Thermodynamic signature of two-step melting

of /3 x +/3 order

Singular ferromagnetic suscepbility of the triangular lattice
transverse-field Ising antiferromagnet

Kedar Damle, Quantum Magnetism Workshop, SJTU 2019

S. Blswas D. Heldanan G. Rakala S. Shivam, N. Desai



Geometric frustration of exchange interactions

Triangles on my mind...
+1
» Triangles frustrate Néel order

» Geometry 5" competition between
leading exchange interactions

-n ?
Frustration spawns novel states
» Quenching of leading J =
J cannot pick ground state at classical level

» Sub-dominant interactions & quantum fluctuations &5 Variety of novel
low temperature states



Single ion anisotropy can be large

» Single ion anisotropy —D(S - n)2can dominate over J

» Pyrochlore spin ice Ho,TioO; (Ho®*, (L + S) = 8)

Easy axes n point outward from center of each tetrahedron
D~ 50K, J~1K
Harris et. al., Phys. Rev. Lett. 79, 2554 (1997)

» Kagome Nd-langasite Nd3GasSiOq4 (Nd**, (L + S) = 9/2)
Easy axis perpendicular to lattice plane, J ~ 2K, D ~ 10K
Robert et. al., Physica B 2006

» J <« Dis classical
i study leading quantum effects in a J/D expansion



Anisotropy amplies frustration

» Isotropic spins on a triangle

» Easy-axis n and triangular motifs...

+1

-~



Wannier’s triangular lattice model

> H=JY;,Si-8; — DY/(S7)?, with D >> J on the triangular
lattice.

» To leading order S7 = £S — 0 = +1
H =~ JS? 2 Oi0j

» Minimum energy configurations?



Minimally frustrated configurations

A
+ve S-n

- -
+ve S-n —veS

» One frustrated bond per triangle

» Honeycomb lattice dimer model (one dimer touching each
honeycomb site)



(),
é :

Honeycomb lattice dimer model: One dimer touching each
honeycomb vertex
Classic problem in graph-theory/combinatorics/statistical mechanics



Ising ‘liquid’ in T — O limit

» Calculation of Stephenson (64) gives

A Bcos(2r(x+y)/3)

(o0 ~ g+ 7

» Spins neither freeze, nor fluctuate independently.
» Instead, form highly correlated “spin liquid”.



Understanding this result:

» Dimers, heights, and Ising models of frustration
» (Obvious) connection to odd Ising gauge theories
» Connection to Kosterlitz-Thouless theory



Spins to dimers to electric fields

(),
é TO

“Electric field” ea,p = nag — 1/3
dimer constraint: Gauss law (!).
Youngblood and Axe (1980)



From dimers to microscopic heights H(R)
e = Hyy — Hruy

height field H on the original triangular lattice sites R

Henley 1990s




From microscopic H(R) to coarse-grained h(r)

» Coarse-grain: Average over local rearrangements

» Locality: What happens “outside” cannot affect what happens
“inside”. h(r) — h(r)+1
(Field theorists: “compactification radius”)

» Lattice translations and 27 /6 rotation =
h(r)y — h(r)+1/3, h(r) = —h(r)



Ising spins in terms of h(r)

3H jumps by odd (even) number whenever one crosses an
unfrustrated frustrated bond
o(R) = exp(—3wiH(R)) (if o(R=0) =+1,and H(R=0) = 0)

(70,
é To

Dimer crossed — spin unchanged; empty link — spin flipped
o(R) = exp (im>_/(1 = m))o(0)

o(R) = exp(Zi(X + Y) — irH(R))

Fradkin et al (2004), KD (2009)



Effective action and operators

» Fewer flippable plaquettes — larger “tilt”
Seft = g(Vh)z + dgcos(6rh) + ...
Coarse-grained representation of spins:
o(r) ~ Agl@re=imh(r) 4 Be=3imh(r) 1 p.c.
Three-sublattice order parameter ¢ ~ €™ = /(1)



T > 0: Odd Ising gauge theory and
Kosterlitz-Thouless vortices

» Nonzero temperature: Fully frustrated triangle — three dimers
touching honeycomb site.

