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M-theory: Motivation and background

I Superstring theory, which has been studied intensely for over
25 years, has the following properties:

(i) It is a consistent high-energy completion of physically relevant
low-energy field theories including gauge theories and gravity.

(ii) It naturally unifies gauge fields, the spacetime metric as well as
matter fields into a single type of string.

(iii) It is well-defined only in 10 dimensions but by compactification
it can be reduced to any dimension d < 10 as well.

(iv) It has a perturbative expansion in terms of Riemann surfaces
of increasing genus.



I In these lectures we are going to discuss a closely related
theory called M-theory.

I It has similar properties as we listed for string theory, with
some changes:

(iii’) It is well-defined only in 11 dimensions but by compactification
it can be reduced to any dimension d < 11 as well.

(iv’) It has no perturbative expansion.

I Interestingly if we compactify M-theory from 11d to 10d, we
recover type IIA string theory.

I Thus M-theory seems more basic than string theory!

I Unfortunately it is not so well-understood. However even at
the level at which we understand it, it “explains” many
interesting features of string theory.



I In string theory, the basic objects are strings. However the
theory also has many other stable extended objects called
branes, which play an important role in dynamics.

I These include BPS NS-branes:

F1, NS5 type IIA and IIB

and BPS D-branes:

D0, D2, D4, D6, D8 type IIA

D1, D3, D5, D7, D9 type IIB

I In uncompactified M-theory there are only two stable BPS
branes:

M2, M5

I We will see that these two branes can be used to explain the
origin of all the branes of string theory – including the
fundamental string!



I What is the fundamental object in M-theory?

I Strings appear to be “fundamental” in string theory mainly
because the perturbation expansion is defined in terms of
them.

I Since there is no perturbation expansion in M-theory, we
cannot precisely identify a fundamental object in that theory.

I Nevertheless, it is the membrane that seems closest to being a
fundamental object. In fact, M-theory stands for Membrane
theory among other things.



I In string theory, the starting point is quantisation of
fundamental strings. Then we show that the massless degrees
of freedom, for closed strings, couple according to 10d
supergravity.

I However quantisation of membranes is still an unsolved
problem.

I So M-theory must be studied by combining what we know
about string theory with the knowledge of 11d supergravity.
This is also how it was originally discovered.
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11d Supergravity

I One reason to believe that M-theory is a very basic theory is
that 11 is the highest allowed number of dimensions for
supersymmetry, if we don’t allow “spin > 2” fields.

I Indeed, in 11 uncompactified dimensions we can only have
supergravity, i.e. local rather than global supersymmetry. The
field content is as follows.

I Supergravity obviously has a graviton GMN with
M,N = 0, 1, · · · , D − 1.

I In D dimensions this has (D−1)(D−2)
2 − 1 on-shell degrees of

freedom.

I This counting comes from the fact that the little group is
SO(D − 2). The symmetric traceless representation of this
group has the given dimension.



I The superpartner of the graviton must be a gravitino ΨM α.
This is a fermion with a vector and a spinor index,
M = 0, 1, · · · , D − 1 and α = 1, 2, · · · , D̃.

I Here D̃ is the dimension of the irreducible spinor
representation, which depends in a complicated way on D.

I The gravitino ΨM,α has (D−3)D̃
2 on-shell degrees of freedom.

I To see this, note that a simple spinor of D̃ components has D̃
2

components on-shell.

I A vector of D components has D − 2 components on-shell.

I Finally, D̃
2 components are removed by imposing

Γ-tracelessness:
ΓMΨM,α = 0



I Let us now make a table for various dimensions:

Dim Spinor dim Graviton Gravitino Diff.

D D̃ (D−1)(D−2)
2 − 1 (D−3)D̃

2

4 4 2 2 0

5 8 5 8 3

6 8 9 12 3

7 16 14 32 18

8 16 20 40 20

9 16 27 48 21

10 16 35 56 21

11 32 44 128 84

12 64 54 288 234

I The deficit can be made up by adding new bosons to the
theory. However, from D ≥ 12 there are so many bosons
needed that we inevitably encounter “spin > 2” fields.



I For D = 11 we need to add 84 bosonic fields to obtain a
matching of on-shell degrees of freedom.

I Luckily there is an irreducible representation of the little group
SO(9) that has precisely this dimension.

