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ABSTRACT

We argue that the one-superfield topological Landau-Ginzburg model with super-
potential W (X) = X−1 defines a topological string background with critical
central charge ĉ = 3. This model is shown to be equivalent to c = 1 string theory
compactified at the self-dual radius. We also comment on a possible Calabi-Yau
phase of this model.

1. Introduction

There has been a lot of progress in our understanding of the exactly solvable
string theories. Among these are the non-critical string theory in the background of
matter with central charge cM ≤ 1, which were first studied to all orders in pertur-
bation theory using a discretization of the world-sheet via random matrix models12.
A topological field theory description was subsequently developed23, where it was
shown that perturbations of pure topological gravity can reproduce an infinite sub-
class of cM < 1 non-critical string models. The remaining models are obtained by
coupling specific topological matter systems to topological gravity17. These topo-
logical string theories have their characteristic topological central charges ĉ.

Physically cM = 1 is perhaps the most interesting. This theory has a propagating
degree of freedom, the massless ‘tachyon’, and an infinite number of discrete states,
the remnant of the graviton and other higher tensor modes in a two-dimensional
target space. One topological formulation for this two-dimensional string theory
is given by the twisted Kazama-Suzuki15 coset model SU(2)k/U(1) with the level
k = −3 defined by continuation21; (the twisted cosets with k ∈ Z+ describe the
unitary cM < 1 series25). While the topological central charge of the unitary series
is ĉk = k

k+2
< 1, the two-dimensional string is distinguished by the ‘critical’ value

ĉ = 3.
Topological string models also appear in the compactification of critical string



theories and are closely related to the extremely intriguing mirror symmetry24. The
Calabi-Yau compactification, in particular, has ĉ = 3. This symmetry has been
exploited to obtain a set of recursion relations between some correlators of the
theory. Simplification occurs for ĉ = 3, leading to an exact solution2.

In what follows, we describe a Landau-Ginzburg-type topological formulation of
the cM = 1 string theory compactified at the self-dual radius. This is equivalent to
the topological Kazama-Suzuki model of Ref.(21), but has the advantage that ev-
erything is explicitly calculable from purely topological arguments and consistency
of the operator algebra.

2. Symmetry algebra of a string background

The following “modern” version of the axioms for consistent string backgrounds
has emerged from these recent developments4. In an (abstract) string background
there should exist

• a stress-energy tensor T (z), a spin-2 bosonic current satisfying a Virasoro
algebra with vanishing central charge cvir = 0, (and its hermitian conjugate),

• a spin-2 fermionic current G−(z) (and its hermitian conjugate),

• a nilpotent fermionic charge QB (Q2
B = 0),

• a bosonic U(1) charge J

satisfying the (anti-)commutation relations

{QB, G−(z)} = T (z) (1)

[J, T (z)] = 0 [J,G−(z)] = −G−(z) [J,QB] = +QB (2)

From Eq.(1) we see that G− is the fermionic partner of T , while Eq.(2) gives the U(1)
charges of T, G− and QB to be 0,∓1 respectively. For the usual bosonic string in a
flat background, T is the total (matter-ghost) stress-energy tensor; the antighost b
plays the role of the fermionic current G−; QB is the BRS charge corresponding to
the gauge fixing of diffeomorphism and J is the ghost number operator.

While it would be interesting to look for realizations of this most general ‘topo-
logical string algebra’, one can look for special cases where this basic structure
enhances to a larger symmetry algebra. To this end, let us note that the above
is reminiscent of a part of the (twisted) N = 2 superconformal algebra. For it to
extend to the full N = 2 superconformal algebra, we must require that the charges
QB and J come from local spin-1 currents G+(z) and j(z) respectively, and the OPE
between all the currents close to yield the twisted N = 2 SCA (also called a topo-
logical conformal algebra). In this case, the theory is characterized by a topological
central charge ĉ that appears in the jj OPE.

Under what condition does the former algebra extend to the latter? The only
answer existing so far is a technical one: the existence of a (possibly anomalous)



U(1) current ∂η(z) in the string background9. If this current has a background
charge Qη, then the topological central charge turns out to be1

ĉ = 3 +
Qη

4
(−Qη +

√
Q2

η − 8) (3)

The 26-dimensional bosonic string is an obvious example which meets the criterion.
There are 26 U(1) currents ∂Xµ with no background charge. Critical bosonic string
background therefore has a topological symmetry algebra with ĉ = 3. (The full
symmetry in this background should be much larger and involve, in particular, the
target space Poincaré algebra.)

