Thermodynamic signature of two-step melting of $\sqrt{3}\times\sqrt{3}$ order

Singular ferromagnetic suscepbility of the triangular lattice transverse-field Ising antiferromagnet

Kedar Damle, Quantum Magnetism Workshop, SJTU 2019

TIFR Mumbai

S. Biswas, D. Heidarian, G. Rakala, S. Shivam, N. Desai

Geometric frustration of exchange interactions

Triangles on my mind... +n • Tria • Ge lea

- Triangles frustrate Néel order
- Geometry Scompetition between leading exchange interactions

Frustration spawns novel states

- Quenching of leading J is
 J cannot pick ground state at classical level
- Sub-dominant interactions & quantum fluctuations Solution
 Variety of novel low temperature states

Single ion anisotropy can be large

- Single ion anisotropy $-D(\mathbf{S} \cdot \mathbf{n})^2$ can dominate over J
- Pyrochlore spin ice Ho₂Ti₂O₇ (Ho³⁺, (L + S) = 8) Easy axes n point outward from center of each tetrahedron D ~ 50K, J ~ 1K Harris et. al., Phys. Rev. Lett. 79, 2554 (1997)
- Kagome Nd-langasite Nd₃Ga₅SiO₁₄ (Nd³⁺, (L + S) = 9/2)
 Easy axis perpendicular to lattice plane, J ~ 2K, D ~ 10K
 Robert *et. al.*, Physica B 2006
- $J \ll D$ is classical

study leading quantum effects in a J/D expansion

Anisotropy amplies frustration

Isotropic spins on a triangle

Easy-axis **n** and triangular motifs...

Wannier's triangular lattice model

• $H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - D \sum_i (S_i^z)^2$, with D >> J on the triangular lattice.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- To leading order $S_i^z = \pm S \rightarrow \sigma = \pm 1$ $H \approx JS^2 \sum_{\langle ij \rangle} \sigma_i \sigma_j$
- Minimum energy configurations?

Minimally frustrated configurations

One frustrated bond per triangle

 Honeycomb lattice dimer model (one dimer touching each honeycomb site)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Honeycomb lattice dimer model: One dimer touching each honeycomb vertex

Classic problem in graph-theory/combinatorics/statistical mechanics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Ising 'liquid' in $T \rightarrow 0$ limit

Calculation of Stephenson (64) gives

$$\langle \sigma(\mathbf{r})\sigma(\mathbf{0})\rangle \sim \frac{A}{r^{9/2}} + \frac{B\cos\left(2\pi(x+y)/3\right)}{\sqrt{r}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Spins neither freeze, nor fluctuate independently.
- Instead, form highly correlated "spin liquid".

Understanding this result:

- Dimers, heights, and Ising models of frustration
- (Obvious) connection to odd Ising gauge theories

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Connection to Kosterlitz-Thouless theory

Spins to dimers to electric fields

"Electric field" $\mathbf{e}_{A \rightarrow B} = n_{AB} - 1/3$ dimer constraint: Gauss law (!). Youngblood and Axe (1980)

From dimers to microscopic heights H(R)

$$\boldsymbol{e}_{l} = \boldsymbol{H}_{L(l)} - \boldsymbol{H}_{R(l)} \tag{1}$$

Henley 1990s

From microscopic H(R) to coarse-grained h(r)

- Coarse-grain: Average over local rearrangements
- ► Locality: What happens "outside" cannot affect what happens "inside". $h(r) \rightarrow h(r) + 1$ (Field theorists: "compactification radius")

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► Lattice translations and $2\pi/6$ rotation $h(r) \rightarrow h(r) + 1/3$, $h(r) \rightarrow -h(r)$

Ising spins in terms of h(r)

3*H* jumps by odd (even) number whenever one crosses an unfrustrated (frustrated) bond

 $\sigma(R) = \exp(-3\pi i H(R))$ (if $\sigma(R = 0) = +1$, and H(R = 0) = 0)