I It is the antisymmetric 3-form CMNP .

I This has (D−2)(D−3)(D−4)
6 on-shell degrees of freedom. For

D = 11 this is precisely 84!

I Thus we may hope to find an 11d supergravity theory
containing the massless fields:

GMN , CMNP , ΨM,α



I Indeed, the following action is supersymmetric:

S11d =
2π

(2π`p)9

[∫
d11x

√
−||G||

(
R− 1

2
|F |2

)
− 1

6

∫
C ∧ F ∧ F

]
+ fermionic terms

I The quantities in the above are defined as follows:

`p : 11-dimensional “Planck length”

||G|| : determinant of the metric

R : Ricci scalar

F : FLMNP = ∂[LCMNP ]

I Besides general coordinate invariance, the above action is
invariant upto a total derivative under the “gauge symmetry”:

δC = dΛ

where Λ is a 2-form.



I It is also invariant under the supersymmetry transformations:

δEAM = ε̄ΓAΨM

δCMNP = −3 ε̄Γ[MNΨP ]

δΨM = ∇M ε+
1
12

( 1
4!

ΓMFPQRS ΓPQRS −
1
2
FMQRS ΓQRS

)
ε

Here:

EAM : frames satisfying EAME
A
N = GMN

ΓP1···Pn : Γ[P1ΓP2 · · ·ΓPn]

∇M ε : ∂M ε+ 1
4ω

AB
M ΓABε

ω AB
M : spin connection



I Since we did not write the fermion terms in the action, we
cannot check supersymmetric invariance.

I However if we assume it holds, then we don’t really need to
know the fermionic terms in the action. The same information
is contained in the supersymmetry variation!
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M-branes as black branes

I In string theory, branes can be understood in two ways:

(i) As gravitating classical solutions that preserve supersymmetry
(“black branes”).

(ii) As D-branes on which open strings end.

I Since the former description requires only a supergravity
theory, we can use it in 11d supergravity.

I Are there stable black branes in 11d supergravity?

I And do they preserve supersymmetry?



I The condition for a background GMN , CMNP ,ΨM,α to
preserve supersymmetry is that there should be some spinor ε
such that the supersymmetry variations on the background
vanish.

I Since we consider bosonic backgrounds, we only have to check
supersymmetry variations of the fermions:

δΨM = ∇M ε+
1
12

( 1
4!

ΓM (dC)PQRS ΓPQRS −
1
2

(dC)MQRS ΓQRS
)
ε

= 0

I It turns out that for the case of interest to us (maximal
supersymmetry), vanishing of these equations is sufficient to
guarantee a classical solution of the full supergravity
equations.

I And being first order, these are much easier to solve.



I Supersymmetric configurations will be stable because of the
BPS bound.

I What kind of solutions should we look for? Stability suggests
that the solutions will be supported by a flux.

I The only possible flux in 11d supergravity comes from the
3-form CMNP whose field strength is the 4-form:

FLMNP = ∂[LCMNP ]

I This is like a magnetic field. The dual electric field is the
7-form:

F̃LMNPQRS =
1
4!
ε ABCD
LMNPQRS FABCD



I A magnetically charged classical solution should emit a flux
FLMNP through a 4-sphere that encloses it.

I It is easy to check that in D dimensions, a d-sphere encloses a
D − d− 2 dimensional object. In 4 dimensions this is familiar
as the fact that:

(i) A 2-sphere S2 encloses a point.

(ii) A circle S1 encloses an infinitely extended string.

I We conclude that a magnetic object in 11 dimensions which
sources a 4-form flux must extend along 11− 4− 2 = 5
dimensions. It is called an M5-brane.

I Therefore we should look for 5-branes which satisfy:∫
Σ4

F = QM5

where QM5 is their magnetic charge (that will be quantised in
certain units) and Σ4 a 4-sphere enclosing the 5-brane.



I Similarly we conclude that an electric object in 11 dimensions
(which sources the 7-form flux F̃ ) must extend along
11− 7− 2 = 2 dimensions. It is called an M2-brane.

I In this case we will have:∫
Σ7

F̃ = QM2

where QM2 will be a quantised electric charge.

I A priori we do not expect to find any other stable objects in
11 dimensions!