Two-dimensional string theory is another, perhaps more tractable, example. In
this case, there are two U(1) currents, ∂X and ∂ϕ, corresponding to the matter and
Liouville fields. The matter current is non-anomalous, but translational invariance
is broken along Liouville which has a background charge Qϕ = 2

√
2. Choosing the

scalar field η to be the Liouville field1 ϕ, we get a topological algebra with ĉ = 1,
while the choosing η to be the matter variable X21 leads to the critical value ĉ = 3.
The latter choice is natural for the theory at a non-zero cosmological constant,21

where the Liouville current no longer splits into holomorphic and anti-holomorphic
parts.

We therefore conclude that any translation invariant direction in a string back-
ground gives rise to a topological symmetry algebra with the critical value of the
topological central charge ĉ = 3. To our knowledge, this fact has not yet been fully
exploited.

One can now look at the known topological models and try to interpret them as
string backgrounds. A simple class of theories are the so called topological Landau-
Ginzburg models6,22. They are defined by the superspace action

S =
∫

d2z d2θ d2θ̄D(X, X̄) +
∫

d2z d2θW (X) +
∫

d2z d2θ̄W̄ (X̄) (4)

obtained by twisting from the N = 2 supersymmetric models. For (quasi-) homo-
geneous superpotential W (X), the theory defined by the Eq.(4) is believed to flow
to a CFT in the infrared limit16. The superpotential W (X), being an invariant of
the flow, determines the properties of the fixed-point theory. For a single chiral
superfield X with superpotential W (X) = 1

k+2
Xk+2, one finds ĉ = k

k+2
. These are

well-known to describe the unitary cM < 1 minimal matter coupled to gravity6,22.
If we solve for the critical value ĉ = 3 in this class, we get k = −3 leading to a

Landau-Ginzburg theory with singular superpotential W (X) = −X−1. Because of
the singularity at the origin, we must take X to be valued on the punctured plane
C\{0}, which has the topology of a cylinder. The conventional LG theories, on the
other hand, are valued on C. So which string theory, if any, is this? In Ref.(10), it
was shown to be the topological model of the cM = 1 string theory with the matter
field compactified at the self-dual radius. In the following, we will summarize some
of the arguments of Ref.(10) referring the reader to the original paper for further



details. The results of Ref.(10) were also subsequently, but independently, obtained
in Ref.(14).

3. Landau-Ginzburg tachyons and their genus-0 correlators

The physical operators of a topological string theory are defined by the BRS
cohomology. In conventional LG theories with polynomial superpotential, these
arise from the chiral primaries of the untwisted theory, and the topological algebra
given by the factorization of the zero-form operators is derived from the isomorphism
to the chiral ring C[x]/W ′(x). This leaves us with a finite number of primaries {φi}
0 ≤ i ≤ k, and their infinite number of gravitational descendants {σm · φi}, m ≥ 0,
where σ0 · φi ≡ φi.

An arbitrary correlation function of the physical operators involving primaries
and descendants can be reduced, by using the gravitational recursion relations23,7,
to those of the primaries, which in turn can be evaluated in the LG6 or lagrangian25

framework. Yet another approach is the LG gravity of Losev18, who proves that,
after coupling to gravity, the equation of motion W ′(x) ∼ 0 no longer implies the
decoupling of arbitrary polynomials f(x)W ′(x). In this picture, the descendant
σm · xi is represented by xi+m(k+2).

The LG theory with superpotential W (X) = X−1 requires extra work to define
it precisely. Due to the non-polynomial nature of the superpotential many of the
properties of the conventional LG, including the existence of a nilpotent chiral
primary ring, do not strictly hold∗. Nevertheless, it turns out that consistency
requirements are powerful constraints and these suffice to find the spectrum of
physical operators and determine the correlation functions.

To begin with let us consider all powers xi, i ∈ Z. Thus we have the ring
C[x, x−1]. Notice that the equation of motion W ′(x) = x−2 ∼ 0 does not give any
useful information. This is because the BRS variation of the fermion ψ− ≡ 1

2
(ψ−ψ∗)

of the anti-chiral multiplet X̄ = {x̄, ψ, ψ̄, F̄} is δBψ− = W ′(x). Naively therefore

xi = δB(ψ−xi+2) for all i ∈ Z (5)

all fields are BRS exact. We are, however, dealing with the cohomology relative to
G−

0 =
∮

zG−(z) − (h.c). Using the fact that G− = ρ∂x̄, (where X = {x, ρ, ρ̄, F} is
the chiral multiplet), we see that

G−
0 (ψ−xi+2) =

∮
zG−(z)(ψ−xi+2)− (h.c) = xi+1 6= 0 (6)

Therefore xi+2 is not exact in the equivariant cohomology8.
∗The difficulties involved here are analogous to those encountered in defining an SL(2)k conformal
field theory, where (unlike the case of SU(2)k) it is not possible to rigorously determine the integrable
representations and other basic properties.