Dimer crossed \rightarrow spin unchanged; empty link \rightarrow spin flipped $\sigma(R) = \exp(i\pi \sum_{l} (1 - n_{l})) \sigma(0)$ $\sigma(R) = \exp(\frac{2\pi}{3}i(X + Y) - i\pi H(R))$ Fradkin et al (2004), KD (2009)

Effective action and operators

► Fewer flippable plaquettes \rightarrow larger "tilt" $S_{\text{eff}} = \frac{\pi}{g} (\nabla h)^2 + \lambda_6 \cos(6\pi h) + \dots$ Coarse-grained representation of spins: $\sigma(r) \sim Ae^{i\mathbf{Q}\cdot r}e^{-i\pi h(r)} + Be^{-3i\pi h(r)} + h.c.$ Three-sublattice order parameter $\psi \sim e^{i\pi h} \equiv e^{i\theta}(!)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

T > 0: Odd Ising gauge theory and Kosterlitz-Thouless vortices

- Nonzero temperature: Fully frustrated triangle → three dimers touching honeycomb site.
- "Electric field *E*_{A→B} = *n*_{AB} 1/3 no longer divergence-free But violations are 0 mod 2
 Field-theory language: Configuration space of odd-Ising gauge theory
- ► Heights no longer single valued Three dimers touching honeycomb site \rightarrow vortex/antivortex in $\theta = \pi h$

(ロ) (同) (三) (三) (三) (○) (○)

• T = 0: Vortex-free *xy* model for θ with 6-fold anisotropy T > 0: Vortices allowed

Picture for T = 0 power-law ordered phase

► In state with long-range three-sublattice order, θ feels $\lambda_6 \cos(6\theta)$ potential.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Locks into values $2\pi m/6$ (resp. $(2m + 1)\pi/6$) in ferri (resp. antiferro) three-sublattice ordered state

In power-law three-sublattice ordered state λ₆ does not pin phase θ

 θ spread uniformly $(0, 2\pi)$

But vortices absent.

RG description

• Fixed point action: $S = \frac{1}{4\pi g} (\nabla \theta)^2$

► For $g > \frac{1}{9}$ $\lambda_6 \cos(6\theta)$ *irrelevant* along fixed line $\bowtie \langle \psi^*(r)\psi(0) \rangle \sim \frac{1}{r^{\eta(T)}}$ with $\eta = g$ Relies on absence of vortices at T = 0

Jose, Kadanoff, Kirkpatrick, Nelson (1977)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Easy-axis antiferromagnets on triangular lattices

Natural tripartite structure

Perturbations/quantum fluctuations easily stabilize this order...

Three-sublattice order on the triangular lattice

 $\psi = |\psi| e^{i heta} = -\sum_{ec{R}} e^{i \mathbf{Q} \cdot ec{R}} S^z_{ec{R}}$

Ferri vs antiferro order distinguished by the choice of phase $\boldsymbol{\theta}$

Ferri: $\theta = 2\pi m/6$, Antiferro: $\theta = (2m + 1)\pi/6$ (m = 0, 1, 2...5)

Very recent: TmMgGaO₄ (Thulium [Xe] 4f¹³ 6s²) Tm³⁺ non-Kramers $J_z = \pm 6$

Princeton, Augsburg, Fudan (2017-18) *cf: talk by Liu (Gang Chen group) in this workshop Intrinsic transverse field* Γ_{int} : σ_{eff}^{χ} not a dipole

Prototypical example of order-by-(quantum) disorder

- *H*_{TFIM} = J ∑_{⟨ij⟩} σ^z_i σ^z_j − Γ ∑_i σ^x_i on the triangular lattice small Γ ISS Long-range order at three-sublattice wavevector Q
- ► Ordering of "antiferro" type → (+, -, 0) antiferro order provides maximum "room" for quantum fluctuations

Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)

