provides maximum “room” for quantum
fluctuations
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



Another example: S = 1 with easy-axis single-ion
anisotropy

I HAF = J
∑
〈ij〉
~Si · ~Sj − D

∑
i (S

z
i )2 on triangular lattice

Closely related to effective model for AgNiO2
(Seabra & Shannon ’11)

I Low-energy physics for D � J:
Hb = −J2

D
∑
〈ij〉(b

†
i bj + h.c.) + J

∑
〈ij〉(ni − 1

2)(nj − 1
2) + . . .

KD & Senthil ’06
I Low-temperature state for D � J: “supersolid” state of hard-core

bosons at half-filling.
Auerbach & Murthy (97), Heidarian & KD, Melko, Wessel...(05)

I Implies: ferri three-sublattice order in Sz + “ferro-nematic” order
in ~S2

⊥
(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Symmetry breaking transitions: Generalities

I Symmetry-breaking state characterized by long-range
correlations of “order-parameter” Ô

I phenomenological Landau free energy density F [Ô]

Expanding F in powers of Ô (symmetry allowed terms)
I Neglecting spatial variation & fluctuations:

phase transition→ change in minimum of F



Fluctuation effects at continuous transitions:

I More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F
Integrate over all possible order parameter configurations

I In most cases: Corrections to mean-field exponents



Symmetries are (usually) decisive:

I Transformation properties of Ô determine nature of continuous
transition



Landau-theory for melting of three-sublattice order

I F = K |∇ψ|2 + r |ψ|2 + u|ψ|4 + λ6(ψ6 + ψ∗6) + . . .

Connection with six-state clock models
Z =

∑
{pi} exp[

∑
〈ij〉 V ( 2π

6 (pi − pj ))]

Each pi = 0,1,2, ...5
V (x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

Cardy (1980)



Simplest lattice model

Hxy = −Jxy

∑
〈~r~r ′〉

cos(θ~r − θ~r ′)− h6

∑
~r

cos(6θ~r ) .

(higher harmonics J(p) (p = 2,3) left out of Hxy for simplicity)



Melting scenarios for three-sublattice order

I Analysis (Cardy 1980) of generalized six-state clock models
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition to ferromagnetic phase followed by loss
of ferromagnetism via Ising transition at higher temperature..
or vice-versa...
OR
First-order transition (always possible!)



Melting of three-sublattice order in various examples

I Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting
(Isakov & Moessner ’01)

I Ferrimagn. three-sublattice order in triangular lattice-gas models
of monolayer films
Two-step melting
D.P. Landau ’83

I Ferri. three-sublattice order in Kagome Ising antiferromagnets
With second-neighbour ferro couplings: Two step melting
Wolf & Schotte ’88
With long-range dipolar couplings: Three-state Potts transition
Moller & Moessner ’09, Chern, Mellado, Tchernyshyov ’11



Detecting power-law order?

Need scattering experiment to detect power-law version of Bragg
peaks
Or
Real-space data by scanning some local probe + Lots of
image-processing



Alternate thermodynamic signature(!)

I Singular thermodynamic susceptibility to uniform easy-axis field
B:
χu(B) ∼ 1

|B|p(T )

I p(T ) = 4−18η(T )
4−9η(T ) for η(T ) ∈ ( 1

9 ,
2
9 )

So p(T ) varies from 2/3 to 0 as T increases from Tc1 to just
below Tc2

(KD ’15)



Recall: picture for power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)

potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < Tc1

I In power-law three-sublattice ordered state for T ∈ (Tc1,Tc2), λ6

does not pin phase θ
θ spread uniformly (0,2π)

I But vortices continue to be irrelevant
Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (Tc1,Tc2)

Ferromagnetic response part of the time...



Recall: More formally

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T ) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (T1,T2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T )

with η(T ) = g(T )

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument—I

Starting point: Ferrimagnetic three-sublattice order also involves
uniform magnetization m
More complete theory should treat m and ψ on equal footing

I Symmetries allow coupling term λ̃3m(ψ3 + ψ∗3)

augment FKT
kBT with gapped free-energy density Fferro(m):

Fferro(m) + λ3m cos(3θ)

I λ3 formally irrelevant along fixed line FKT

→
Physics of two-step melting unaffected—m “goes for a ride...”

But ...



