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Abstract

In these lectures we descibe various aspects of large N field theories.
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A. The efficacy of large N: overview.

Central limit theorem, collective excitations tend to be

classical.

1/N works as a small parameter in asymptotically

free Yang-Mills gauge theory which otherwise do not have

a free parameter (coupling merely sets the scale).

Large N factorization suggests that large N gauge

theories may be described by a classical theory.

Abstract writing of such a theory (effective potential

of single traces)--- non-local. Is there a simple way

to write such a theory? AdS/CFT is one.

Can large N can explain appearance of an arrow of time?

Caldeira Legett model etc.

B. O(N) bosons:

Introduction of the (phi^2)^2 model in d dimensions. Lagrangian.

Large N classification of Feynman diagrams; reduction in the

number of diagrams if we are interested in leading large N.

Example: compute beta-functions in an epsilon expansion,

Wilson Fisher fixed point.

Still infinite number of diagrams: how does one sum these?

Dyson Schwinger diagrammatic summation of bubble diagrams;

gap equation.

Functional methods: Effective action in terms of the

singlet variable. Large N as a saddle point expansion.

‘Meson’ fluctuations are suppressed. \sigma = \sigma_{cl} +
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1/\sqrt N \sigma_q. Nearly free quasiparticles

<(\sigma_q)^3> \sim O(1/\sqrt N). 2->2 scattering \sim O(1/N)

Examine the classical effective potential of the meson. Can

have symmetry breaking; Goldstones described by non-linear

sigma model. Potential can also have a symmetric phase.

Demarcation of phases in the (m^2, g) plane. Phase

boundary= critical surface.

Critical phenomena. Large N gives exact critical exponents of

Wilson-Fisher fixed point without epsilon expansion (\phi^4 in 3D).

Comparison with experiments.

4+5+6.

C. O(N) fermions

Introduction of the Gross-Neveu model. Diagrammatics; bubbles

(quick review of same stuff in Section B). Classical Symmetries:

O(N), Chiral symmetry.

Impossibility of breaking chiral symmetry in perturbation theory.

Large N effective action. Exact beta function at large N:

asymptotic freedom, dynamical mass generation, nonperturbative

chiral symmetry breaking

Nambu Jona Lasinio model. Effective action of mesons.

Comparison with BCS.

7+8+9.

D. Yang-Mills Gauge theories.

Repeat from Section A:

no tunable parameter in asymptotically free gauge theories,
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as the coupling constant simply sets the scale.

Try 1/N as a possible perturbation parameter (’t Hooft).

[things are different in conformal theories, e.g. N=4 SYM,

where the YM coupling does not run and IS a tunable parameter;

however, even then, usual perturbation theory is

not powerful enough to arrive at many of the qualitative predictions

which large N perturbative expansion can.]

Double line notation. Planar vs non-planar Feynman diagrams.

N^(2-2*genus) expansion. At large N, only planar diagrams

survive (unless double scaling limit is taken).

Qualitative description of mesons and glueballs. Diagrammatics:

effective action of qqbar <JJ>, <JJJ> etc. Witten’s argument that

J should be effectively described in terms of mesons. Observations:

(a) Infinite number of mesons

(b) <MMM> \sim O(1/\sqrt N), <MMMM> \sim O(1/N). Mesons are

good quasiparticles

(c) Zweig’s rule: qqbar does not mix with qqqbarqbar, etc.

Introduction to large N baryons. Witten. Seiberg.

E. AdS/CFT

Large N factorization suggests that Large N YM should

be a classical theory, written in terms of the single trace variables.

The theory may involve Tr log, hence typically non-local.

(some of these are repeats from Section A.)

In AdS/CFT, the effective action in terms of

singlets of d-dim gauge theory becomes Einstein action

in D=d+1 dimensions! No proof exists (attempts at

proof below), but there are numerous evidences.

Parameter maps: [Recall G_N = l_s^8 g_s^2, \lambda = g_s N, R= l_s \lambda^(1/4)],

implying (in units R=1, or see p.59 MAGOO)
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G_N \sim 1/N^2

\alpha’ \sim 1/\sqrt{\lambda}

Hence,

(N =\infty, \lambda=\infty) gauge theory = classical gravity in AdS

1/N expansion in gauge theory= quantum gravity [\lambda=\infty]

1/\lambda expansion in gauge theory = classical string in AdS [N=\infty]

finite N, finite \lambda= quantum string in AdS

Examples of calculations:

Free energy F(T, \lambda, N) of {\cal N}=4 SYM in R^3 \times S^1.

Attempts at proof of AdS/CFT

O(N) bosons---> Vasiliev!

F. Matrix models at large N

reformulation in terms of eigenvalue

density (collective variables); proof of the existence of a large N

expansion. Understanding in terms of Feynman diagrams.

phase transitions. Gross-Witten-Wadia critical point.

Double scaling. Genus sum can be regained if (g-g_c)^a N is held

fixed.

2 Efficacy of large N : An overview

2.1 Central Limit theorem (CLT)

Consider N independent random variables xi

xi = µi +O(σ)

Define X = 1/N
∑

xi, µ = 1/N
∑

µi.
CLT: X = µ+O(σ/

√
N)
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Proof: 1 〈(X−µ)(X−µ)〉 = 1/N2
∑

ij〈(xi−µi)(xj−µj)〉 = 1/N2
∑

i〈(xi−
µi)

2〉 = σ2/N .
Lesson: fluctuation of average goes to zero in the limit N → ∞. collec-

tive excitations tend to be classical.
Limitations of the proof: Variables are non-interacting.
To come: We will see, throughout these lectures, that if the averages are

chosen appropriately, they become classical (= non-fluctuating), even if the
random variables are interacting.

2.2 Infinite range Ising

(See Exercise 2 for more details)
Long-range Ising model

Z =
∑

si

exp[−H], H = −J
∑

i,j

sisj − h
∑

i

si

Z =

∫ ∞

∞
dm exp[−m2/2J +N ln cosh(m+ h)]

In the ’tHooft limit J = J̃/N , we get a large N saddle point.

2.3 O(N) vector models

Bosons:
Consider (3.1).
Define the magnetization σ = 〈φ1(x)〉 = ∂ lnZ[h1(x)]/∂h1.
We will see that, at large N (in the symmetry broken phase)

σ = σcl +O(1/
√
N)

The generating function lnZ[h(x)] has a classical limit, with quantum flucu-
ations suppressed by inverse powers of N . The functional integral is concen-

1In more detail: Redefine xi−µi → xi, X−µ → X. For simplicity, let xi be a Gaussian
variable with dispersion σ. P (xi) ∝ exp[−x2

i /(2σ
2)]. Joint probability

∏

i P (xi)dxi. Do an

O(N) transformation of variables x1, x2, .. → y1 = X
√
N, y2, ... (note that y1 = ~n1.~x, ~n1 =

1/
√
N(1, 1, ...), |~n| = 1.) The joint probability becomes

∏

i P (yi)dyi, with P (y1)dy1 =

exp[−y2
1
/(2σ2)]dy1 =exp[−X2/(2σ2/N)]dX

√
N . Hence Proved.
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trated around some classical value of σ. Large N factorization:

〈σ(x)σ(y)...〉 =
∫

σ(x)σ(y)... exp[−NS(ρ)]
∫

exp[−NS(ρ)] = σcl(x)σcl(y)...+O(1/N) (2.1)

〈σ(x)σ(y)〉c ∼ 1/N

Fermions:
Consider (4.1).
In d = 2, this is the Gross-Neveu model. We will demonstrate that for

the O(N) singlet σ = 1/N ψ̄iψi, for g > 0

〈σ〉 = σcl +O(1/
√
N)

which exhibit asymptotic freedom, chiral sym. breaking and dynamical mass
generation.