» “Electric field Ea_,g = nag — 1/3 no longer divergence-free
But violations are 0 mod 2
Field-theory language: Configuration space of odd-Ising gauge
theory

» Heights no longer single valued
Three dimers touching honeycomb site — vortex/antivortex in
0=mh

» T = 0: Vortex-free xy model for 6 with 6-fold anisotropy
T > 0: Vortices allowed



Picture for T = 0 power-law ordered phase

> In state with long-range three-sublattice order, ¢ feels A¢ cos(66)
potential.
Locks into values 27m/6 (resp. (2m + 1)x/6) in ferri (resp.
antiferro) three-sublattice ordered state

» In power-law three-sublattice ordered state A\g does not pin
phase 6
6 spread uniformly (0, 27)

» But vortices absent.



RG description

> Fixed point action: S = £1(V6)?

» Forg >}
e C0S(66) irrelevant along fixed line
1 () (r)e(0)) ~ i Withn =g
Relies on absence of vorticesat T =0

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



Easy-axis antiferromagnets on triangular lattices

Natural tripartite structure 5=
Perturbations/quantum fluctuations easily stabilize this order...



Three-sublattice order on the triangular lattice

@ [ O0Of @O
-S [+S [ +S
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b= [ule’ =~z efsy
Ferri vs antiferro order distinguished by the choice of phase ¢

Ferri: = 27m/6, Antiferro: 6 = (2m + 1)x/6 (m=0,1,2...5)

Very recent: TmMgGaO, (Thulium [Xe] 4f'® 6s?) Tm3* non-Kramers
J, =16

Princeton, Augsburg, Fudan (2017-18)

cf: talk by Liu (Gang Chen group) in this workshop

Intrinsic transverse field Ty : 0% not a dipole



Prototypical example of order-by-(quantum) disorder

> Hrav = J 35 ofof — 32, 0 on the triangular lattice

small I 5" Long-range order at three-sublattice wavevector Q
» Ordering of “antiferro” type — (+, —,0)

antiferro order provides maximum “room” for quantum

fluctuations
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



Another example: S = 1 with easy-axis single-ion
anisotropy

> Har =J 3 S §,- — DY".(S%)? on triangular lattice
Closely related to effective model for AgNiO2
(Seabra & Shannon’11)

» Low-energy physics for D > J:
2
Ho = =% Y (blbj+ h.c.) + I3 4y (ni = 3)(n— 3) + ..
KD & Senthil '06
» Low-temperature state for D >> J: “supersolid” state of hard-core
bosons at half-filling.
Auerbach & Murthy (97), Heidarian & KD, Melko, Wessel...(05)
» Implies: ferri three-sublattice order in S# + “ferro-nematic” order
in S%
(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Symmetry breaking transitions: Generalities

» Symmetry-breaking state characterized by long-range
correlations of “order-parameter” O

» phenomenological Landau free energy density ]-'[@]
Expanding F in powers of O (symmetry allowed terms)

» Neglecting spatial variation & fluctuations:
phase transition — change in minimum of F



Fluctuation effects at continuous transitions:

» More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in
Integrate over all possible order parameter configurations

» In most cases: Corrections to mean-field exponents



Symmetries are (usually) decisive:

» Transformation properties of O determine nature of continuous
transition



Landau-theory for melting of three-sublattice order

> F = K|V + |y + uly* + Xe(v® + 95°) + . ..
Connection with six-state clock models
Z =3 () EXP_ ) V(& (pi — p))]
Eachp;=0,1,2,..5
V(x) = Ky cos(x) + Kz cos(2x) + Kz cos(3x)
Cardy (1980)



Simplest lattice model

Hy = —dy Y cos(6z—07)—he Y _ cos(66) .
7

(re)

(higher harmonics JP) (p = 2, 3) left out of Hy, for simplicity)



Melting scenarios for three-sublattice order

» Analysis (Cardy 1980) of generalized six-state clock models
— Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition to ferromagnetic phase followed by loss
of ferromagnetism via Ising transition at higher temperature..
or vice-versa...
OR
First-order transition (always possible!)



