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Geometric frustration of exchange interactions

Triangles on my mind...
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I Triangles frustrate Néel order
I GeometryZ competition between

leading exchange interactions

Frustration spawns novel states
I Quenching of leading J Z

J cannot pick ground state at classical level
I Sub-dominant interactions & quantum fluctuationsZ Variety of novel

low temperature states



Single ion anisotropy can be large

I Single ion anisotropy −D(S · n)2can dominate over J
I Pyrochlore spin ice Ho2Ti2O7 (Ho3+, (L + S) = 8)

Easy axes n point outward from center of each tetrahedron
D ∼ 50K , J ∼ 1K
Harris et. al., Phys. Rev. Lett. 79, 2554 (1997)

I Kagome Nd-langasite Nd3Ga5SiO14 (Nd3+, (L + S) = 9/2)
Easy axis perpendicular to lattice plane, J ∼ 2K , D ∼ 10K
Robert et. al., Physica B 2006

I J � D is classical
Z study leading quantum effects in a J/D expansion



Anisotropy amplies frustration

I Isotropic spins on a triangle

I Easy-axis n and triangular motifs...
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Wannier’s triangular lattice model

I H = J
∑
〈ij〉 Si · Sj − D

∑
i (S

z
i )2, with D >> J on the triangular

lattice.
I To leading order Sz

i = ±S → σ = ±1
H ≈ JS2 ∑

〈ij〉 σiσj

I Minimum energy configurations?



Minimally frustrated configurations
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I One frustrated bond per triangle
I Honeycomb lattice dimer model (one dimer touching each

honeycomb site)
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Honeycomb lattice dimer model: One dimer touching each
honeycomb vertex
Classic problem in graph-theory/combinatorics/statistical mechanics



Ising ‘liquid’ in T → 0 limit

I Calculation of Stephenson (64) gives

〈σ(r)σ(0)〉 ∼ A
r9/2 +

B cos (2π(x + y)/3)√
r

I Spins neither freeze, nor fluctuate independently.
I Instead, form highly correlated “spin liquid”.



Understanding this result:

I Dimers, heights, and Ising models of frustration
I (Obvious) connection to odd Ising gauge theories
I Connection to Kosterlitz-Thouless theory



Spins to dimers to electric fields

“Electric field” eA→B = nAB − 1/3
dimer constraint: Gauss law (!).
Youngblood and Axe (1980)



From dimers to microscopic heights H(R)

el = HL(l) − HR(l) (1)

height field H on the original triangular lattice sites R
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From microscopic H(R) to coarse-grained h(r)

I Coarse-grain: Average over local rearrangements
I Locality: What happens “outside” cannot affect what happens

“inside”. h(r)→ h(r) + 1
(Field theorists: “compactification radius”)

I Lattice translations and 2π/6 rotationZ
h(r)→ h(r) + 1/3, h(r)→ −h(r)



Ising spins in terms of h(r)
3H jumps by odd (even) number whenever one crosses an
unfrustrated (frustrated) bond
σ(R) = exp(−3πiH(R)) (if σ(R = 0) = +1, and H(R = 0) = 0)
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Dimer crossed→ spin unchanged; empty link→ spin flipped
σ(R) = exp (iπ

∑
l (1− nl ))σ(0)

σ(R) = exp( 2π
3 i(X + Y )− iπH(R))

Fradkin et al (2004), KD (2009)



Effective action and operators

I Fewer flippable plaquettes→ larger “tilt”
Seff = π

g (∇h)2 + λ6 cos(6πh) + . . .

Coarse-grained representation of spins:
σ(r) ∼ AeiQ·r e−iπh(r) + Be−3iπh(r) + h.c.
Three-sublattice order parameter ψ ∼ eiπh ≡ eiθ(!)



T > 0: Odd Ising gauge theory and
Kosterlitz-Thouless vortices

I Nonzero temperature: Fully frustrated triangle→ three dimers
touching honeycomb site.