In d = 4, this is related to the Nambu Jona Lasinio model, which again
shows chiral sym. breaking as above.2

2.4 Gauge theory

In YM theory, by dimensional transmutation

Γ(n)(q1ΛYM , ..., qNΛYM , g1) = Λ#
YMf(q1, ..., qN ) (2.2)

Thus, the gauge coupling disappears, when ΛYM = 1 units are used. There
are no tunable parameters which can be tuned to a small value.

’tHooft suggested that in terms of appropriate (gauge-invariant) variables,
1/N for an SU(N) gauge theory can be used as a small parameter.

Large N factorization suggests that large N gauge theories may be de-
scribed by a classical theory. Abstract writing of such a theory (effective
potential of single traces)— non-local. Is there a simple way to write such a
theory? AdS/CFT is one.

Large N gauge theory has given rise to many beautiful things: a qualita-
tive understanding of mesons and baryons, quantitative computability [‘large
D’], AdS/CFT,... [more]

2Such a theory is uv-incomplete and has to be regarded as an effective theory.
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3 O(N) bosons

We consider the following problem: calculate the functional integral

Z =

∫

Dφ exp[−S] = exp[−W ]

S =

∫

ddx[
1

2
∂µφ

2
i +

1

2
m2φ2

i + g/(4!N)(φ2
i )

2] (3.1)

We will consider both + and − signs for m2, however we will consider g ≥ 0
since for negative g the potential will be bottomless and the theory will not
have a stable vauum.

We will also be interested in

W [J ] = ln

∫

Dφ exp[−S +

∫

Jφ2
i ] (3.2)

which generates
〈φ2

i (x)φ
2
i (y)...〉

3.1 Feynman diagrams

Propagator and Vertex:

〈φi(p)φj(−p)〉 =
1

p2 +m2
δij
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Consider the vacuum bubble diagrams contributing to W :

Clearly there is a lot of reduction in the Feynman diagrams if we are
interested only in the leading large N contribution. However, there are still
an infinite number of diagrams. But note the self-repeating pattern of
the leading (namely O(N)) diagrams: it turns out to be summable. The
subleading terms in the 1/N expansion do not have this self-repeating
pattern.

Summing the leading diagrams by Dyson-Schwinger
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Red propagator= 1
p2+m2+Σ(p)

where the Self-energy Σ(p) (actually inde-

pendent of p) is given by

Σ = Σ = −1PI contribution toΓ(2)(p) = g/6

∫

ddk

(2π)d
1

k2 +m2 + Σ

W = Partition function with red propagator = N ln det(−∂2 +m2 + Σ) +O(1)
(3.3)

O(1) represents the non-leading diagrams ignored in this section.
Fun Exercise: Compute

1 +
1

1 + 1
1 1

1+..

Can you see the similarity with the Dyson-Schwinger summation?

A sample calculation: beta function of g
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Γ
(4)
ijkr =

1

3N
(δijδkl + two more terms)

(

−g0 +
g20

48π2
ln(Λ/m) + o(g0)

3

)

Must define g0(Λ) such that Γ(4) is independent of Λ (note no wavefunction
renormalization to this order). Define βg0 = dg0/d(ln Λ).

Exercise Show that in d = 4− ǫ

βḡ = [−ǫḡ + ḡ2

48π2
(1 +O(1/N))](1 +O(ǫ)) +O(g3) (3.4)

where ḡ = g/Λ4−d is the dimensionless coupling.
Remarks: (1) The correction factor is (1 + 8/N).

(2) We obtain the beta-function by demanding that Γ(4) is Λ-dependent.
Recall the Callan-Symanzik equation (in terms of bare quantities)

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− 4γ

)

Γ(4) = 0, Hence (3.5)

In our case, since the self-energy Σ(p) is p-independent (see the diagrams for
Σ(p) above), there is no wavefunction for φ, hence γ = 0. Hence the C-Z
equation gives

(

Λ
∂

∂Λ
+ β(g)

∂

∂g

)

Γ(4) = 0
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which is simply the statement that the (total) Λ-dependence of Γ(4) vanishes.
(3) Wilson-Fisher fixed point

Note that in (3.4) β vanishes in points ḡ = 0 and ḡ = ḡ∗, where

ḡ∗ = ǫ 48π2(1 +O(1/N)) + o(ǫ2) (3.6)

In general, the above is a double expansion in g, ǫ. Near the fixed point
Significance of a zero of β: At this and any other general example of

a zero of beta-functions, the C-Z eq. (3.5) for the 2-pt function reduces to

(

Λ
∂

∂Λ
− 2γ(ḡ∗)

)

Γ(2) = 0, Hence (3.7)

Using the representation Γ(2) = P 2f(P/Λ) for momenta pi of the scale P ,
the above equation implies a power law behaviour

Γ(2) ∼ P 2−2γ(ḡ∗)

which corresponds to a scale-invariant theory (typically, a CFT).
(4) Large N resummation:

12



Eqn. (3.4), for ǫ = 0 (four dimensions) holds to all orders in g, in the
large N limit.

3.2 Functional methods

Order parameter

Imagine applying a source (magnetic field) as follows:

Z[h(x)] =

∫

D~φ exp[−
∫

1

2
(∂~φ2 +m2~φ2 +

g

24N
(~φ2)2 + h(x)φ1(x)] (3.8)

Clearly
∂ lnZ

∂h(x)
= 〈φ1(x)〉
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gives us the ‘magnetization’ (the O(N) symmetry breaking order parameter).
Let us split the ~φ as

~φ = (φ1 = σ, φ′
i, i = 2, ...N)

Among other things we will be interested in the order parameter

M = 〈σ〉. (3.9)

For N = 1, if m2 = −µ2 < 0, we have a classical potential V = −µ2/2 σ2 +
g/24 σ4, which classically allows for a non-zero magnetization:

σ2
class =

6µ2

g
(3.10)

However, the fluctuations are of the same order as the vev, and we can’t
be sure if they destroy the magnetic order or not.

We will see that this is where large N plays a role. It suppresses the
fluctuation! (the σ is shifted from its classical value, however, see (3.19) and
remarks below).

To begin seeing the effect of a large N , we would like to obtain the effect
of all the φ′’s on σ, by integrating out the φ′

i:

∫

DσDφ′
i exp[−S(~φ)] =

∫

Dσ exp[−
∫

[
1

2
(∂σ2+m2σ2+

g

4!N
σ4]−(N−1)∆Seff (σ)]
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The spirit is like that aHartree method. Because of the quartic interaction,
we can’t integrate out the φ′ directly. We need to use auxiliary fields, which
we will do next. Meanwhile a couple of exercises.

Exercise 1:
Replace

φiφiφjφj → 2〈φiφi〉[φ2
1 + φ2

2 + ...] ≡ 2Nρ[φ2
1 + φ2

2 + ...]

where we have assumed a spacetime-indepedent condensate

〈φi(x)φi(x)〉 = Nρ

Demand the self-consistency of the above eqn. and get the “gap” equation

ρ =

∫

k

1

k2 +m2 + g/6 ρ
(3.11)

This is the same as the Dyson-Schwinger, with Σ = ρ. Also compare with
(3.16).

Exercise 2:
Long-range Ising model

Z =
∑

si

exp[−H], H = −J
∑

i,j

sisj − h
∑

i

si

Use the identity

exp[J
∑

i,j

sisj] =
1

2πJ

∫ ∞

∞
dm exp[−m2/2J +m

∑

i

si]

We get

Z =

∫ ∞

∞
dm exp[−m2/2J − ln(2πJ)]

∏

i

∑

si

exp[(m− h)si]

Compute the ‘gap’ equation for m. Compute Z.