Now, for a generic topological field theory coupled to topological gravity, an
analysis of the fermion zero modes gives the conservation law6,17,25

N∑

i=1

(mi + qi − 1) = (g − 1)(3− ĉ) (7)

for an arbitrary N -point correlator involving σm · φ, where φ is a primary of U(1)
charge q. In the LG theory with W (X) = Xk+2, the chiral field X has charge
q[X] = 1/(k + 2). So the monomial xi has U(1) charge qi = i/(k + 2). In our
non-polynomial LG theory the U(1) charge of X is q[X] = −1, and therefore xi has
qi = −i. Moreover, since the topological central charge is ĉ = 3, the conservation
law

N∑

i=1

(mi − i− 1) = 0 (8)

is independent of the genus.
Notice the curious degeneracy in this formula: for a fixed (m− i), σm ·φi satisfies

the same conservation law for all m, i ∈ Z. This suggests a ‘collapse’ of many states
of the polynomial LG theory into a singe set labelled by i ∈ Z. In particular, the
correlator of the operators xk−1 satisfies

N∑

i=1

ki = 0 (9)

We propose that Eq.(9) is the momentum conservation law for the tachyons of the
two-dimensional string theory with the cM = 1 matter field compactified at the
self-dual radius. The operators of the two theories are related as

Tk = xk−1, k ∈ Z (10)

Recall, that the tachyons Tk’s have integer momenta in appropriate normalization
(self-dual radius is unity).

The cosmological operator T0 = x−1 coincides with the superpotential of the
theory. The LG model therefore describes the two-dimensional string theory at
non-zero cosmological constant. As expected, the cosmological operator satisfies
charge conservation, Eq.(9), for any number of insertions and in any genus.

It turns out10 that the positive momentum tachyons, that is, the monomi-
als {x−1, 1, x, x2, · · ·} can be viewed as primary fields. The negative momentum
tachyons Tk, k < 0 on the other hand, can be thought of as the gravitational
descendants of the cosmological operator T0. (Actually, the negative momentum
tachyons play a somewhat subtle role, appearing in various different “pictures”, as
described in Ref.(11). This point will not be essential here.)

We can now calculate the 3-point function on the sphere by the standard residue
formula

ck1k2k3 = 〈Tk1Tk2Tk3〉



= Res
(

xk1−1xk2−1xk3−1

x−2

)

= δk1+k2+k3,0 (11)

where the residue is taken around the circle at infinity. The result, as expected, is
the momentum conservation condition.

Next we turn to the computation of the four-point function which involves an
integration over the moduli space M0,4. The projective symmetry fixes the position
of any three tachyons, which are taken as local operators and the fourth tachyon
insertion is integrated over the sphere. One can add this integrated tachyon as
a perturbation to the superpotential — differentiating the 3-point function, with
respect to the coupling of the perturbation, would then give the 4-point function.
As was shown by Losev18, this has be corrected by adding contact terms which arise
when the fourth field collides with the other three. The latter correspond to the
contribution from the boundary of M0,4.

Explicitly, if CW (Tki
, Tkj

) is the contact term between the fields Tki
and Tkj

, the
4-point correlator is given by

〈Tk1Tk2Tk3Tk4〉W =
∂

∂t4
〈Tk1Tk2Tk3〉W+t4Tk4

∣∣∣
t4=0

+ 〈CW (Tk4 , Tk1)Tk2Tk3〉W
+ 〈Tk1CW (Tk4 , Tk2)Tk3〉W + 〈Tk1Tk2CW (Tk4 , Tk3)〉W (12)

Total symmetry of the 4-point function is obtained if we require that

CW (Tki
, Tkj

) =
d

dx

(
Tki

(x)Tkj
(x)

W ′(x)

)

−
= (ki + kj)Tki+kj

θ(−ki − kj) (13)

where θ(k) is the step function. Using this, we get the answer

〈Tk1Tk2Tk3Tk4〉 = δ (
4∑

i=1

ki) (1−max|ki|)

= δ (
4∑

i=1

ki) [−1

2
|k1 + k2| − 1

2
|k1 + k3| − 1

2
|k2 + k3|+ 1] (14)

which is precisely the tree-level correlation function of four tachyons computed in
the matrix model20,5 evaluated at the cosmological constant µ = −1.