Another example: S = 1 with easy-axis single-ion anisotropy

- ► $H_{AF} = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j D \sum_i (S_i^z)^2$ on triangular lattice Closely related to effective model for AgNiO2 (Seabra & Shannon '11)
- ► Low-energy physics for $D \gg J$: $H_b = -\frac{J^2}{D} \sum_{\langle ij \rangle} (b_i^{\dagger} b_j + h.c.) + J \sum_{\langle ij \rangle} (n_i - \frac{1}{2})(n_j - \frac{1}{2}) + \dots$ KD & Senthil '06
- ► Low-temperature state for D ≫ J: "supersolid" state of hard-core bosons at half-filling. Auerbach & Murthy (97), Heidarian & KD, Melko, Wessel...(05)

 Implies: ferri three-sublattice order in S^z + "ferro-nematic" order in S²_⊥ (Simple easy-axis version of Chandra-Coleman (1991) "spin-nematic" ideas)

Symmetry breaking transitions: Generalities

- Symmetry-breaking state characterized by long-range correlations of "order-parameter" Ô
- phenomenological Landau free energy density \$\mathcal{F}[\heta]\$
 Expanding \$\mathcal{F}\$ in powers of \$\heta\$ (symmetry allowed terms)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

► Neglecting spatial variation & fluctuations: phase transition → change in minimum of *F*

Fluctuation effects at continuous transitions:

 More complete description of long-wavelength physics: Include (symmetry allowed) gradient terms in *F* Integrate over all possible order parameter configurations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In most cases: Corrections to mean-field exponents

Symmetries are (usually) decisive:

Transformation properties of Ô determine nature of continuous transition

Landau-theory for melting of three-sublattice order

►
$$\mathcal{F} = K |\nabla \psi|^2 + r |\psi|^2 + u |\psi|^4 + \lambda_6 (\psi^6 + \psi^{*6}) + ...$$

Connection with six-state clock models
 $Z = \sum_{\{\rho_i\}} \exp[\sum_{\langle ij \rangle} V(\frac{2\pi}{6}(\rho_i - \rho_j))]$
Each $\rho_i = 0, 1, 2, ...5$
 $V(x) = K_1 \cos(x) + K_2 \cos(2x) + K_3 \cos(3x)$
Cardy (1980)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Simplest lattice model

$$H_{\mathrm{xy}} = -J_{\mathrm{xy}} \sum_{\langle ec{r}ec{r}'
angle} \cos(heta_{ec{r}} - heta_{ec{r}'}) - h_6 \sum_{ec{r}} \cos(6 heta_{ec{r}}) \; .$$

(higher harmonics $J^{(p)}$ (p = 2, 3) left out of H_{xy} for simplicity)

Melting scenarios for three-sublattice order

- Analysis (Cardy 1980) of generalized six-state clock models

 Three generic possibilities of relevance here:
 Two-step melting, with power-law ordered intermediate phase OR
 - **3-state Potts transition** to ferromagnetic phase followed by loss of ferromagnetism via Ising transition at higher temperature.. or vice-versa...

(ロ) (同) (三) (三) (三) (○) (○)

OR

First-order transition (always possible!)

Melting of three-sublattice order in various examples

- Antiferro three-sublattice order in triangular lattice transverse field Ising model
 Two-step melting (Isakov & Moessner '01)
- Ferrimagn. three-sublattice order in triangular lattice-gas models of monolayer films

Two-step melting

D.P. Landau '83

 Ferri. three-sublattice order in Kagome Ising antiferromagnets With second-neighbour ferro couplings: Two step melting Wolf & Schotte '88
 With long-range dipolar couplings: Three-state Potts transition

Moller & Moessner '09, Chern, Mellado, Tchernyshyov '11

Need scattering experiment to detect power-law version of Bragg peaks

Or

Real-space data by scanning some local probe + Lots of image-processing

Alternate thermodynamic signature(!)