Auxiliary fields

Introduce in the functional integral (3.1)

1 =

∫

Dρδ((Nρ− (~φ)2)
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so that

Z =

∫

DρD~φ exp[−
∫

ddx
1

2
(∂~φ)2 +NU(ρ)]δ(Nρ− (~φ)2)

U(ρ) = m2/2ρ+
g

4!
ρ2

Use

δ((Nρ− (~φ)2) =

∫

Dλ exp[

∫

ddxλ/2 (Nρ− (~φ)2)]

Contour of λ must be parallel to the imag axis. In the σ, φ′ notation

Z =

∫

DσDφ′
iDλDρe

−S[σ,φ′

i,λ,ρ]

where

S[σ, φ′
i, λ, ρ] =

∫

ddx
1

2
φ′
i(−∂2 + λ)φ′

i +
1

2
σ(−∂2 + λ)σ +N(U(ρ)− λρ/2)

= (N− 1)
1

2
Tr ln(−∂2 + λ) +

∫

ddx[
1

2
σ(−∂2 + λ)σ +N(U(ρ)− λρ/2)]

(3.12)

In the second step, we have integrated out φ′. [Diagrammatically, this cor-
responds to a 1-loop diagram, with the φ′

i’s running internally in the loop].
Note the appearance of the BIG colour factor(N-1). For this, it is important
to have the auxiliary field λ (dotted line) as an O(N) singlet!

large N: Clearly, if there are saddle point solutions to σ, it will be
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O(
√
N). Accordingly, let us scale σ =

√
Nσ̃ 3 and (drop the tilde) to get

S = N[
1

2
Tr ln(−∂2 + λ) +

∫

ddx
1

2
σ(−∂2 + λ)σ + U(ρ)− λρ/2] (3.13)

Here we have used N − 1 ≈ N .

Spacetime independent saddle points

Look for spacetime independent saddle points.

Veff = S/Vd = N

(

1

2
λσ2 + U(ρ)− λρ/2 +

1

2

∫

k

[ln(k2 + λ)− ln(k2)]

)

In d = 3,

Veff = N





1

2
λσ2 + U(ρ)− λρ/2 +

−6λ3/2 tan−1
(

Λ√
λ

)

+ 3Λ3 log
(

λ
Λ2 + 1

)

+ 6λΛ

36π2





(3.14)

EOM (moduli space):

λσ = 0

U ′(ρ) = m2/2 + g/12 ρ = λ/2

σ2 − ρ+

∫

k

1

k2 + λ
= 0 (3.15)

It is useful to note the gap equation:

ρ =

∫

k

1

k2 +m2 + g/6 ρ
+ σ2 (3.16)

Note that the above equations also apply to O(N) models with a general
polynomial potential

U(~φ) =
∑

n

gn/N
n−1 (~φ2)n, n = 2, 3, 4, ...,⇒ U(ρ) =

∑

n

gnρ
n, n = 2, 3, 4, ...

3It might appear strange that we are treating a single component of ~φ as O(
√
N).

However, this is familiar from SSB physics: in the SSB phase we can represent the classical
vacuum as ~φ = (σ, 0, 0, ....) where the particular orientation is chosen by some ‘magnetic

field’ as in Eq. (3.8). In that case, since ~φ2/N ∼ O(1), we must have σ2/N ∼ O(1), hence
∼ O(

√
N). See also (3.20).
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Large N factorization

Note that (3.15) represent large N Saddle point hence the fluctu-
ations around the saddle point solutions are down by 1/

√
N .

σ = σcl +
1√
N
δσ

Hence,

S = NS̄[σcl] + (δσ)2 +
1√
N
(δσ)3

In the presence of h(x) (see (3.8), the classical saddle point value and the
classical effective action, will both depend on h:.

Z = eNSsaddle[h(x)](1+O(1/N))

〈σ(x)〉 = eNSsaddle[h(x)]
∂

∂h(x)
e−NSsaddle[h(x)](1 +O(N)) =

N∂Ssaddle[h]

∂h(x)
(1 +O(N))

〈σ(x)σ(y)〉 = eNSsaddle[h(x)]
∂

∂h(x)

∂

∂h(y)
e−NSsaddle[h(x)](1 +O(N))

= [
N∂Ssaddle[h]

∂h(x)

N∂Ssaddle[h]

∂h(y)
+
N∂2Ssaddle[h]

∂h(x)∂h(y)
](1 +O(1/N))

= 〈σ(x)〉〈σ(y)〉(1 +O(1/N)) (3.17)

which proves the so-called large N factorization.
We will encounter a Diagrammatic proof later.

Phases

The first eqn. in (3.15) can be solved by

λ = 0, σ 6= 0 broken phase, happens if m2 < −µ2
c , µ

2
c = g/6

∫

k

1

k2

λ 6= 0, σ = 0, symmetric phase, m2 > −µ2
c

λ = σ = 0 critical surface,m2 = −µ2
c (3.18)
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Broken phase

In the first case, possible if m2 = −µ2=negative, the solution is:

ρ = −6m2/g = 6µ2/g

σ2 = ρ− ρc = 6/g (µ2 − µ2
c), 6/g µ

2
c ≡ ρc ≡

∫

k

1

k2
(3.19)

• Clearly we must have m2 < −µ2
c . (recall we need g > 0 for vacuum

stability)

• Note the shift in the quantum order parameter in (3.19) compared to
(3.10). the shift, ρc measures the quantum fluctuations. Note that the
extremal value of ρ coincides with (3.10) the extremum of the classical
potential.

• Note the appearance ofN−1 Goldstones, consistent with the breaking
of O(N) → O(N − 1). Roughly speaking, in (3.12) if λ = 0, the fields
φ′
i, i = 2, ..., N become massless. This argument is not rigorous, since

naively it would seem that even the field σ in (3.12) would appear to be
massless by the same token 4. The correct argument, is to parametrize

4Actually, δσ fluctuations couple to δλ fluctuations, which leads to a non-trivial self-
energy diagram and mass correction to δσ. The same thing does not happen to the πi’s
described below.
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the ‘other’ fields as

~φ = g(πi).(σ, 0, 0, 0, ...) = σg(πi).e1 = (σ0 + δσ)g(πi).e1 (3.20)

where

g(πi) = exp[i
N−1
∑

i=1

Tiπ(x)] ∈ O(N)/O(N − 1), g ≃ gh,

Thus, ~φ2 = (σ)2. In the original formulation (3.1), this gives

S = (σ)2Tr(g−1∂µg)
2 + ∂µσ

2 − µ2/2σ2 + g/(24N)σ4

= (σ0)
2Tr(g−1∂µg)

2 + ∂µσ
2 + (g/(4N)σ2

0 − µ2/2)δσ2 + interaction
(3.21)

which clearly identifies the πi, i = 1, ..., N − 1 as the N − 1 Goldstones.
Note that the πi fields occur in the action only thru’ derivatives, which
reflects the fact that πi(x) → πi(x) + ǫi is a symmetry of the action (
epsi is a zero mode). The finite form of this symmetry is

g(x) → g1 g(x)

• we find the emergence of an NLSM in the broken phase, Eqn, (3.21).

• Mermin-Wagner theorem: Note that σ2
quantum − σ2

class (mentioned
above, and described in (3.10), (3.19)), which is given by

∫

ddk

k2

has an IR divergence for d ≤ 2 (hence it is infinite even in the presence
of the uv cut-off Λ). This implies that σquantum in (3.19) is undefined.
One says that IR fluctuations completely destroy the magnetic order
in 2 and less dimensions.

Another way of seeing this is to note

m2
c = −µ2

c = −g
6

∫

k

1

k2

which diverges for d ≤ 2: m2
c = ∞ Hence a phase transition never

happens, can’t have m2 < −∞.
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• The magnetization Exponent β

At m2 → m2
c − 0 = −µ2

c − 0, σ → 0+. we will see below that at this
point, ξ → ∞ and the system goes critical T = Tc. Thus,

τ = m2 −m2
c ∝ |m| − |mc|, T − Tc ∝ τ (3.22)

measures deviation from criticality.

ρ− ρc = −6/g τ

Hence
σ =

√

−6τ/g ∝ (−τ)β, β = 1/2

which is the mean field exponent. Thus, β agrees with the mean field
or quasi-gaussian value in any d (d > 2). [β obtainable from power
counting].