Similarly, the correlator of N tachyons can be computed10. We get answers
in agreement with those obtained by other means3,5. The correct µ-dependence
at an arbitrary non-zero µ can be restored by replacing the superpotential by
−X−1 → µX−1. In the present simplified picture of the problem, one can perturb
the superpotential only by primaries. Going to the “big phase space”, in which
perturbations by secondaries are also allowed, requires the addition of extra multi-
point contact terms. An elegant way to accomplish this is described in Ref.(11).



In particular, without carrying out this procedure, we can only compute N -point
functions with a maximum of 3 negative tachyons.

4. Flow equations

It is useful to study the LG theory perturbed by adding (integrated) primaries
to the superpotential6. The superpotential, as well as the fields, in the perturbed
theory acquire non-trivial dependence on the couplings of the perturbation t — they
are said to flow.

One can define the formal generating function of the t-dependent multipoint
correlator

〈Tk1 · · ·TkN
〉W (t) ≡ 〈Tk1 · · ·TkN

e
∑

ki>0
tiTki 〉W (15)

This is equal to the multipoint correlator 〈Tk1(t) · · ·TkN
(t)〉W (t) in the perturbed

theory.
The self-consistent flows of the operators and the superpotential are obtained

from the solutions of the differential equations18,19

∂

∂ti
Tkj

(t) = CW (t)(Tki
(t), Tkj

(t)),

∂

∂ti
W (t) = Tki

(t) (16)

where, the index i is restricted to tachyons with positive ki (primaries) only. The
space of couplings of the primaries {ti} is called the small phase space. For most
theories, a knowledge of correlators as a function of the coordinates of the small
phase space is sufficient to determine them completely7.

It is easy to explicitly integrate Eqs.(16). Simplification occurs because of the
fact that the contact term Eq.(13) between two tachyons with positive momenta
vanishes. Thus we find that the primaries do not flow

Tk(t) = Tk = xk−1 for k > 0, (17)

and there is no higher order correction to the superpotential

W (t) = −x−1 +
∞∑

i=1

tix
i−1 (18)

which is a linear function of the couplings ti.
Only the tachyons with negative momenta have non-trivial flow, which can be

determined order by order in t, and expressed in the compact form

T−k(t) =

(
(−W (t))k

−k

)′

−
(19)

This is analogous to the solution in the polynomial LG theory6,8.



Consider the t-dependent 3-point correlator with one negative momentum tachyon
T−n and two positive momentum tachyons Tk1 , Tk2. Using, Eqs.(11),(17) and (19),
we get

〈〈T−nTk1Tk2〉〉 = Res
[

1

W ′(t)

(
(−W (t))n

−n

)′

−

∂W (t)

∂tk1

∂W (t)

∂tk2

]

= Res
[
(−W (t))n−1∂tk1

W (t)∂tk2
W (t)

]
(20)

To get the second step above, first notice that in taking the residue we can remove
the minus-subscript in the expression of the negative momentum tachyon. Explicit
differentiation then gives the desired result. Using Eq.(18), we can integrate Eq.(20)
to obtain the generating function for the so called 1 → N amplitudes

〈〈T−n〉〉 = Res
[
(−W )n+1

n(n + 1)

]
(21)

The above is in perfect agreement with the spherical limit of the W∞ ward-identity
derived from the matrix model5

∂

∂t̄n
Z = Res

[
(−W )n+1

n(n + 1)

]
Z (22)

where the t̄n denote the coupling corresponding to the negative momentum tachyon
T−n. In this comparison, the LG superpotential W is identified to −∂φ, where ∂φ
is the bosonized current corresponding to the free fermions of the matrix model.

5. Calabi-Yau/Landau-Ginzburg correspondence at k = −3

LG models are closely related to the Calabi-Yau (CY) hypersurfaces in some
appropriate weighted projective space13. The equation defining the hypersurface
turns out to be the (quasi-homogeneous) superpotential of the LG theory. These
heuristic arguments have recently been made more precise26 by coupling a U(1)
gauge field to the original N = 2 theory. Roughly speaking, one gets a class of
theories characterized by one parameter r. One recovers the LG theory in the limit
r → −∞, while for r → ∞, one gets a sigma model with the CY hypersurface as
the target space. In this sense, LG and CY σ-model are two phases of the same
theory.

