Cluster algorithms for frustrated Ising models

Kedar Damle, ECT* October 2015 Tata Institute, Bombay

Sounak Biswas & R. Geet

Ingredients

- Cluster constructions
- (Dual) "loop-like" (dimer) representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Directed worm constructions

Particularly appropriate setting...

Frustration and entropic interactions

- Frustrated magnets: Large degeneracy of minimum energy configurations
- At T
 J: system samples minimally frustrated subspace (Or falls out of equilibrium...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fluctuations generate entropic interactions

Order by disorder:

- Low temperature physics dominated by entropic interactions
- Characteristic signatures in structure factor
- More dramatic cases: Order-by-thermal/quantum disorder

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

- ► S = 1 easy-axis triangular lattice antiferromagnet with large single-ion anisotropy $H = \sum_{\langle rr' \rangle} \vec{S}_r \cdot \vec{S}_{r'} - D \sum_r (S_r^z)^2$
- ► Reduction to: S = 1/2 $H_{XXZ} = J_z \sum_{\langle rr' \rangle} \sigma_r^z \sigma_{r'}^z - J_\perp \sum_{\langle rr' \rangle} (\sigma_r^+ \sigma_{r'}^- + h.c.)$ (KD & Senthil 2006)
- QMC of H_{XXZ} using SSE (Heidarian & KD 2005, Melko *et.al.* 2005, Wessel & Troyer 2005, Boninsegni & Prokofev 2005 ...)

(日) (日) (日) (日) (日) (日) (日)

Key challenge for algorithm

- Needs to "know" structure of minimally frustrated landscape Within stochastic Series Expansion (SSE): Directed-loop updates must be able to move system within minimally frustrated subspace
- Solution: Cluster decomposition of H_{XXZ} in triangle Hamiltonians (Kim & Gross, KD & Heidarian 2004)
- ► advantage: incorporates $\Delta E = 0$ changes & $\Delta E \neq 0$ on equal footing

(ロ) (同) (三) (三) (三) (○) (○)

Another example

► S ≥ 3/2 easy axis antiferromagnets on triangular and Kagome lattices

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Reduction to frustrated Ising model with further-neighbour/multi-spin interactions $H_{\text{Ising}} = J \sum_{\langle ij \rangle} \sigma_i \sigma_j + J' \sum_{\langle \langle ij \rangle} \sigma_i \sigma_j + \dots$

Challenge for algorithm

- At T = 0, formulate as interacting dimer model and use dimer worm algorithm of Alet et. al..
 (Sen et. al.,2008,09)
- Difficulty at small nonzero temperature: Need to include higher-energy configurations with correct weight in efficient way Standard (Wolff-inspired) cluster constructions don't work so well with frustration

(ロ) (同) (三) (三) (三) (○) (○)

Coddington & Han 1994, Zhang and Yang 1994

More recent attempt

- Worm construction (Wang,Sterck & Melko 2012)
 Uses dual geometric worm algorithm (*a la* Hitchcock,Sorenson,Alet 2004)
- Works when T = 0 limit is dual to non-interacting dimers

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Involves rejection of significant fraction of worms

Third example

- ► Triangular lattice Ising antiferromagnet in a transverse field $H_{\text{TFIM}} = J \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z \Gamma \sum_i \sigma_i^x + \dots$
- Quantum cluster algorithm available in SSE representation (Sandvik 2003)

Clusters reduce to variant of Swendsen-Wang clusters in $\Gamma = 0$ limit \rightarrow frustrated J_{ij} again leads to problems(?) Need to "teach" algorithm physics of minimally frustrated configurations(?)

(ロ) (同) (三) (三) (三) (○) (○)

In this talk...

- Quantum cluster construction for *frustrated* TFIM
- Cluster algorithm for frustrated two-dimensional H_{Ising} with up to third neighbour interactions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SSE for frustrated TFIM

- ► Example: Transverse field Ising antiferromagnet on triangular lattice (also with further neighbour (*J*₂, *J*₃) couplings...)
- Interesting physics questions
 Thermodynamic signature of two-step melting of three-sublattice order

(ロ) (同) (三) (三) (三) (○) (○)

Transition from plaquette to columnar three-sublattice order

・ロン ・聞 と ・ ヨ と ・ ヨ と

Columnar vs Plaquette type orders

 $\Psi = |\Psi| e^{i\theta}$

 $\theta = 2\pi m/6$: Columnar three-sublattice order (m = 0, 1, 2...6)

 $\theta = (2m + 1)\pi/6$: Plaquette three-sublattice order (m = 0, 1, 2...6) In ordered state: θ pinned to these values

Columnar phase is ferrimagnetic $m \propto \cos(3\theta)$

In power-law phase: θ has gaussian fluctuations with no pinning

(日) (日) (日) (日) (日) (日) (日)

(Isakov & Moessner 2003)

・ロト・日本・日本・日本・日本・日本

 $L = 48, \Gamma = 0.8, T = 0.1, J_1 = 1.0, J_2 = 0.0$

・ロト・日本・日本・日本・日本・日本

 $L = 72, \Gamma = 0.8, T = 0.1, J_1 = 1.0, J_2 = 0.0$

 $L = 72, \Gamma = 0.8, T = 0.1, J_1 = 1.0, J_2 = 0.0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Approach

 $H_{\text{TFIM}} = \sum_{\Delta} H_{\Delta} + \sum_{\text{link}} H_{\text{link}} + \sum_{\text{sites}} H_{\text{sites}}$ H_{Δ} : Triangle decomposition of all antiferromagnetic couplings H_{Link} : Bond decomposition of all ferromagnetic couplings H_{sites} : site decomposition of transverse field term

Quantum-cluster construction for frustrated TFIM A-Majority site A-Minority Site

∃ 990

Improvement

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Going into columnar phase

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A@

In columnar phase

Divergent ferromagnetic susceptibility of antiferromagnet

 $\Gamma = 0.8, J_1 = 1.0, J_2 = 0.0$

・ロト・西ト・西ト・西ト・日・ シック

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Test against exact enumeration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

In power-law three-sublattice ordered phase

In power-law three-sublattice ordered phase

In power-law three-sublattice ordered phase

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

Acknowledgements

- Collaborators: Sounak Biswas & Geet Ghanshyam TIFR
- Computational resources: funded by DTP TIFR

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 n_c

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

・ロト・西ト・ヨト・ヨー シタぐ

ED tests

T

・ロト ・聞ト ・ヨト ・ヨト æ

ED tests

<□> <@> < 注→ < 注→ < 注→ < 注→ のへの

ED tests

Thermodynamic signature of melting of columnar order

 $\Gamma = 0.8, J_1 = 1.0, J_2 = 0.1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

 $\Gamma = 0.8, J_1 = 1.0, J_2 = 0.1$