• In d=3, Eq. (3.14), ignore the λ3/2 term (since this is subleading in
λ/Λ). Integrate out ρ, λ from Veff . We get (ignoring σ-independent
terms)

Veff = N
π2

24

(

gσ4 + 12σ2(µ2
cr − µ2)

)

(3.23)

Here we have written m2 = −µ2. For µ = 2µcr (well into the broken
phase). For Λ = 1 (to set the units), and g = .1, the potential (3.23)
looks like

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.0001

-0.00005

0.00005
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Symmetric phase

Consider the second solution in (3.18):

σ = 0, λ 6= 0 =:M2

. From (3.12), M2 is the mass of the order parameter field σ (unlike in
footnote 4, in the unbroken phase, we have a non-zero saddle point value of
M2 and the mass corrections coming from O(1/N) can be ignored):

〈σ(p)σ(−p)〉 = 1

p2 +M2
(3.24)

This gives the disordered (nonmagnetic) phase. In this case, (3.15) be-
comes

λ =M2 = 2U ′(ρ) = m2 + g/6 ρ

ρ =

∫

k

1

k2 +M2
= ρc +

∫

k

(
1

k2 +M2
− 1

k2
) = ρc + (Ωd(M)− Ωd(0) (3.25)

where

Ωd(M) =

∫

k

1

k2 +M

Note that, using (3.25), the new version of the gap equation (3.16) becomes

ρ =

∫

k

1

k2 +m2 + g/6 ρ

and agrees with (3.11). In d = 3,

Ω3(M) =
1

2π2
(Λ− tan−1(Λ/M))

ρ− ρc = − M

2π2
tan−1(Λ/M) (3.26)

Criticality

The two phases meet when we demand in (3.25) that λ = 0. This gives

U ′(ρc) =
m2

2
+

g

12
ρc =

m2

2
+

g

12

∫

k

1/k2 = 0,
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The system goes critical, since

〈σ(p)σ(−p)〉 = 1

p2 +M2
→ 1

p2
(3.27)

Hence 〈s(0)s(x)〉 has a power-law behaviour, ξ → ∞. Note the absence of
any wave-function renormalization [we do not have Z/p2]. Hence, at the
critical point, the anomalous dimension vanishes:

γσ = 0 (3.28)

Critical region: M ≪ Λ (as we approach it from the disordered phase).

Exercise 1.: Define ∆ρ = (ρ− ρc)/Λ
d−2. Assume d > 2 and Show that in

the critical region M ≪ Λ

d < 4 : ∆ρ = [Ωd(M)− Ωd(0)]/Λ
d−2 = A(M/Λ)d−2 + ...

(see, e.g. (3.26)).

d = 4 : ∆ρ = A(M/Λ)2 ln(M/Λ) + ...

d > 4 : ∆ρ = B(M/Λ)2 + ...

where ... represent terms which have higher powers of M/Λ.

Exercise 2: Show, using the definition (3.22), that

M2 = τ + 2U ′′(ρc)(ρ− ρc) +O(ρ− ρc)
2

In d = 3, using (3.26) and the above exercise, we get

M2 = τ − gM

12π2
tan−1(Λ/M) = τ − g

24π

(

M − 2M2

πΛ
+O(M3)

)

(3.29)

Sundry exponents
Note that τ ∝ (T − Tc). As we approach criticality, by def

ξ ∼ |τ |−ν , σ ∼ (−τ)β, σ ∼ H1/δ, χ ∼ |τ |−γ , CH ∼ |τ |−α (3.30)

At criticality,

〈σ(0)σ(x)〉 = G(x) =
1

|x|d−2+η
(3.31)
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Clearly η = 2γσ, where γσ is the anomalous dimension of σ. By (3.28), we
have η = 0, a Gaussian (=free field) result in any dimension.

β has already been computed above. We will compute ν, η.
Exercise 3: (Computation of ν)

Combine Ex.1 and Ex.2. Show that

1. d > 4: M2 ∼ τ , hence ξ ∼ τ−1/2,⇒ ν = 1/2. [as we would get in mean
field theory (i.e. ν has the power counting value)]. This indicates that
the d > 4 theory has the free field theory as the IR fixed point.

2. d ∈ (2, 4): Md−2 ∼ τ , hence ξ ∼ τ−1/(d−2). Hence ν = 1/(d − 2) =
1/(2− ǫ), d = 4− ǫ. This indicates the existence of a non-trivial CFT
whose ν is showing up here (this is the Wilson-Fisher f.p. — see
before).

3. d = 4: M2 ∼ τ/(ln(Λ/M)) ∼ τ/ ln τ . Log correction to power law
behaviour.

Comparison with ǫ expansion

We found above ν−1 = (2− ǫ)(1 +O(1/N).
This matches with Peskin (13.54): ν−1 = 2 − ǫ(1 + O(1/N) + O(ǫ2). In

fact, large N is a reasonable assumption in our system, we are doing better
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than the ǫ expansion; we have essentially proved that the O(ǫ)2 corrections
are actually O(1/N) and vanish at large N , even if ǫ = 1. Peskin’s expression
would appear to imply a relative error of O(ǫ) which, for ǫ = 1, is 100% !.
On the other hand, for a 3D ferromagnet, N = 3, and the relative error is at
most O(1/N) ∼ 33%.
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4 Large N limit of interacting U(N) fermions

Consider the following problem

Z =

∫

Dψ̄Dψ exp[−S]

S = −
∫

ddx[ψ̄i∂/ψi + g/(2N)(ψ̄iψi)
2] (4.1)

g > 0 appears to be the wrong sign, as it would have been for bosons:
∫

Dφ exp[g
∫

x
φ4] would be undefined for g > 0. However, the sign g > 0 is

correct, see remarks below (4.5).
We will first consider this in d = 2. This is the original Gross-Neveu

model, which is a simpler field theory than QCD, yet shares important fea-
tures with it:

• asymptotic freedom (+ uv completeness) and dimensional transmuta-
tion

• dynamical mass generation and q̄q condensate

• dynamical ‘chiral’ symmetry breaking

• large N limit

Note

[ψ] = (d− 1)/2, [ψ4] = 2(d− 1), [

∫

ddx ψ4] = d− 2

Hence the quartic interaction is non-renormalizable in d > 2 and renormal-
izable in d ≤ 2. In fact, the theory will turn out to be UV complete.

Dirac-o-logy: Gamma matrices:

γ1 = σ1, γ2 = σ2, γ5 = −iγ1γ2 = σ3

2-dim Dirac fermion:

ψi =

(

ψ1
i

ψ2
i

)

, ψ̄i =
(

ψ̄1
i ψ̄2

i

)

, i = 1, 2, ...N

27



SO(1, 1) in Lorentzian becomes SO(2) in Euclidean. SO(2) transformation
of the Dirac fermion:

S12 =
i

4
[γ1, γ2] = −1

2
σ3

Λ1/2 = e−iθS12 = eiθ/2.σ3 =

(

eiθ/2 0
0 e−iθ/2

)

(

ψ1
i

ψ2
i

)

, →
(

ψ1
i e

iθ/2

ψ2
i e

−iθ/2

)

,

Hence ψ1 = ψL (anticlockwise), ψ2 = ψR (clockwise). Similarly,

(

ψ̄1
i ψ̄2

i

)

→
(

ψ̄1
i e

−iθ/2 ψ̄2
i e

iθ/2
)

In other words, ψ̄ transform in the complext conj. repn. Λ∗
1/2. note that

ψ̄1 = ψ̄R (clockwise), ψ̄2 = ψ̄L (anticlockwise).
Kinetic: ψ̄L∂/ψL or ψ̄R∂/ψR. (see Feynman diagram below). Hence we

have only LL or RR propagators, as expected in a massless theory.
Symmetries:

• U(N) symmetry: ψi → U j
i ψj, ψ̄j → U−1i

jψ̄i, U
−1 = U † (no U(N)L ×

U(N)R symmetry since the quartic term has the structure (L̄R+R̄L)2,
which contains the term L̄R L̄R which preserves only the diagonal
U(N)).