What, if any, is the CY phase of the LG theory with superpotential X−1? A
naive analysis, (assuming that the results derived for the polynomial LG theories26

with k ∈ Z can be continued to k = −3), suggests some interesting generalizations
of the CY/LG correspondence.

Notice that the LG theory with k = −3 already has the critical topological
central charge ĉ = 3, which corresponds to a 3-dimensional CY hypersurface. Let



us modify our superpotential in a standard way by adding extra quadratic terms,
(in the following, X0 refers to our original LG superfield X):

G(X) = −X−1
0 + X2

1 + X2
2 + X2

3 + X2
4 (23)

which do not affect the central charge. G(X) is quasi-homogeneous if we assign the
weights q0 = −2, qi = 1, for i 6= 0, to the chiral superfields. In coupling to the gauge
fields, one introduces a sixth chiral superfield P with charge q = −2 so as to ensure
that one gets an anomaly free theory.

Let C6 be the space whose coordinates are the lowest component of the su-
perfields x0, · · · , x4 and p. Actually the superpotential (23) is analytic in Y =
C6−{x0 = 0}, which is the domain relevant for us. There is a natural C∗ action in
Y : for λ ∈ C∗, p → λ−2p, x0 → λ−2x0 and xi → λxi for i = 1, · · · , 4.

The superpotential of the gauge theory is P · G(X); and the potential energy,
(after eliminating the gauge field), is

U =
1

2e2
D2 + |G|2 + |p|2

4∑

i=0

∣∣∣∣∣
∂G

∂xi

∣∣∣∣∣
2

, (24)

where, e is the gauge coupling and D is

D = −e2
{
−2(|p|2 + |x0|2) + (|x1|2 + |x2|2 + |x3|2 + |x4|2)− r

}
. (25)

Let us now look at the ground state and low energy excitations of this theory.
This depends on the value of r. For r < 0, take r → −∞ and |x0| → ∞ such that
|p| 6= 0 is finite. To get the minimum energy, we must now demand that G as well
as all its partial derivatives ∂G/∂xi vanish. This fixes xi = 0 for i 6= 0. Expanding
around this classical vacuum, one recovers (a Z2 orbifold of) the LG theory with
superpotential G(X).

For r À 0, the condition that D vanishes together with the transversality of G (in
any finite region), requires that p = 0. The equation D = 0 gives

∑4
1 |xi|2−2|x0|2 = r.

Dividing the solutions of this by the U(1) action of the gauge group (this is the
residual C∗ action for |λ| = 1), we get the weighted projective space WCP4

−2,1,1,1,1.
This is isomorphic to a properly defined C∗ quotient of Y . To get the ground
state, we must also set G = 0. The classical vacuum is therefore the hypersurface
S defined by the vanishing of the quasi-homogeneous polynomial G(x) in WCP4.
Following standard arguments13,26, S defines a non-compact generalization of Calabi-
Yau manifold, and the low energy theory is a sigma model based on this target
space.

6. Discussion

In the two-dimensional string theory there is a Z2-invariance that simply sends
the cM = 1 free scalar field to minus itself — this is variously interpreted as time-
reversal or parity. In the topological LG model discussed here, such a symmetry



would have to take xk−1 to x−k−1 which is clearly not obtainable by any transfor-
mation on the superfield. The LG model therefore fails to show a basic invariance
of string theory.

The origin of this problem seems to be in the shift of 1 unit between the tachyon
momentum and the topological U(1) charge. Consider, however, a generic pertur-
bation of the LG theory,

Ψ(X) =
∑

k

tkX
k−1 (26)

which can be thought of as the string field Ψ(X). Interpreting X as a complex coor-
dinate, this is precisely the mode expansion of a spin-1 current in a conformal field
theory. If Ψ(X) were really treated as a spin-1 conformal field, then the inversion
X → X−1 would effect the change k → −k thus recovering the Z2 invariance. Inter-
estingly, an analysis of the target space symmetry algebra W∞, both in continuum27

and in matrix model5 approaches, suggests a target-space conformal dimension of 1
for the string field corresponding to the tachyons. Transforming the variable to the
cylinder by X = ez would eliminate the ‘shift’ by 1 unit, and we would have perfect
Z2 symmetry on the cylinder. Recall that X is valued on C\{0} — this suggests
that we need to understand better the ‘target-space’ properties of our theory, and
the right variables in which to describe it.
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