I In particular there will be no stable strings. So 11d
supergravity is not a string theory.



I For the M2-brane we take the coordinates on the brane to be
ya = (y0, y1, y2) while the coordinates transverse to the brane
will be xI = (x1, x2, · · · , x8).

I We assume a symmetry SO(2, 1)× SO(8) and also
translational invariance in the y-coordinates.

I This fixes the metric to be of the form:

ds2 = f(1)(r) dy
adya + f(2)(r) dx

IdxI

while the electric flux is nonvanishing only for the component:

F012r = f(3)(r)

Here r is the radial distance from the brane:

r =
√

(x1)2 + (x2)2 + · · ·+ (x8)2



I Thus we only need to find the three functions f(1)(r), f(2)(r)
and f(3)(r).

I These functions are all determined by a single harmonic
function:

H(r) = 1 +
(rM2

r

)6

where rM2 will be related to the charge and tension of the
M2-brane and ∂I∂IH(r) = 0.

I In terms of this function we have:

f(1)(r) = H(r)−
2
3

f(2)(r) = H(r)
1
3

f(3)(r) = − ∂

∂r

(
H(r)−1

)



I We can now go on to evaluate its charge and mass in terms of
the parameter rM2.

I For the charge, we easily find that:

F̃J1J2···J7 = 6(rM2)6 εIJ1J2···J7

xI

r8

from which:

QM2 =
∫

Σ7

F̃ = 6(rM2)6 Ω7 = 2π4r6
M2

where Ω7 = π4/3 is the volume of a unit 7-sphere.



I By comparing the metric with Newton’s law for weak fields,
we get a relation between rM2 and the brane tension.

I The general formula for a p-brane of M-theory is:

g00 ∼ −
(

1− (2π`p)9

2π
npTp

9 Ω9−p

1
r8−p

)
where np is the (integer) number of branes described by the
solution.

I Applying this for M2-branes, we find:

r6
M2 =

(2π`p)9

2π
nM2TM2

6 Ω7
=

(2π`p)9

2π
nM2TM2

2π4

I We can now combine the results we have found to derive a
relation between the tension and charge of a single M2-brane:

QM2 =
(2π`p)9

2π
TM2



I For the M5-brane we take the coordinates on the brane to be
ya = (y0, y1, · · · , y5) while the coordinates transverse to the
brane will be xI = (x1, x2, · · · , x5).

I We assume a symmetry SO(5, 1)× SO(5) and also
translational invariance in the y-coordinates.

I This fixes the metric to be of the form:

ds2 = g(1)(r) dy
adya + g(2)(r) dx

IdxI

while the magnetic flux is specified by giving the component:

F012345r = g(3)(r)

Here r is the radial distance from the brane:

r =
√

(x1)2 + (x2)2 + · · ·+ (x5)2



I Thus we again need to find three functions, g(1)(r), g(2)(r)
and g(3)(r).

I These functions are again determined by a single harmonic
function:

H ′(r) = 1 +
(rM5

r

)3

where rM5 will be related to the charge and tension of the
5-brane, and ∂I∂IH

′(r) = 0.

I In terms of this function we have:

g(1)(r) = H ′(r)−
1
3

g(2)(r) = H ′(r)
2
3

g(3)(r) = − ∂

∂r

(
H ′(r)−1

)



I This time we find that rM5 is related to the charge by:

QM5 = 8π2r3
M5

I Using the Newtonian approximation, we also find the relation
between rM5 and the 5-brane tension TM5 to be:

r3
M2 =

(2π`p)9

2π
nM2TM2

3 Ω4
=

(2π`p)9

2π
nM5TM5

8π2

Combining the two we have, for a single M5-brane:

QM5 =
(2π`p)9

2π
TM5



I We now invoke the Dirac quantisation condition on charges,
which says that:

QM2QM5 =
(2π`p)9

2π
2πn

where n is an integer.

I It follows that the tensions of the M2 and M5 branes are
related by:

TM2TM5 =
(2π)2

(2π`p)9
n

I We will see that the tensions satisfy the above relation with
n = 1.



I The tension of the branes we have discussed is just their mass
per unit worldvolume, with units of (length)−p−1.