Melting of three-sublattice order in various examples

» Antiferro three-sublattice order in triangular lattice transverse
field Ising model
Two-step melting
(Isakov & Moessner '01)

» Ferrimagn. three-sublattice order in triangular lattice-gas models
of monolayer films
Two-step melting
D.P. Landau '83

» Ferri. three-sublattice order in Kagome Ising antiferromagnets
With second-neighbour ferro couplings: Two step melting
Wolf & Schotte '88
With long-range dipolar couplings: Three-state Potts transition
Moller & Moessner '09, Chern, Mellado, Tchernyshyov ’11



Detecting power-law order?

Need scattering experiment to detect power-law version of Bragg
peaks

Or

Real-space data by scanning some local probe + Lots of
image-processing



Alternate thermodynamic signature(!)

» Singular thermodynamic susceptibility to uniform easy-axis field

B:
Xu(B) ~ ﬁ
> p(T) = s,th forn(T) € (5.5)
So p(T) varies from 2/3 to 0 as T increases from T¢; to just
below T

(KD PRL ’15)



Recall: picture for power-law ordered phase

» In state with long-range three-sublattice order, 0 feels \g cos(66)
potential.
Locks into values 27m/6 (resp. (2m+ 1)x/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < T4

> In power-law three-sublattice ordered state for T € (T4, Te2), A6
does not pin phase 6
6 spread uniformly (0, 27)

» But vortices continue to be irrelevant
Distinction between ferri and antiferro three-sublattice order lost
for T € (To1, Te2)
Ferromagnetic response part of the time...



Recall: More formally

> Fixed point free-energy density: ¢ = ‘l;—g(va)Z
with g(T) € (. 1) corresponding to T € (T4, T2)
> \g Ccos(60) irrelevant along fixed line
> (@ (NY(0) ~ oy
with n(T) = g(T)
Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument—I

Starting point: Ferrimagnetic three-sublattice order also involves
uniform magnetization m
More complete theory should treat m and ) on equal footing
» Symmetries allow coupling term Azm(v3 + ¢=3)
augment X with gapped free-energy density Feo(m):
Frerro(M) + Agmcos(36)
» )3 formally irrelevant along fixed line Fxr
N
Physics of two-step melting unaffected—m “goes for a ride..”

But ...



General argument—II

» m “inherits” power-law correlations of cos(30):
Cm(r) = (m(r)m(0)) ~ 7

> XL~ [Fd2rCn(r) in afinite-size system at B = 0
> XL = Xreg + bLZ—Qn(T) for 77( T) S (%, g)
Diverges with system size at B=0



General argument—III

v

Uniform field B > 0 — additional term h; cos(360) in Fxr

v

Strongly relevant along fixed line, with RG eigenvalue 2 — 9g/2

v

Implies finite correlation length ¢(B) ~ |B|~ =
xu(B) ~ B[~

4

71877 1 g
o forn(T) € (g.5)

v



Test in prototypical example
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(Biswas & KD PRB '18)



Test in KT phase of easy-axis S = 1 triangular lattice
AFM
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Also interesting:—Multicritical melting

» KT phase can
Pinch-off at multicritical point M-, giving way to three-state Potts
criticality. caq, =7
OR
Pinch-off at multicritical point Mo, giving way to first-order
transition line.
(KD PRL '15)

> Mciock Previously known, not M-,
Note: Conjecture (Dorey-Tateo-Thompson '96) relates Mcyock 10
self-dual Zs ¢ = 1.25 CFT (Zamolodchikov-Fateev '85)
— CMauy = 125
(KD PRL '15)



Also interesting: Multicritical melting

» How does the KT phase pinch-off for specific cases?

» Evidence for Mci.cx ON the triangular lattice
(Rakala, Shivam, Desai, & KD in prep.)

» Similar results on Kagome lattice systems
Conjecture for M- in triangular bilayers
(Rakala & KD unpublished)
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Some loose ends—I

Some loose ends...Three sublattice order and its melting in S=1 easy
axis triangular antiferromagnet, and in classical Ising models on the
triangular lattice



Is three-sublattice ordering of S? in Hag ferri or
antiferro?