I “Electric field EA→B = nAB − 1/3 no longer divergence-free
But violations are 0 mod 2
Field-theory language: Configuration space of odd-Ising gauge
theory

I Heights no longer single valued
Three dimers touching honeycomb site→ vortex/antivortex in
θ = πh

I T = 0: Vortex-free xy model for θ with 6-fold anisotropy
T > 0: Vortices allowed



Picture for T = 0 power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)

potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state

I In power-law three-sublattice ordered state λ6 does not pin
phase θ
θ spread uniformly (0,2π)

I But vortices absent.



RG description

I Fixed point action: S = 1
4πg (∇θ)2

I For g > 1
9

λ6 cos(6θ) irrelevant along fixed line
Z 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T ) with η = g
Relies on absence of vortices at T = 0

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



Easy-axis antiferromagnets on triangular lattices
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Natural tripartite structure Z
Perturbations/quantum fluctuations easily stabilize this order...



Three-sublattice order on the triangular lattice
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Ferri vs antiferro order distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0,1,2 . . . 5)
Very recent: TmMgGaO4 (Thulium [Xe] 4f13 6s2) Tm3+ non-Kramers
Jz = ±6
Princeton, Augsburg, Fudan (2017-18)
cf: talk by Liu (Gang Chen group) in this workshop
Intrinsic transverse field Γint: σx

eff not a dipole



Prototypical example of order-by-(quantum) disorder

I HTFIM = J
∑
〈ij〉 σ

z
i σ

z
j − Γ

∑
i σ

x
i on the triangular lattice

small ΓZ Long-range order at three-sublattice wavevector Q
I Ordering of “antiferro” type→ (+,−,0)

antiferro order provides maximum “room” for quantum
fluctuations
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



Another example: S = 1 with easy-axis single-ion
anisotropy

I HAF = J
∑
〈ij〉
~Si · ~Sj − D

∑
i (S

z
i )2 on triangular lattice

Closely related to effective model for AgNiO2
(Seabra & Shannon ’11)

I Low-energy physics for D � J:
Hb = −J2

D
∑
〈ij〉(b

†
i bj + h.c.) + J

∑
〈ij〉(ni − 1

2)(nj − 1
2) + . . .

KD & Senthil ’06
I Low-temperature state for D � J: “supersolid” state of hard-core

bosons at half-filling.
Auerbach & Murthy (97), Heidarian & KD, Melko, Wessel...(05)

I Implies: ferri three-sublattice order in Sz + “ferro-nematic” order
in ~S2

⊥
(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Symmetry breaking transitions: Generalities

I Symmetry-breaking state characterized by long-range
correlations of “order-parameter” Ô

I phenomenological Landau free energy density F [Ô]

Expanding F in powers of Ô (symmetry allowed terms)
I Neglecting spatial variation & fluctuations:

phase transition→ change in minimum of F



Fluctuation effects at continuous transitions:

I More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F
Integrate over all possible order parameter configurations

I In most cases: Corrections to mean-field exponents



Symmetries are (usually) decisive:

I Transformation properties of Ô determine nature of continuous
transition



Landau-theory for melting of three-sublattice order

I F = K |∇ψ|2 + r |ψ|2 + u|ψ|4 + λ6(ψ6 + ψ∗6) + . . .

Connection with six-state clock models
Z =

∑
{pi} exp[

∑
〈ij〉 V ( 2π

6 (pi − pj ))]

Each pi = 0,1,2, ...5
V (x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

Cardy (1980)



Simplest lattice model

Hxy = −Jxy

∑
〈~r~r ′〉

cos(θ~r − θ~r ′)− h6

∑
~r

cos(6θ~r ) .

(higher harmonics J(p) (p = 2,3) left out of Hxy for simplicity)



Melting scenarios for three-sublattice order

I Analysis (Cardy 1980) of generalized six-state clock models
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition to ferromagnetic phase followed by loss
of ferromagnetism via Ising transition at higher temperature..
or vice-versa...
OR
First-order transition (always possible!)