General argument—II

I m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T )

I χL ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I χL = χreg + bL2−9η(T ) for η(T ) ∈ ( 1
9 ,

2
9 )

Diverges with system size at B = 0



General argument—III

I Uniform field B > 0→ additional term h3 cos(3θ) in FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2
I Implies finite correlation length ξ(B) ∼ |B|−

2
4−9η

I χu(B) ∼ |B|−
4−18η
4−9η for η(T ) ∈ ( 1

9 ,
2
9 )



Test in prototypical example
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In power-law ordered phase of HTFIM on triangular lattice
(Biswas & KD ’18)



Test in KT phase of easy-axis S = 1 triangular lattice
AFM

In power-law ordered phase of Hb

(Heidarian & KD ’17)



Also interesting:—Multicritical melting

I KT phase can
Pinch-off at multicritical pointM?, giving way to three-state Potts
criticality. cM?

=?

OR
Pinch-off at multicritical pointMClock, giving way to first-order
transition line.
(KD ’15)

I MClock previously known, notM?

Note: Conjecture (Dorey-Tateo-Thompson ’96) relatesMClock to
self-dual Z6 c = 1.25 CFT (Zamolodchikov-Fateev ’85)
→ cMClock = 1.25
(KD ’15)



Also interesting: Multicritical melting

I How does the KT phase pinch-off for specific cases?

I Evidence forMClock on the triangular lattice
(Rakala, Shivam, & KD ’19)

I Similar results on Kagome lattice systems
Conjecture forM? in triangular bilayers
(Rakala & KD unpublished)



Also interesting: Fractional moments in SCGO

Idealized SrCr9Ga3O19 unrealizable. → Instead: SrCr9pGa12−9pO19

with pmax ≈ 0.95
Jbilayer ≈ 80K Jdimers ≈ 200K Limot et al PRB 02



Also interesting: Fractional moments
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Spin texture: Theory vs “experiment”
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Pyrochlore lattice: Emergent electrodynamics
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Some loose ends—I

Some loose ends...Three sublattice order and its melting in S=1 easy
axis triangular antiferromagnet, and in classical Ising models on the
triangular lattice



Is three-sublattice ordering of Sz in HAF ferri or
antiferro?

I Natural expectation: Quantum fluctuations induce antiferro order
(like in the transverse field Ising model)
→
Initial confusion: Ordering will be antiferro three-sublattice order
e. g. Melko et. al. (2005)



Actual state has ferrimagnetic three-sublattice order
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Early work: Triangular lattice-gas models for
monolayer films on graphite

I Three-sublattice long-range order of noble-gas monolayers on
graphite
Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990)
HJ1J2 = J

∑
〈ij〉 σ

z
i σ

z
j − J1

∑
〈〈ij〉〉 σ

z
i σ

z
j − J2 · · · − B

∑
i σ

z
i

Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Test in J1-J2model
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Some loose ends—II

Some loose ends...multicritical melting



Multicritical melting of three-sublattice order
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More complete coarse-grained description

Heff = Hxy + HIsing − Jθτ
∑
~r

τ~r cos(3θ~r ) ,

where HIsing = −JIsing

∑
〈~r~r ′〉

τ~rτ~r ′ − h
∑
~r

τ~r ,

Hxy = −Jxy

∑
〈~r~r ′〉

cos(θ~r − θ~r ′)− h6

∑
~r

cos(6θ~r ) ,

with h ∝ B.
(KD ’15)



The argument...

I Start with known phase diagrams of Hxy and HIsing and build in
effects of Jθτ

I When τ orders, Hxy sees effective three-fold symmetric
perturbation h3eff cos(3θ~r ) with h3eff ∼ 〈τ〉

I When eiθ orders, HIsing sees effective field heffτ~r with
heff ∼ 〈cos(3θ)〉



The “new” multicritical pointM?

I c-theorem argument: 1 ≤ c ≤ 3
2

I To search:
Jxy = h6 = 1.0, Jθτ = 0.25
Parametrize: JIsing = fxy Tθ1/Tτ and T = fI fxy Tθ1 [with Tθ1 = 1.04
and Tτ = 3.6409]



Multicritical melting atM?
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C2θ [C3θ] rescaled by a factor of 7 [factor of 10]
η3θ = ητ = 0.201(20), ηθ = 0.258(5), and η2θ = 0.353(6).
(KD ’15)



Speculation (aka wishful thinking?)