Singular thermodynamic susceptibility to *uniform* easy-axis field
 B:

$$\chi_u(B) \sim \frac{1}{|B|^{\rho(T)}}$$

$$p(T) = \frac{4 - 18\eta(T)}{4 - 9\eta(T)} \text{ for } \eta(T) \in (\frac{1}{9}, \frac{2}{9})$$
So $p(T)$ varies from 2/3 to 0 as T increases from T_{c1} to just below T_{c2}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

(KD PRL '15)

Recall: picture for power-law ordered phase

In state with long-range three-sublattice order, θ feels $\lambda_6 \cos(6\theta)$ potential.

Locks into values $2\pi m/6$ (resp. $(2m + 1)\pi/6$) in ferri (resp. antiferro) three-sublattice ordered state for $T < T_{c1}$

- In power-law three-sublattice ordered state for T ∈ (T_{c1}, T_{c2}), λ₆ does not pin phase θ θ spread uniformly (0, 2π)
- But vortices continue to be irrelevant Distinction between ferri and antiferro three-sublattice order lost for $T \in (T_{c1}, T_{c2})$ Ferromagnetic response part of the time...

(ロ) (同) (三) (三) (三) (○) (○)

Recall: More formally

Fixed point free-energy density: ^{*F*_{KT}}/_{*k*_B*T*} = ¹/_{4πg}(∇θ)² with g(T) ∈ (¹/₉, ¹/₄) corresponding to T ∈ (T₁, T₂)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $\lambda_6 \cos(6\theta)$ irrelevant along fixed line

•
$$\langle \psi^*(r)\psi(0)\rangle \sim \frac{1}{r^{\eta(T)}}$$

with $\eta(T) = g(T)$

Jose, Kadanoff, Kirkpatrick, Nelson (1977)

General argument—I

Starting point: Ferrimagnetic three-sublattice order also involves uniform magnetization m

More complete theory should treat m and ψ on equal footing

- Symmetries allow coupling term λ̃₃m(ψ³ + ψ∗³) augment F_{kT} with gapped free-energy density F_{ferro}(m): F_{ferro}(m) + λ₃m cos(3θ)
- λ_3 formally irrelevant along fixed line \mathcal{F}_{KT}

Physics of two-step melting unaffected—m "goes for a ride..."

But ...

 \rightarrow

General argument—II

• *m* "inherits" power-law correlations of $cos(3\theta)$: $C_m(r) = \langle m(r)m(0) \rangle \sim \frac{1}{r^{9\eta(T)}}$

•
$$\chi_L \sim \int^L d^2 r C_m(r)$$
 in a finite-size system at $B = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\chi_L = \chi_{\text{reg}} + bL^{2-9\eta(T)}$$
 for $\eta(T) \in (\frac{1}{9}, \frac{2}{9})$
Diverges with system size at $B = 0$

General argument—III

- Uniform field $B > 0 \rightarrow$ additional term $h_3 \cos(3\theta)$ in \mathcal{F}_{KT}
- ▶ Strongly relevant along fixed line, with RG eigenvalue 2 9g/2

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Implies finite correlation length $\xi(B) \sim |B|^{-\frac{2}{4-9\eta}}$
- $\chi_u(B) \sim |B|^{-\frac{4-18\eta}{4-9\eta}}$ for $\eta(T) \in (\frac{1}{9}, \frac{2}{9})$

Test in prototypical example

In power-law ordered phase of $H_{\rm TFIM}$ on triangular lattice (Biswas & KD PRB '18)

Test in KT phase of easy-axis S = 1 triangular lattice AFM

A B > A B >

In power-law ordered phase of H_b (Heidarian & KD EPJB '18)