• Discrete (Z2) chiral symmetry:

ψi → γ5ψi, ψ̄i → −ψ̄iγ5

Or, ψL,R
i → ±ψL,R

i , ψ̄L,R
i → ±ψ̄L,R

i (4.2)

This prevents the generation of any mass term in perturbation theory,
since a mass term is of the kind R̄L, which picks up a minus sign under
the above Z2 (see a diagrammatic proof below). The large N method
allows us to prove a nonperturbative breaking of this symmetry and
generation of a mass term.
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Propagators and vertices

Propagators:

〈ψ̄(p)ψ(−p)〉 = −i
p/

=
−ip/
p2

= −〈ψ(p)ψ̄(−p)〉

Diagrammatic Proof that No mass can be generated in any finite order
of perturbation theory.

29



In can only be generated in an infinite order of perturbation theory:

where we have kept only the leading large N diagrams.

Exercise 1 From the above diagrammatic equation, derive the ‘gap’ equa-
tion (similarly to the bosonic case)

δm =
δm g

π

∫ Λ

0

p dp

p2 + δm2
(4.3)

Exercise 2 Self-consistent method: Assume

〈ψ̄iψi〉 = Nσ (4.4)

This gives rise to an effective mass δm of the fermion. Using this, reevaluate
the LHS of the above equation and equate it to the RHS. Show that you get
the same equation as (4.3).

4.1 Functional Methods

Gaussian trick: Consider the identity

∫

Dσ exp[−
∫

x

(

Nσ2/(2g)− σψ̄iψi

)

] = ( ) exp[

∫

x

g

2N
(ψ̄iψi)

2] (4.5)
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Thus,

Z =

∫

Dψ̄DψDσ exp[−S]

S =

∫

ddx[Nσ2/(2g)− ψ̄i(∂/+ σ)ψi] (4.6)

The chiral symmetry is manifest in this model as

ψi → γ5ψi, ψ̄i → −ψ̄iγ5, σ → −σ (4.7)

Note the Dyson-Schwinger equation (Quantum Eq. of motion):

〈(Nσ/g − ψ̄iψi)x....〉 = 0 (4.8)

This is derived from

0 =

∫

Dψ̄DψDσ
δ

δσx
(exp[−S])

Starting from (4.6) if we integrate σ we get the original theory (4.1) (thus
undoing the Gaussian trick), but however since (4.6) is quadratic in the
fermions, we can integrate out the fermions, yielding (using (A.2))

Z =

∫

Dψ̄DψDσ exp[−S]

S =

∫

ddx[Nσ2/(2g)−NTr ln (∂/+ σ)] = N

∫

ddxV [σ] (4.9)

Note the importance of the auxiliary field being a singlet! which causes an
overall factor of N in front.

The ‘Tr ln’ represents the following diagram:
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Note the even number of σ’s, this reflects the Z2 symmetry of (4.7). The
dynamically generated solution (4.14) spontaneously breaks this symmetry,
nonperturbatively.

Large N limit

In the limit N → ∞, g = fixed (’tHooft limit), we can apply the large N
saddle-point method again, as in the bosonic case discussed earlier.

What’s the point of solving the σ-theory? It is that by (4.8), we can
derive a relation for n-point functions:

〈 g
N
ψ̄iψi(x)

g

N
ψ̄iψi(y) ...〉 = 〈σ(x) σ(y) ...〉 (4.10)

The LHS can be evaluated purely in the ψ-theory, whereas RHS can be
evaluated purely in the σ-theory, which, therefore, evaluates all correlations
of singlets. We can think of the U(N) as ‘colour’ and the singlets as ‘mesons’
(q̄iqi); indeed if the U(N) is gauged, the individual quarks are not gauge
invariant, only the ‘mesons’ are. Thus, (4.9) in a way, bosonizes the fermions!
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4.2 Spacetime independent saddle point

Let us look for a spacetime independent state in the large N limit.

V (σ) = N [σ2/(2g)− trD

∫ Λ d2k

4π2
ln(ik/+ σ)] (4.11)

As before, this can be explicitly derived. First, let us look at the EOM:

σ

g
=
σ

π

∫ Λ

0

kdk

k2 + σ2
=

σ

2π
ln(1 + Λ2/σ2) (4.12)

Exercise Derive this equation. Note that this with (4.3) with the iden-
tification of σ2 with δm2.

This has 2 solutions for σ:

σ = 0, or

1

g
=

1

2π
ln(1 + Λ2/σ2) (4.13)

For σ ≪ Λ, the latter can be solved for σ easily, as

|σ| = Λexp[−π
g
] (4.14)

Symmetry breaking

The solution above breaks the discrete chiral symmetry of the original
fermions, or of the hybrid (meson-quark) model, (4.7).

The solution gives |σ|; The precise sign can be chosen by coupling the
model to some magnetic field −h s, h → 0+, which would force the positive
sign of s. Note that the ‘phase’ of σ is only ±1. We can’s have a U(1) or
non-abelian phase because of Mermin-Wagner theorem.

Potential

V (σ) can be computed in a simple way. Regard the EOM (4.12) as
proving ∂V/∂σ. Integrate this equation to get V . It looks like
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There is no parameter that can be tuned to restore the symemtry. The
model is in only the broken phase, always.

The beta-function

(4.14) or (4.13) trivially gives us the beta-function. note that 〈〈σ〉 must
be RG invariant (note the absence of wave-function renormalization for σ at
leading order in large N : it is O(1), see later). Rewrite (4.13) as

g =
2π

1 + ln(Λ2/σ2)
(4.15)

Since σ must be kept independent of Λ, we must assign a Λ-dependence to
g just as the above equation demands, with σ held constant:

βg =
dg

d ln Λ
= − 4π

(1 + ln(Λ2/σ2))2
= − 1

π
g2 (4.16)

Asymptotic freedom: Note the minus sign, the same as in QCD. The β-
function is exact at largeN ; therefore there is no other fixed point than g = 0,
which is a UV attractor. The theory is clearly sensible at high energies. In
the IR, it grows.
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Chiral Symmetry breaking and dynamical mass generation
In (4.6) we now have a term 〈σ〉ψ̄iψi, which gives a mass to the fermion

and breaks the chiral Z2 symmetry dynamically.

1/N expansion

At the leading order, σ is exactly the classical value (4.14), which we now
call σcl. As we argued before, we can write

σ = σcl +
1√
N
δσ (4.17)

Remarks:
(1) The propagator correction is subleading, O(1)
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here we have used a vertex 1√
N
δσψ̄iψi which follows from (4.6).

(2) A kinetic energy of the ‘meson’ field 5 gets generated at the subleading
order. At leading order, σ does not have a kinetic energy.

(3) Large N factorization
Eq. (4.10) becomes

〈 g
N
ψ̄iψi(x)

g

N
ψ̄iψi(y) ...〉 = 〈(σcl(x) +

1√
N
δσ(y)) (σcl(y) +

1√
N
δσ(y)...〉

= σcl(x)σcl(y)...+O(1/N)× connected

= 〈 g
N
ψ̄iψi(x)〉 〈

g

N
ψ̄iψi(y) ...〉+O(1/N)× connected (4.18)

Exercise Show that the propagator in the above diagram can be obtained
as a Taylor expansion of S[σ] in (4.9) using (4.17). We can see it digram-
matically from the Feynman diagram below (4.9) using only two σ-lines, and
using (4.17) on those lines (ignore σcl and keep only δσ).