» Natural expectation: Quantum fluctuations induce antiferro order
(like in the transverse field Ising model)
.
Initial confusion: Ordering will be antiferro three-sublattice order
e. g. Melko et. al. (2005)



Actual state has ferrimagnetic three-sublattice order
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Early work: Triangular lattice-gas models for
monolayer films on graphite

» Three-sublattice long-range order of noble-gas monolayers on
graphite
Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990)
Hyy, = J 2 ofof = Xy ofof =2 =By 07
Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Test in J1-d2model
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(Geet Rakala & KD in prep. )
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Some loose ends—II

Some loose ends...multicritical melting



Multicritical melting of three-sublattice order
A)

T

(KD PRL ’15)



More complete coarse-grained description

Heff - ny + HIsing - JGT Z Tr 003(307—) s

r
where Hlsing = _Jlsing Z TeTpr — h Z TF
() 7
Hy = —dy > cos(6;—0z)— he»_cos(60;)
<;f;«‘/> F
with h < B.

(KD PRL '15)



The argument...

» Start with known phase diagrams of Hy, and Hi,, and build in
effects of Jy.

» When 7 orders, H,, sees effective three-fold symmetric
perturbation hg.e cos(3607) with hser ~ (1)

» When e orders, Hising se€s effective field hegry with
her ~ (cos(30))



The “new” multicritical point M,

» c-theorem argument: 1 < ¢ < 3

» To search:
Jyy =hs =1.0, Jy, =0.25
Parametrize: Jising = fy To,/ T- and T = fify, Tyy [With Tp1 = 1.04
and T, = 3.6409]



Multicritical melting at M-

003 1 1 1 1 1
100 200 300 400 500 600

[fx/;"?, f,M?] ~ [1.5570(8), 1.0061(5)]
Cop [C3g] rescaled by a factor of 7 [factor of 10]

1o = 1, = 0.201(20), 5y = 0.258(5), and 729 = 0.353(6).
(KD ’15)



Speculation (aka wishful thinking?)

» If relative strength of first/second neighbour exchange tunable
relative to long-range dipolar part in artificial kagome-ice:
Could tune melting to multicritical point M...

» Computations challenging due to long-range interactions



M 7 VS M clock

» Conjecture (Dorey '96): M.,k corresponds to ¢ = 1.25 self-dual
Zs CFT constructed by Zamolodchikov-Fateev ('85).

» Conjecture yields exponents at M.jock: 730 = 3/8, 129 = 1/3,
and ny = 5/24.
109 and nzg very different from values at M-
Recall: at M+, nz9 = n, = 0.201(20), n9 = 0.258(5), and
129 = 0.353(6).



Test of conjectured exponents for M jock

nag7=3/8
o w13

ne?'=5/24

t

Results on Cardy’s six-state clock model
(Rakala, Shivam, & KD in prep.)



Schematic of pinch-off in triangular lattice Ising AFM

Para
KT phase
first order!
LRO
R=2 k

J=1,R=b+dh,s=db—JU



Evidence for M. in triangular Ising AFM
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0.15 0.20 0.40

(Rakala, Shivam, & KD in prep.)



Some loose ends—llII

Some loose ends...previous work on Kagome systems



Three-sublattice order on the Kagome lattice

ala
|
»n
B

+S

=[ve? ==Y g> 0 012 G ZM%SZR
Agam Ferri vs antiferro distinguished by the choice of phase ¢
Ferri: ¢ = 27m/6, Antiferro: 0 = (2m+1)r/6 (m=0,1,2...5)



Ising models for “Artificial Kagome-ice”

v

v

v

v

Hxagome = JZ("/) O'I-ZO']-Z —J E<<,-j>> a,-zajz — ...
Only nearest-neighbour couplings — classical short-range spin
liquid (Kano & Naya 1950)

Second-neighbour ferromag. couplings destabilize spin liquid
(Wolf & Schotte 88)

Ferrimagnetic three-sublattice order at low T.

“Artificial Kagome-ice: Moments M; = o7n;

(n; at different sites non-collinear)

Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)

Theory: Moller, Moessner (2009), Chern et. al. (2011)