Melting of three-sublattice order in various examples

I Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting
(Isakov & Moessner ’01)

I Ferrimagn. three-sublattice order in triangular lattice-gas models
of monolayer films
Two-step melting
D.P. Landau ’83

I Ferri. three-sublattice order in Kagome Ising antiferromagnets
With second-neighbour ferro couplings: Two step melting
Wolf & Schotte ’88
With long-range dipolar couplings: Three-state Potts transition
Moller & Moessner ’09, Chern, Mellado, Tchernyshyov ’11



Detecting power-law order?

Need scattering experiment to detect power-law version of Bragg
peaks
Or
Real-space data by scanning some local probe + Lots of
image-processing



Alternate thermodynamic signature(!)

I Singular thermodynamic susceptibility to uniform easy-axis field
B:
χu(B) ∼ 1

|B|p(T )

I p(T ) = 4−18η(T )
4−9η(T ) for η(T ) ∈ ( 1

9 ,
2
9 )

So p(T ) varies from 2/3 to 0 as T increases from Tc1 to just
below Tc2

(KD PRL ’15)



Recall: picture for power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)

potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < Tc1

I In power-law three-sublattice ordered state for T ∈ (Tc1,Tc2), λ6

does not pin phase θ
θ spread uniformly (0,2π)

I But vortices continue to be irrelevant
Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (Tc1,Tc2)

Ferromagnetic response part of the time...



Recall: More formally

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T ) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (T1,T2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T )

with η(T ) = g(T )

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument—I

Starting point: Ferrimagnetic three-sublattice order also involves
uniform magnetization m
More complete theory should treat m and ψ on equal footing

I Symmetries allow coupling term λ̃3m(ψ3 + ψ∗3)

augment FKT
kBT with gapped free-energy density Fferro(m):

Fferro(m) + λ3m cos(3θ)

I λ3 formally irrelevant along fixed line FKT

→
Physics of two-step melting unaffected—m “goes for a ride...”

But ...



General argument—II

I m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T )

I χL ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I χL = χreg + bL2−9η(T ) for η(T ) ∈ ( 1
9 ,

2
9 )

Diverges with system size at B = 0



General argument—III

I Uniform field B > 0→ additional term h3 cos(3θ) in FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2
I Implies finite correlation length ξ(B) ∼ |B|−

2
4−9η

I χu(B) ∼ |B|−
4−18η
4−9η for η(T ) ∈ ( 1

9 ,
2
9 )



Test in prototypical example
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In power-law ordered phase of HTFIM on triangular lattice
(Biswas & KD PRB ’18)



Test in KT phase of easy-axis S = 1 triangular lattice
AFM

In power-law ordered phase of Hb

(Heidarian & KD EPJB ’18)



Also interesting:—Multicritical melting

I KT phase can
Pinch-off at multicritical pointM?, giving way to three-state Potts
criticality. cM?

=?

OR
Pinch-off at multicritical pointMClock, giving way to first-order
transition line.
(KD PRL ’15)

I MClock previously known, notM?

Note: Conjecture (Dorey-Tateo-Thompson ’96) relatesMClock to
self-dual Z6 c = 1.25 CFT (Zamolodchikov-Fateev ’85)
→ cMClock = 1.25
(KD PRL ’15)



Also interesting: Multicritical melting

I How does the KT phase pinch-off for specific cases?

I Evidence forMClock on the triangular lattice
(Rakala, Shivam, Desai, & KD in prep.)

I Similar results on Kagome lattice systems
Conjecture forM? in triangular bilayers
(Rakala & KD unpublished)
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Some loose ends—I

Some loose ends...Three sublattice order and its melting in S=1 easy
axis triangular antiferromagnet, and in classical Ising models on the
triangular lattice



Is three-sublattice ordering of Sz in HAF ferri or
antiferro?