5This ‘meson’, because of its Yukawa coupling to the ‘quarks’ in (4.6), plays the same
role as a ‘Higgs’ and gives a mass to the fermions. This is Nambu’s idea of t̄ t as a Higgs.
That did not work. However, similar things happen in technicolour theories.
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4.3 Dynamical Higgs mechanism in a modified GN
model

Consider the following modified GN model

Z =

∫

Dψ̄Dψ exp[−S]

S = −
∫

ddx[ψ̄i∂/ψi + g/(2N){(ψ̄iψi)
2 − (ψ̄iγ5ψi)

2] (4.19)

Chiral U(1) Symmetry
The interaction term has the structure R̄LL̄R and hence is invariant

under a U(1)× U(1) symemtry:

L→ exp[iαL]L, R → exp[iαR]R

This is often represented as
vector symemtry: (L,R) → exp[iα](L,R), and
axial symemtry: (L,R) → (exp[iα]L, exp[−iα]R), or alternatively

ψ → exp[iαγ5]ψ (4.20)

In the original NJ model, this was not present because of (R̄L)2 terms.

Gaussian auxiliary variable

Z =

∫

Dψ̄DψDσ1Dσ
∗
1 exp[−S]

S =

∫

ddx[N |σ1|2/(2g)− ψ̄i(∂/+ σ1(1− γ5) + σ∗
1(1 + γ5))ψi]

S =

∫

ddx[Nσ2/(2g)− ψ̄i(∂/+ σ eiφ(1− γ5) + σ e−iφ(1 + γ5))ψi] (4.21)

In this representation, the axial symmetry (4.20) is again preserved, pro-
vided the fermion transformation is augmented as

ψ → exp[iαγ5]ψ, σ → σ, φ→ φ− 2α (4.22)
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After integrating the fermions out, we get

S[σ, φ] = N

∫

ddx[σ2/(2g)− Tr ln(∂/+ σ eiφ(1− γ5) + σ e−iφ(1 + γ5))]

(4.23)

In this formulation, the symmetry (4.22) now reduces to just

φ→ φ− 2α (4.24)

Goldstone: By using the above symmetry, we can see that the constant
mode of φ decouples from the theory. Hence S must only contain derivatives
of φ; this in particular precludes m2φ2 kind of terms. Hence φ is a Goldstone.
In d = 2, this conclusion will be destroyed by IR divergences from O(1/N)
terms.But in d = 2+ǫ those will be absent and φ will be a genuine Goldstone.

Large N
As before, we look for spacetime independent saddle points. In that case,

using (4.24) we see that the action is independent of φ, so we can put φ = 0.
The resulting S gives the same effective potential as before, (4.11). Thus,
we have proved that 〈σ〉 6= 0 as before. The choice φ = 0 is arbitrary; by
choosing a suitable ‘magnetic field’ we can make φ point in any direction.
Thus, the axial symmetry is broken in d = 2 + ǫ dimensions. (see above for
remarks on Goldstone).

Gauging the axial U(1) symmetry

Z =

∫

Dψ̄Dψ exp[−S]

S = −
∫

ddx[ψ̄iD/ψi +
1

4e2
F 2
µν + g/(2N){(ψ̄iψi)

2 − (ψ̄iγ5ψi)
2]

Dµ = ∂µ + iAµ (4.25)

Eq. (4.21) now changes to

Z =

∫

Dψ̄DψDσDφDAµ exp[−S]

S =

∫

ddx[Nσ2/(2g)− ψ̄i(D/+
1

4e2
F 2
µν + σ eiφ(1− γ5) + σ e−iφ(1 + γ5))ψi]

(4.26)
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After integrating the fermions out, we get

S[σ, φ,A] = N

∫

ddx[σ2/(2g)− Tr ln(γµ(∂µ + Aµ)+

σ eiφ(1− γ5) + σ e−iφ(1 + γ5)) +
1

4e2
F 2
µν ] (4.27)

Gauge symmetry
The symmetry (4.24) is now local, with the additional gauge transforma-

tion of Aµ:

φ→ φ′ = φ− 2α,Aµ → A′
µ = Aµ − ∂µα (4.28)

Using this, we can now get rid of φ entirely (not just the constant mode) by
fixing a gauge

φ′ = 0

We can do this by choosing
α = φ/2

which gives a gauge field

A′
µ = Aµ −

1

2
∂µφ (4.29)

In this gauge we have

S[σ,A′] = N

∫

ddx[σ2/(2g)− Tr ln(γµ(∂µ + A′
µ) + σ) +

1

4e2
F 2
µν ] (4.30)

This action has a σ2A′
µ
2 term. To see this, it is enough to concentrate

on spacetime-independent fields, including A′
µ. Schematically, the new gap

equation becomes

σ/g − σ

∫

ddk

(k + A′)2 + σ2
= 0

Integrating this w.r.t σ to get V (σ,A′), as we had done before, and expanding
in A′, we find that V contains a term σ2A′2 At the large N saddle point, the
effective action (4.27), therefore must have a term

σ2A′2 =

(

σcl +
1√
N
δσ

)2

A′2 = σ2
clA

′2 + ..., mA = σcal (4.31)

39



This shows the appearance of a mass term for the gauge field. 6 [This is in
the gauge (φ′ = 0, A′); in terms of (φ,A) we will have m2

A(Aµ − 1
2
∂µφ)

2].
Exercise: Complete this argument.
This is a dynamical Higgs mechanism, in which the Higgs field σ exp[iφ]

is emergent.

4.4 QCD and Nambu Jona-Lasinio (NJL)

QCD is described by

S =

∫

d4x

(

−1

4
(F i

µν,j)
2 − ψ̄ia(D/

i
j −maδ

i
j)ψ

ja

)

(4.32)

where i = 1, ..., N reprsents colours, and a = 1, 2, ..., Nf represents flavours.
In real-life QCD, N = 3, Nf = 6.

Note that ΛQCD (defined in (5.3), (5.4)) is of the order 200 − 300 MeV.
The flavours u, d, s are light compared to this; (ms is of the order 100 Mev, so
it’s not very light; the corrections to the scenario below because of non-zero
ms can often be worked out).

Chiral limit

u, d, s are massless, whereas c, t, b are considered infinitely heavy, so that
they decouple from the system. In this limit (4.32) becomes

S =

∫

d4x

(

−1

4
(F i

µν,j)
2 − ψ̄L

iaD/
i
jψ

ja
L − ψ̄R

iaD/
i
jψ

ja
R

)

(4.33)

where L,R are the left-, right-components of the quarks. We now have
Nf = 3.

Chiral symmetry:

ψja
L → UL

j
iψ

j,a, ψja
R → UR

j
iψ

j,a (4.34)

6There is an important subtlety in precisely d = 2, the expansion of V (σ,A) to
quadratic order gives m2

AA
2

µ, m
2

A = e2N/π (see Gross-Neveu, remark below Eq. 7.6; recall
that in d = 2, e2 has the dimension of mass2). In d = 4, the quadratic term involves a non-
universal (cut-off-dependent) piece and a universal piece which is m2

AA
2

µ, with m2

A ∝ σ2

cl.
The universal piece is subtracted in a physical way in Eq. (64) in Dhar et al. The formula
m2

A ∝ σ2

cl is also true in Superconductivity; see, e.g. Eq. 38.13 of Abrikosov, Gorkov and
Dzyloshinsky.
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where UL,R are U(Nf ) constant group elements (global symmetry).
We can write this U(Nf )× U(Nf ) as vector and axial U(Nf ):
Vector:

ψja
L → U j

i ψ
j,a, ψja

R → U j
i ψ

j,a

Axial:
ψja
L → U j

i ψ
j,a, ψja

R → U †j
iψ

j,a (4.35)

Out of this the axial U(1) has an anomaly. The remaining axial SU(Nf ) is
anomaly-free, but it gets dynamically broken in the QCD vacuum, as we will
see.

It is known experimentally, that in the QCD vacuum

〈ū u〉 ∼ 〈d̄ d〉 ∼ (250Mev)3

which also signals χSB.
We will explore these using the NJL model.