Also interesting:-Multicritical melting

```
KT phase can
   Pinch-off at multicritical point \mathcal{M}_{?}, giving way to three-state Potts
   criticality. c_{M_2} = ?
   OR
   Pinch-off at multicritical point \mathcal{M}_{Clock}, giving way to first-order
   transition line.
   (KD PRL '15)
• \mathcal{M}_{\text{Clock}} previously known, not \mathcal{M}_{?}
   Note: Conjecture (Dorey-Tateo-Thompson '96) relates \mathcal{M}_{\text{Clock}} to
   self-dual Z_6 c = 1.25 CFT (Zamolodchikov-Fateev '85)
   \rightarrow c_{\mathcal{M}_{Clock}} = 1.25
   (KD PRL '15)
```

Also interesting: Multicritical melting

- How does the KT phase pinch-off for specific cases?
 - Evidence for *M*_{Clock} on the triangular lattice (Rakala, Shivam, Desai, & KD *in prep.*)
 - Similar results on Kagome lattice systems Conjecture for M_? in triangular bilayers (Rakala & KD unpublished)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Acknowledgements and references

Students: D. Heidarian, G. Rakala, S. Biswas, S. Shivam, N. Desai
Resources: HPC facilities at DTP TIFR
References:
G. Rakala, S. Shivam, N. Desai, & KD *in prep.*D. Heidarian & KD, Eur. Phys. J. B **91**, 202 (2018)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

S. Biswas, KD PRB 97, 085114 (2018)

KD, PRL 115, 127204 (2015)

Some loose ends—I

Some loose ends...Three sublattice order and its melting in S=1 easy axis triangular antiferromagnet, and in classical Ising models on the triangular lattice

Is three-sublattice ordering of S^z in H_{AF} ferri or antiferro?

 \rightarrow

 Natural expectation: Quantum fluctuations induce antiferro order (like in the transverse field Ising model)

Initial confusion: Ordering will be antiferro three-sublattice order *e. g.* Melko *et. al.* (2005)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Actual state has ferrimagnetic three-sublattice order

Heidarian & KD PRL '05

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Early work: Triangular lattice-gas models for monolayer films on graphite

► Three-sublattice long-range order of noble-gas monolayers on graphite Birgeneau, Bretz, Chan, Vilches, Wiechert...(1970—1990) $H_{J_1J_2} = J \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - J_1 \sum_{\langle \langle ij \rangle \rangle} \sigma_i^z \sigma_j^z - J_2 \cdots - B \sum_i \sigma_i^z$ Long-range three-sublattice ordering (wavevector **Q**) at low temperature D. P. Landau (1983)

(ロ) (同) (三) (三) (三) (○) (○)

Test in J1-J2model

In power-law ordered phase of $H_{J_1J_2}$ ($R = -(J_1 + J_2)/J$ and $\kappa = (J_2 - J_1)/J$) (Geet Rakala & KD *in prep.*)

Some loose ends—II

Some loose ends...multicritical melting

Multicritical melting of three-sublattice order

More complete coarse-grained description

$$H_{\rm eff} = H_{\rm xy} + H_{\rm Ising} - J_{\theta\tau} \sum_{\vec{r}} \tau_{\vec{r}} \cos(3\theta_{\vec{r}}) ,$$

where $H_{\rm Ising} = -J_{\rm Ising} \sum_{\langle \vec{r}\vec{r}' \rangle} \tau_{\vec{r}} \tau_{\vec{r}'} - h \sum_{\vec{r}} \tau_{\vec{r}} ,$
 $H_{\rm xy} = -J_{\rm xy} \sum_{\langle \vec{r}\vec{r}' \rangle} \cos(\theta_{\vec{r}} - \theta_{\vec{r}'}) - h_6 \sum_{\vec{r}} \cos(6\theta_{\vec{r}}) ,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

with $h \propto B$. (KD PRL '15)

The argument...