I Natural expectation: Quantum fluctuations induce antiferro order
(like in the transverse field Ising model)
→
Initial confusion: Ordering will be antiferro three-sublattice order
e. g. Melko et. al. (2005)



Actual state has ferrimagnetic three-sublattice order
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Early work: Triangular lattice-gas models for
monolayer films on graphite

I Three-sublattice long-range order of noble-gas monolayers on
graphite
Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990)
HJ1J2 = J

∑
〈ij〉 σ

z
i σ

z
j − J1

∑
〈〈ij〉〉 σ

z
i σ

z
j − J2 · · · − B

∑
i σ

z
i

Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Test in J1-J2model
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(Geet Rakala & KD in prep. )



Some loose ends—II

Some loose ends...multicritical melting



Multicritical melting of three-sublattice order
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More complete coarse-grained description

Heff = Hxy + HIsing − Jθτ
∑
~r

τ~r cos(3θ~r ) ,

where HIsing = −JIsing

∑
〈~r~r ′〉

τ~rτ~r ′ − h
∑
~r

τ~r ,

Hxy = −Jxy

∑
〈~r~r ′〉

cos(θ~r − θ~r ′)− h6

∑
~r

cos(6θ~r ) ,

with h ∝ B.
(KD PRL ’15)



The argument...

I Start with known phase diagrams of Hxy and HIsing and build in
effects of Jθτ

I When τ orders, Hxy sees effective three-fold symmetric
perturbation h3eff cos(3θ~r ) with h3eff ∼ 〈τ〉

I When eiθ orders, HIsing sees effective field heffτ~r with
heff ∼ 〈cos(3θ)〉



The “new” multicritical pointM?

I c-theorem argument: 1 ≤ c ≤ 3
2

I To search:
Jxy = h6 = 1.0, Jθτ = 0.25
Parametrize: JIsing = fxy Tθ1/Tτ and T = fI fxy Tθ1 [with Tθ1 = 1.04
and Tτ = 3.6409]



Multicritical melting atM?
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C2θ [C3θ] rescaled by a factor of 7 [factor of 10]
η3θ = ητ = 0.201(20), ηθ = 0.258(5), and η2θ = 0.353(6).
(KD ’15)



Speculation (aka wishful thinking?)

I If relative strength of first/second neighbour exchange tunable
relative to long-range dipolar part in artificial kagome-ice:
Could tune melting to multicritical pointM?...

I Computations challenging due to long-range interactions



M? vsMclock

I Conjecture (Dorey ’96): Mclock corresponds to c = 1.25 self-dual
Z6 CFT constructed by Zamolodchikov-Fateev (’85).

I Conjecture yields exponents atMclock: η3θ = 3/8, η2θ = 1/3,
and ηθ = 5/24.
η2θ and η3θ very different from values atM?

Recall: atM?, η3θ = ητ = 0.201(20), ηθ = 0.258(5), and
η2θ = 0.353(6).



Test of conjectured exponents forMclock

ηθzf=5/24

η2θ
zf=1/3

η3θ
zf=3/8

 1

 0.33  0.34  0.35  0.36  0.37  0.38  0.39

η
  

  
  

  
  

 

t

   ηθ
   η2θ
   η3θ

Results on Cardy’s six-state clock model
(Rakala, Shivam, & KD in prep.)



Schematic of pinch-off in triangular lattice Ising AFM
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Evidence forMclock in triangular Ising AFM
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(Rakala, Shivam, & KD in prep.)



Some loose ends—III

Some loose ends...previous work on Kagome systems



Three-sublattice order on the Kagome lattice
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Again: Ferri vs antiferro distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0,1,2 . . . 5)



Ising models for “Artificial Kagome-ice”

I HKagome = J
∑
〈ij〉 σ

z
i σ

z
j − J1

∑
〈〈ij〉〉 σ

z
i σ

z
j − J2 . . .

I Only nearest-neighbour couplings→ classical short-range spin
liquid (Kano & Naya 1950)

I Second-neighbour ferromag. couplings destabilize spin liquid
(Wolf & Schotte 88)
Ferrimagnetic three-sublattice order at low T .

I “Artificial Kagome-ice: Moments Mi = σz
i ni

(ni at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern et. al. (2011)