NJL model

We will assume that the gluon sector is gapped (glueball mass of order
ΛQCD) and it has been integrated out. The result will be a Lagrangian which
will be local at distances large compared to 1/ΛQCD. This gives

S = −
∫

d4x(ψ̄L
iaD/

i
jψ

ja
L + ψ̄R

iaD/
i
jψ

ja
R

+
g1
N
(ψ̄L

iaψ
ja
R )(ψ̄R

jaψ
ia
L ) +

g2
N
(ψ̄L

iaγµψ
ja
R )(ψ̄R

jaγ
µψia

L ) + (axial U(1) anomaly term)...)

(axial U(1) anomaly term) = | ln det(ψ̄RψL)|2 (4.36)

We have only admitted terms consistent with axial SU(Nf ) symmetry in
(4.35), and admitted a term which represents the U(1) axial anomaly. Since
the axial SU(Nf ) is anomaly free the Lagrangian will always have this
symemtry; the only way it can break is SSB.

Solving NJL at large N (Dhar et al)

We will, for simplicity, ignore the U(1) anomaly term. [See the original
papers for its treatment].

Gaussian auxiliary variables
[TO BE TYPED]
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4.5 BCS

[NOT DISCUSSED IN DETAIL].

5 Yang-Mills gauge theories

We consider (4.32) again.

Dimensional transmutation

In the limit of massless quarks the theory is given by only one, dimen-
sionless, constant g.

Recall the Callan-Symanzik equation (similar to (3.5), but in stead of
considering dependence on the cut-off we now write the dependence on the
reference scale M)

(

M
∂

∂M
+ β(g)

∂

∂g
− nγ

)

Γ(n)(p1, ..., pn;M, g) = 0, Hence (5.1)

Theorem: The solution of the above equation can be written in the
form:

Γ(n)(p1, ..., pn;M, g) = Λα
QCD fn(p1/ΛQCD, ...pn/ΛQCD) (5.2)

where ΛQCD = ΛQCD(g,M) is defined by the following equation

(M
∂

∂M
+ β

∂

∂g
)ΛQCD(M, g) = 0 (5.3)

Here α = [Γn], the mass dimension.
Proof: Assume γ = 0 for simplicity. Then, clearly

Γ(n)(p1, ..., pn;M, g) = F (p1, ..., pn; ΛQCD(M, g))

which can be proved simply by applying the Callan-Symanzik eqn. without
γ. If [G(n)] = α, we can take out Λα

QCD from Γ(n), leaving the form (5.2).
[Proved]

Exercise 1: Extend the proof with γ 6= 0.
Exercise 2: Generalize (5.2) in the presence of quark masses.
Exercise 3: Show that for β(g) = −b/3 g3, as is the case for YM,

ΛQCD =M exp[−1/(bg2)] (5.4)
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5.1 Large N gauge theory

The import of the above theorem is that Γ(n) in massless QCD for N = 3
has no parameters! It’s a zero parameter theory. ’tHooft suggested taking
a sequence of SU(N) theories and studying a large N limit, which might be
simple.

How does it happen in practice?

−Γ(4)(P, P, P, P ;M ; g) =
λ̄(P )

N

where

λ̄(P ) =
(4π)2

b0 − f0
Nf

N

ln(
P 2

Λ2
QCD

)



1− 2
b01 +

b1
1

N2 − f1(
Nf

N
)2

(b0 − f0
Nf

N
)2

ln ln( P 2

Λ2
QCD

)

ln( P 2

Λ2
QCD

)



 (5.5)

where (Peskin, Hatsuda)

b0 = 11/3, f0 = 2/3

We see an expansion of the form

Γ4 = Γ4
0 +O(

1

N2
) +O(

Nf

N
) + ... (5.6)

Can we understand this structure without explicit calculation?

Large N Feynman diagrams

Gluon propagator ( i = arrow towards the center of diagram, i = arrow
away from the center)

Quark propagator and vertex:
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The vertex is gψ̄iA
i
jψ

j , where we have defined the ’tHooft coupling

g =

√

λ

N
. (5.7)

Gauge vertices are the quartic one g2Ai
jA

j
kA

k
lA

l
i =

λ
N
Ai

jA
j
kA

k
lA

l
i, and the

triple vertex (ignoring Lorentz indices): gAi
jA

j
k∂A

k
i =

√

λ
N
Ai

jA
j
k∂A

k
i .

We will find that the large N limit exists, with

N → ∞, λ = fixed (5.8)

Sample diagrams for Γ(4)
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Exercise: Draw all diagrams up to O(λ3). Compare with (5.5)
and (5.6).

Lessons:

Each internal quark loop is suppressed by a factor Nf/N . (5.9)

Non-planar diagrams are suppressed; each “bridge” is suppressed by a factor of 1/N2.

(5.10)

Teaser: the following has a fake “bridge”; it can be twisted away and
hence it has the same N -counting as the interaction vertex 1

N2 (TrA
2)2.

Note that the polarization structure of the external legs here is such that
such a Γ(4) needs the double trace interaction 1

N2 (TrA
2)2. A double trace

has 2 traces and hence needs a coefficient 1
N2 .

Comments:
At leading N , we discard non-planar diagrams. However, there are an

infinite number of planar diagrams :(-
How does one solve the problem of summing over these?

Clue: Large N factorization (see figure) suggests the existence of a clas-
sical theory! cf. (GN model, NJL model etc; AdS/CFT)
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5.2 Qualitative results based on Large N Feynman di-
agrams

Hadron phenomenology: There are aspects of hadron phenomenology
which do not have a theoretical explanation (other than by the large N
method)

1. Suppression of qq̄ sea in hadronic physics; mesons are approximately
pure q̄q states; the absence (or at least suppression) of q̄qq̄q exotics.

2. Zweig’s rule; the fact that the mesons come in nonets of flavour SU(3);
the decoupling of glue states.

3. The fact that multiparticle decays of unstable mesons are dominated
by 2-body meson states, when these are available.

4. Regge phenomenology; the success of a phenomenology that describes
strong interactions in terms of tree diagrams with exchange of physical hadraons.

Let us see how to understand these, in turn.

Analysis of the two-point function of currents 〈JJ〉

Consider a 2-pt function of currents 〈JJ〉.

which, in double line notation, is
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Note the the cut represents an intermediate state

q̄lA
l
kA

k
jA

j
iq

i

which is a single hadron, a meson. We can’t split this state as a 2-particle
state like

(q̄lA
l
k)(A

k
jA

j
iq

i), or [q̄l(A
l
kA

k
j )A

j
iq

i], or [q̄l(A
l
kA

k
jA

j
i )q

i] etc.

The first option is not there in a confined theory any way. In the second,
(Al

kA
k
j ) contains a singlet, but that is 1 in N2, hence subdominant. Etc.

A similar diagram with an internal quark loop, is
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In this diagram, the cut can be interpreted as intermediate two meson
states q̄iA

i
jq

j and q̄kA
k
l q

l.
Exercise: Draw another diagram which shows two intermediate

mesons. This has to necessarily contain an internal quark loop. One way is
to show it for the diagram below

Similarly, we can show that MG intermediate states (G=glueball) are
suppressed.

Exercise: Draw a non-planar diagram which shows an interme-
diate meson-glueball state. E.g. (q̄iA

i
jq

j Al
mA

m
l ).

This shows that in any leading diagram of 〈JJ〉, there is only one interme-
diate gauge-invariant (mesonic) state. Hence it must have a representation:

〈J(k)J(−k)〉 =
∑

n

an
k2 −m2

n

, an = |〈0|J |Mn〉|2,

mn = meson masses, Mn = 1−meson states (5.11)

There are subleading terms:

f(k2 − (m1 +m2)
2)

where f has a branch cut at k2 − (m1 +m2)
2.