I If relative strength of first/second neighbour exchange tunable
relative to long-range dipolar part in artificial kagome-ice:
Could tune melting to multicritical pointM?...

I Computations challenging due to long-range interactions



M? vsMclock

I Conjecture (Dorey ’96): Mclock corresponds to c = 1.25 self-dual
Z6 CFT constructed by Zamolodchikov-Fateev (’85).

I Conjecture yields exponents atMclock: η3θ = 3/8, η2θ = 1/3,
and ηθ = 5/24.
η2θ and η3θ very different from values atM?

Recall: atM?, η3θ = ητ = 0.201(20), ηθ = 0.258(5), and
η2θ = 0.353(6).



Test of conjectured exponents forMclock

ηθzf=5/24

η2θ
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Results on Cardy’s six-state clock model
(Rakala, Shivam, & KD in prep.)



Schematic of pinch-off in triangular lattice Ising AFM
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Evidence forMclock in triangular Ising AFM
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Some loose ends—III

Some loose ends...previous work on Kagome systems



Three-sublattice order on the Kagome lattice

π
6

θ

0 +S+S−S

−S +S0

ye

xe

R R xe+

yeR+

22

a

b c
2

10

1010

0

2

10

b

c
2

c

b

ψ = |ψ|eiθ = −
∑

~R

∑
α=0,1,2 eiQ·~R−2πi α3 Sz

~R,α
Again: Ferri vs antiferro distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0,1,2 . . . 5)



Ising models for “Artificial Kagome-ice”

I HKagome = J
∑
〈ij〉 σ

z
i σ

z
j − J1

∑
〈〈ij〉〉 σ

z
i σ

z
j − J2 . . .

I Only nearest-neighbour couplings→ classical short-range spin
liquid (Kano & Naya 1950)

I Second-neighbour ferromag. couplings destabilize spin liquid
(Wolf & Schotte 88)
Ferrimagnetic three-sublattice order at low T .

I “Artificial Kagome-ice: Moments Mi = σz
i ni

(ni at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern et. al. (2011)



Some loose ends—IV

Some loose ends...quick introduction to SCGO and its Galling(!)
defects



Impurities as probes

Alloul et. al. Rev. Mod. Phys. 81, 45 (2009).

I Vacancy defect (Zn substition at Cu site in cuprate AF insulators)
Zcharacteristic response in local susceptibility.

I Picked up by local probes like NMR:
ZNMR line position shift (Knight shift) measures local
spin-polarization of spin system (via hyperfine coupling to
nuclear moment).
ZMeasures histogram of local susceptibility at various distances
from impurity



General idea

I Impurities disturb the system locally
Host response characteristic of correlations of the low
temperature state

I Correlations encoded in intricate charge/spin textures seeded by
impurities

I Picked up by local probes like NMR and STM



Our focus: SrCr9Ga3O19 (SCGO)

I In this talk: Non-magnetic Ga impurities in pyrochlore slab
magnet SCGO
Insulating magnet: Cr3+ ZS = 3/2 moments.
No significant anisotropy (exchange or single-ion).
→ Vacancy-defect induced spin textures and their interactions in
a classical spin liquid



Anatomy: SCGO and its Galling defects

Idealized SrCr9Ga3O19 unrealizable. → Instead: SrCr9pGa12−9pO19

with pmax ≈ 0.95
Jbilayer ≈ 80K Jdimers ≈ 200K Limot et al PRB 02



Anatomy: Where do the Ga go?

I Slight bias towards 4f sites
Break isolated dimers

I Close runners-up are 12k sites
And substitute into upper or lower Kagome layers

I Significantly lower probability of going to the 2a sites
Rarely substitute for ‘apical’ spins

(neutron diffraction, quoted in Limot et. al. 2002)



Behaviour—Macroscopic susceptibility

I High temperature χ fits Curie-Weiss form, with
ΘCW ≈ 500—600K .
[from extrapolation of linear behaviour for χ−1]

I But: No sign of any magnetic ordering down to Tf ∼ 3—5K
I At T = Tf , some kind of freezing transition.

[cusp in susceptibility]
I (Spin) glassy behaviour for T < Tf .