Start with known phase diagrams of H_{xy} and H_{Ising} and build in effects of J_{θτ}

(ロ) (同) (三) (三) (三) (○) (○)

- When τ orders, H_{xy} sees effective three-fold symmetric perturbation h_{3eff} cos(3θ_r) with h_{3eff} ~ (τ)
- ► When $e^{i\theta}$ orders, H_{Ising} sees effective field $h_{\text{eff}}\tau_{\vec{r}}$ with $h_{\text{eff}} \sim \langle \cos(3\theta) \rangle$

The "new" multicritical point $M_{?}$

- c-theorem argument: $1 \le c \le \frac{3}{2}$
- To search:

 $J_{xy} = h_6 = 1.0, J_{\theta\tau} = 0.25$ Parametrize: $J_{\text{Ising}} = f_{xy} T_{\theta_1} / T_{\tau}$ and $T = f_I f_{xy} T_{\theta_1}$ [with $T_{\theta_1} = 1.04$ and $T_{\tau} = 3.6409$]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Multicritical melting at $M_{?}$

$$\begin{split} & [f_{xy}^{\mathcal{M}_{7}}, f_{l}^{\mathcal{M}_{7}}] \approx [1.5570(8), 1.0061(5)] \\ & C_{2\theta} \left[C_{3\theta} \right] \text{ rescaled by a factor of 7 [factor of 10]} \\ & \eta_{3\theta} = \eta_{\tau} = 0.201(20), \, \eta_{\theta} = 0.258(5), \, \text{and} \, \eta_{2\theta} = 0.353(6). \\ & (\text{KD '15}) \end{split}$$

Speculation (aka wishful thinking?)

 If relative strength of first/second neighbour exchange tunable relative to long-range dipolar part in artificial kagome-ice:
 Could tune melting to multicritical point M₂...

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Computations challenging due to long-range interactions

$\mathcal{M}_?$ vs \mathcal{M}_{clock}

- Conjecture (Dorey '96): M_{clock} corresponds to c = 1.25 self-dual Z₆ CFT constructed by Zamolodchikov-Fateev ('85).
- Conjecture yields exponents at \mathcal{M}_{clock} : $\eta_{3\theta} = 3/8$, $\eta_{2\theta} = 1/3$, and $\eta_{\theta} = 5/24$. $\eta_{2\theta}$ and $\eta_{3\theta}$ very different from values at $\mathcal{M}_{?}$ Recall: at $\mathcal{M}_{?}$, $\eta_{3\theta} = \eta_{\tau} = 0.201(20)$, $\eta_{\theta} = 0.258(5)$, and $\eta_{2\theta} = 0.353(6)$.

(ロ) (同) (三) (三) (三) (○) (○)

Test of conjectured exponents for \mathcal{M}_{clock}

ヘロト ヘ戸ト ヘヨト

Results on Cardy's six-state clock model (Rakala, Shivam, & KD in prep.)

Schematic of pinch-off in triangular lattice Ising AFM

Evidence for \mathcal{M}_{clock} in triangular Ising AFM

R=2.0000

(Rakala, Shivam, & KD in prep.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Some loose ends—III

Some loose ends...previous work on Kagome systems

Three-sublattice order on the Kagome lattice

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Ising models for "Artificial Kagome-ice"

$$\blacktriangleright H_{\text{Kagome}} = J \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - J_1 \sum_{\langle \langle ij \rangle \rangle} \sigma_i^z \sigma_j^z - J_2 \dots$$

- Only nearest-neighbour couplings → classical short-range spin liquid (Kano & Naya 1950)
- Second-neighbour ferromag. couplings destabilize spin liquid (Wolf & Schotte 88)
 Ferrimagnetic three-sublattice order at low *T*.
- "Artificial Kagome-ice: Moments M_i = σ_i^zn_i
 (n_i at different sites non-collinear)
 Expt: Tanaka *et. al.* (2006), Qi *et. al.* (2008), Ladak *et. al.* (2010,11)
 Theorem Mallan Massanan (2000). Charm et. al. (2011)

Theory: Moller, Moessner (2009), Chern et. al. (2011)

(ロ) (同) (三) (三) (三) (○) (○)