Observations:
1. LHS = O(N). Hence a large N limit

LimitN→∞
∑

n

an/N

k2 −m2
n

(5.12)

exists (is finite). This requires: m2
n must be independent of N and an =

O(N).
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2. Number of mesons must be infinite. If it was finite, with the highest
meson mass mmax, then for k ≫ mmax, the RHS in (5.11) would have gone as
1/k2. However, the LHS, for large k2 (in the AF region), is known to involve
log(k2/Λ2

QCD).
Exercise: Show the purple part.
3. m2

n are real. This follows from the fact that (5.11) represents a
Kallen-Lehman spectral representation (sum of delta-functions: ρ(M2) =
∑

n δ(M
2 − m2

n) [Peskin Ch. 7]. Narrow resonances: width goes as
1/
√
N → 0.
4. (5.11) and point 1 above show that |〈0|J |M〉| ∼ O(

√
N).

These can be summarised by
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Analysis of 〈JJJ〉

Consider similar fishnets as before, with cuts running in an arbitrary
fashion. All these represent 1-particle (1-meson) intermediate states.

These can be represted in two types of diagrams, (i) ΓMMM ∼ 1/
√
N , (ii)

〈0|J |MM〉 ∼ O(1).

Thus, we have proved that that the decay of a meson is suppressed by
1/
√
N .

Analysis of 〈JJJJ〉

Back to hadron pheno: explanations

1. Suppression of qq̄ sea in hadronic physics: internal quark loops are
suppressed. Internal quark loops represent qq̄ popping in and out of vacuum.
mesons are approximately pure q̄q states; the absence (or at least suppression)
of q̄qq̄q exotics: By factorization 〈(q̄q(x))2(q̄q(y))2〉 = 〈q̄q̄(x)q̄q(y)〉2. Hence
in the putative (meson)2 state the two mesons do not bind, they propagate
independently. This also follows from ΓMMMM ∼ 1/N .

2. Zweig’s rule; the fact that the mesons come in nonets of flavour SU(3):

The nonet structure appears because singlet-octet mixing is suppressed.
The figure on the left shows a process involving interactions connecting an
octet and a singlet, on the right we have three octets interacting.
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the decoupling of glue states: we saw that 〈JJ〉 does not have an inter-
mediate glue state.

3. The fact that multiparticle decays of unstable mesons are dominated by
2-body meson states, when these are available: ΓMMM ∼ 1/

√
N, ΓMMMMM ∼

N−3/2.
4. Regge phenomenology; the success of a phenomenology that describes

strong interactions in terms of tree diagrams with exchange of physical hadraons.
(5.11) shows discrete stable resonances.

5.3 Baryons

Ref: Witten again.

Bilocal σ(x, y)

If we have a bi-local four-fermi interaction

Sint = −1

2

∫

ddx ddyψ̄iψ
i(x)V (x, y)ψ̄jψ

j(y) (5.13)

we should look for a bilocal meson field, equivalent to q̄ q at separated points
σ(x, y) ∝ ψ̄i(x)ψ

i(y). In other words, we use the by now familiar trick of
using a Gaussian variable σ(x, y) so that we express the four-fermi interaction
in terms of σ2 and σψ̄ψ:

Sint =

∫

ddx ddy

[

N

2
(σ(x, y))2 − σ(x, y)ψ̄i(x)ψ

i(y)
√

V (x, y) + h.c.

]

(5.14)

By σ-EOM:
σ(x, y) =

√

V (x, y)ψ̄i(x)ψ
i(y)/N (5.15)

Bilocal ψ4 interactions can arise through Coulomb and other interactions.
See the BCS discussion in Weinberg II, e.g. Another famous example is 2D
QCD (’tHooft), where in the A1 = 0 gauge, A0 = −∂−2(ψ†

iψ
i). Hence we get

(5.13) with V (x, y) = |x− y|.
The full action (hybrid) is

S[ψ̄, ψ; σ(x, y)] = −
∫

ddx ddy [ψ̄i(x)
(

∂/+m+ σ(x, y)
√

V (x, y) + h.c.
)

ψi(y)

+
N

2
|σ(x, y)|2] (5.16)
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After integrating out the fermions, we get

S[σ(x, y)] = N

[

1

2

∫

ddx ddy (σ(x, y))2 − Tr ln
(

∂/+m+ σ
√
V
)

]

(5.17)

We look for factorizable solutions (quark orbitals)

σ(x, y) =
√

V (x, y)φ∗(x)φ(y) (5.18)

In the limit of heavy mass, the gap equation reduces to (switching to Lorentzian
space)

[i∂t − ∂2x/(2m) + VMF [φ](x)]φ(x) = 0

VMF (x) =

∫

ddy φ∗(y)φ(y)V (x, y) (5.19)

which, of course, is the non-relativistic Hartree equation, familar from atomic
physics.

(5.19) has typically an infinite number of solutions, φ0(x), φ1(x), ......... A
baryon state (in which all spins are up) will be given by (in its ground state)

Ψ(i1, x1; ...., iN , xN ) = ǫi1...iNφ0(x1)...φ0(xN) (5.20)
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6 AdS/CFT

Every time a bridge appears, we have a factor of 1/N2. In the string diagram,
we have two triple-string vertices for each handle– a factor of g2s . Hence
gs = 1/N .

’tHooft’s genus expansion:

vacuum energy = N2−2g =: (gs)
2g−2

In NSUSY = 4 YM theory, the coupling does not run, hence λ is a tunable
parameter.

GN ∼ 1/N2, α′ ∼ 1/(
√
λ′)

in units RAdS = 1. Recall, GN = l8sg
2
s ,λ = gsN,R = lsλ

1/4, implying the
above relations (in units R=1, or see p.59 MAGOO review).
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Calculations

ZYM =

∫

DAµDψ̄DψDΦe−SY M =

∫

DgµνD}µαDφ...e−
∫
d5x

√
g[R+Λ]|AdS

ZYM〈TrF 2(x) TrF 2(y)〉 = ∂

∂J(x)

∂

∂J(y)
exp[−W [J ]]

where

exp[−W [J ]] =

∫

DgµνD}µαDφ...|φ(r=∞,x)=J(x)e
−

∫
d5x

√
g[R+Λ]|AdS

We get

FYM = f(λ)
π2

6
N2V T 4 +O(N0)

Fgravity = f̄(λ)
π2

6
N2V T 4 +O(N0)

7 Matrix models at large N
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A Grassmann path integral

A.1 Coherent states

Let {b, b†} = 1, b2 = b†
2
= 0.

∫

dθ θ = 1, |θ〉 ≡ exp[−θ b†]|0〉 = |0〉 − θb†|0〉 = |0〉 − |1〉, check b|θ〉 = θ|θ〉

〈θ| = 〈0| exp[−θ̄b†] note

= 〈0| exp[b†θ̄] = 〈0|+ 〈1|θ̄ (A.1)

Completeness

1 =

∫

dθ̄dθ exp[−θ̄θ]|θ〉〈θ|

Path integral: use the above resolution of identity at each site of the time
lattice. Let H = b†b. We need

〈θn+1|1− ǫH(b†, b)|θn〉 = (1− ǫH(θ̄n, θn)) exp[θ̄n+1θn]

Building on these sandwiches, we get the full path-integral.

A.2 Gaussian integrals
∫

dθ̄ dθe−θ̄ a θ = a,

∫

dθ̄ dθ θθ̄ e−θ̄ a θ = 1
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Z ≡
∏

i

∫

dθ̄i dθie
∑

i −θ̄iAijθj =
∏

i

∫

dθ̄i dθie
∑

i −θ̄i ai θi

=
∏

i

ai = detA = exp[Tr lnA] (A.2)

∏

i

∫

dθ̄i dθiθ1θ̄1 e
∑

i −θ̄iAijθj =
∏

i 6=1

ai

1

Z

∏

i

∫

dθ̄i dθiθ1θ̄1 e
∑

i −θ̄iAijθj =
1

a1
(A.3)

This shows the principle of the fermion propagator calculation.
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