[hysterisis between field-cooled vs zerofield cooled data]
I Nature of phase for T < Tf not clear at present

[Not our focus here]



Magnetic susceptibility in spin liquid regime

I Macroscopic susceptibility measurements have interesting
“two-fluid” phenomenology:
An “intrinsic part”, well-behaved and finite until the freezing
transition is approached.
A “defect contribution” χdef = Cd/T , with Cd ∝ (1− p) ≡ x
Attributed to “orphan-spin population”, Schiffer-Daruka (97)



NMR in spin liquid regime

I Broad, apparently symmetric Ga NMR line (field-swept),
with broadening ∆H ∝ A(x)/T and A(x) ∼ x for
not-too-small x .
Attributed to a short-ranged oscillating spin density near defects,
Limot et. al. (2000,2002). Orphan spins of Schiffer-Daruka?



Some theory: T = 0 Simplex satisfaction

H =
J
2

∑
4

(
∑
i∈4

~Si −
h
2J

)2 +
J
2

∑
4

(
∑
i∈4

~Si −
h
2J

)2

I Absolute minimum of energy is achievable:
If no symmetry breaking: Sz

Kag = h/6J, Sz
apical = 0

(for h = hẑ)
Henley (2000)

Relies on constructing states that also satisfy ~S2
i = S2 for h

not-to-large.



Some theory: Half-orphans
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7 Point unit cell of SCGO

Orphan spin (Gauge charge)

I Single Ga on any simplex→ no problem with simplex satisfaction
I If two Ga in one 4→ 4 has only one spin
〈Sz

tot〉 = 1
2

∑
simplices〈Sz

simplices〉 = S/2 = 3/4! (at T = 0, h/J → 0)
Half-Orphan spins
Henley (2000)



Aside: Analogy with electrodynamics

+ − +

−
+−

+−

+
−

+−
+

− + +−
−

+−
7i 7i+2

7i+1

7i+6

7i+5 7i+3

7i+4

7 Point unit cell of SCGO

Orphan spin (Gauge charge)

∑
i∈4

Sα
i =

hα

2J
and

∑
i∈4

Sα
i =

hα

2J

I Eαi = Sα
i êi ,

(Unit vector êi points along the dual bond from dual +
sublattice to dual − sublattice.)

I Simplex satisfaction at h = 0→ ∇ · Eα = 0 at T = 0.
I On defective simplex: (∇ · Eα)4 = Sα

orphan
I But T = 0 Gauss law→ 1/~r decay of T = 0 induced

spin-texture.



What happens at T > 0?

Simplex satisfaction a la Henley is inherently a T = 0 statement
What about T > 0?
Answer not obvious...

I But, curiously:
Defective tetrahedron/triangle (with all but one spin
removed) give Curie tail; no other simplices contribute to
Curie tail. (Moessner-Berlinsky 99)

Real issue: Need to incorporate correlations (long-range as T → 0)
between spins on equal footing with thermal fluctuations.



Are there “really” fractional half-orphan spins at
T > 0?

Our approach
Putting entropic effects on same footing as energetics:

I In pure problem: Large N theory known to be very accurate
Garanin & Canals, 1999; Isakov et. al. 2004

I Effective field theory Z ∝
∫
D~φexp (−F/T )

Free-energy functional F = E − TS with
E = J

2

∑
4(
∑

i∈4 ~φi − h
2J )2 + J

2

∑
4(
∑

i∈4
~φi − h

2J )2

statistical weight S ∝
(
−ρ1

2

∑
i∈Kagome

~φ2
i −

ρ2
2

∑
i∈apical

~φ2
i

)
ρ1 and ρ2 phenomenological parameters
Use values that satisfy 〈~φ2

i 〉 = S2

(Gaussian theory→Independent effective action for each spin
component)



Modeling the half-orphans in effective field theory

I Ga substitution implies constraint
~φGa = 0

I Lone spin on defective triangle needs to be handled
carefully: Retain as a classical spin S variable S~n (with ~n a
unit vector).



General framework

Vacancies:

δ(φα~r ) =
1

2π

∫
dλα~r exp(iλα~r φ

α
~r )

Lone-spins on defective triangles/tetrahedra:

δ(φα~r − Snα~r ) =
1

2π

∫
dµα~r exp(iµα~r (φα~r − Snα~r ))

Combined notation:

Λα~r = δ~r ,~rv
λα~rv

+ δ~r ,~ro
µα~ro



Action for µ, λ, ~n

Zeff ∝
∫
D~n
∫
D~λ
∫
D~µ

exp

+
1
2

∑
~r~r ′α

(βhα + iΛα~r )C~r~r ′ (βhα + iΛα~r ′ )− i
∑
~roα

µα~ro
nα~ro


C: Matrix of zero-field correlations in pure large-N theory

〈φα~r φ
β
~r ′
〉 ≡ C~r~r ′ δαβ



General approach

I Do integrals over λ and µ exactly.
I Get effective theory for orphan spins (unit vectors ~n) coupled to

each other and to external magnetic field
I Analytically tractable for one or two or three defective triangles



Isolated vacancies to not contribute to Curie term

Susceptibility of sites around a single missing spin
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I Reproduced within effective theory (Easy to check)



Two vacancies on triangle: Orphan spin magnetization
curve

I Integrate out other fields and derive magnetization curve of
S~n with field h = hẑ.
For for h� JS, T � JS2 but arbitrary hS/T , prediction:
S〈nz〉(h,T ) = SB(hS/2T )

(SB(hS/2T ) is the classical magnetization curve of single spin S in
field h/2)
Test: Can compare classical monte-carlo “experiment” with effective
field theory prediction.



Lone spin magnetization
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Spin texture

I The lone-spin polarization SB(hS/2T ) serves as the ‘source’ for
~φi .

I Effective theory gives prediction for defect induced spin-texture
〈Sz

i 〉(h,T ) = 〈φz
i 〉(h,T ) and defect-induced impurity moment

Mimp

I Effective theory also gives impurity susceptibility χimp =
dMimp

dh
Prediction χimp = (S/2)2/3T , i.e. fractional spin S/2 “really”
exists!
Can test against Monte-Carlo “experiment”



Check: Fractional spin is real
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I Full magnetization curve of impurity-induced magnetization
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Spin texture: Theory vs “experiment”
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Entropic interactions between orphan spins

I Tractable computation within effective field theory
I Result: Orphan spins have only two-body (bilinear)

exchange interactions Jeff.
I Sign of Jeff is positive (antiferromagnetic) if two orphans

are in the same Kagome layer. Else it is ferromagnetic

Jeff (~r1 −~r2,T ) = η(~r1)η(~r2)TJ (
√

T (~r1 − ~r2))

with

J (~y) ∼ log(1/|~y |) for |~y | � 1
J (~y) ∼ exp(−|~y |) for |~y | � 1



Form of interaction
Jeff between two orphans in the same layer (upper curve) and
different layers (lower curve).

Solid lines: low T scaling form.
Points: full effective field theory results



Check against Monte-Carlo simulations
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Figure: Agreement between effective field theory predictions (solid
lines) for orphan spin correlators, and actual results (points with error
bars) for the same quantities obtained from MC for the O(3) system
shown for three inequivalent orphan spin placements (shown in
corresponding insets).



Further checks of theory

Prediction of absence of three-body and higher order terms is
confirmed by monte-carlo studies of a system with three and four
orphans.



Origins of NMR broadening

I Isolated vacancies have no associated Curie response.
Cannot account for NMR line broadening ∆H ∝ 1/T

I At small x , NMR line broadening reflects response to defective
triangles produced by vacancy-pairs



Finally: Modeling the Ga(4f) NMR line

Averaging over 12 Cr spins ‘loses information’
Field swept NMR line gives histogram of h satisfying
γN(h +AgLµB

∑
i∈Ga(4f )〈Sz

i 〉) = ωNMR for each Ga(4f) nucleus in
lattice
All parameters known from experiment



Ga NMR lineshape

 0

 5

 10

 15

 20

 25

 2.9  2.95  3  3.05  3.1  3.15

H [in Tesla]

T=50K, x=0.3
T=30K, x=0.3
T=20K, x=0.3
T=15K, x=0.3
T=10K, x=0.3

Finite vacancy density x = 0.3→Incorporate interactions between
spin textures via Monte-Carlo simulation



Comparison with experiment
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Verdict(?)

I Detailed understanding of the physics of spin-textures in
SCGO, a spin liquid with power-law spin correlations.

I Reliable description of defect-induced fractional moments
I But: Disorder modeling too simplistic.

Correlations between vacancies, bond-disorder...?



Outlook

Can we understand the freezing transition by thinking of a
system of randomly positioned orphan spins interacting with
long-range couplings?