I Since M-theory has only one dimensional parameter `p, we
can predict that:

TM2 ∼
1
`3p
, TM5 ∼

1
`6p

I We will shortly argue that the correct answers are:

TM2 =
2π

(2π`p)3
, TM5 =

2π
(2π`p)6



I Thus we have argued that there is some supersymmetric
theory defined in 11 flat spacetime dimensions which has
massless fields including a graviton, as well as stable 2-branes
and 5-branes.

I We refer to this as M-theory.

I There are two kinds of limitations in our knowledge of
M-theory:

(i) We have formulated it in a fixed spacetime background and it
is not clear how to study it in a background-independent way
(the brane solutions are specific to flat spacetime).

(ii) It is not obvious that it has a consistent ultraviolet completion.



I The first issue is also a problem in string theory.

I However the second one is new. In string theory, using the
perturbative expansion, ultraviolet finiteness can be quite
convincingly demonstrated. The stringy nature cuts off UV
infinities.

I We may suspect that something similar holds in M-theory. Its
brane excitations could perhaps provide an ultraviolet cutoff.

I So far, we don’t know whether this is true and if so, which
brane is responsible. But the most logical possibility is that
the M2-brane, or membrane, governs the consistency of
M-theory.
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Compactification to 10d

I In contrast to 11d, where supergravity (in flat spacetime) is
unique, in 10d there are three distinct classical supergravity
actions: type IIA, type IIB and type I.

I Each of them is associated to a superstring theory: type IIA,
type IIB and type I/heterotic.

I Now, compactifying 11d supergravity on a circle must lead to
10d supergravity, therefore to one of the theories listed above.

I This is very interesting and suggests a close relation between
M-theory in 11d and superstring theory in 10d.



I To compactify 11d supergravity, we have to split the 11d
metric into components:

GMN → Gµν , Gµ 10, G10 10

where µ, ν = 0, 1, · · · , 9.

I Thus the 11d metric gives rise to a metric, a vector field and
a scalar in 10d.

I Similarly the 3-form gives:

CMNP → Cµνρ, Cµν 10

and gives rise to a 3-form as well as a 2-form in 10d.



I This bosonic spectrum is identical to that of type IIA
supergravity.

I Since circle compactification does not break supersymmetry,
we can be quite sure that the 10d theory thus obtained is
indeed going to be type IIA supergravity.

I To see this more explicitly, we must parametrise the 11d
metric properly.



I Let us first look at the action of type IIA supergravity in a
canonical normalisation:

SIIA =
2π

(2π`s)8

[∫
d10x

√
−||g|| e−2Φ

(
R+ 4 ∂µΦ∂µΦ− 1

2 |H3|2
)

−1
2

∫
d10x

√
−||g||

(
|F2|2 + |F4 +A ∧H3|2

)
− 1

2

∫
B2 ∧ F4 ∧ F4

]
where:

Φ : dilaton, e〈Φ〉 = gs

A : Aµ dxµ, Ramond-Ramond 1-form

B2 : Bµν dxµ ∧ dxν , NS-NS 2-form

A3 : Aµνρ dxµ ∧ dxν ∧ dxρ, Ramond-Ramond 3-form

F2 = dA, H3 = dB2, F4 = dA3



I A useful trick is to instead work with the 11d vielbein EAM .
Let us start by parametrising it as:

EAM =

(
eaµ 0

0 eΦ

)
where eaµ is the 10d vielbein, Φ is the 10d scalar and we are
temporarily setting the 10d 1-form Aµ to 0.

I With the above parametrisation:

||E||R(E)→ eΦ||e||
(
R(e) + 4 ∂Φ ∂Φ

)



I Comparing with the type IIA action we see that this is not
what we want, so we perform a Weyl rescaling:(

eaµ 0

0 eΦ

)
→ eγ Φ

(
eaµ 0

0 eΦ

)
which has the effect:∣∣∣∣∣

∣∣∣∣∣e
a
µ 0

0 eΦ

∣∣∣∣∣
∣∣∣∣∣→ e11γ Φ

∣∣∣∣∣
∣∣∣∣∣e
a
µ 0

0 eΦ

∣∣∣∣∣
∣∣∣∣∣ , R→ e−2γ ΦR

so the RHS gets multiplied by e9γ Φ.

I Thus we require:
9γ + 1 = −2

I It follows that γ = −1/3.



I Thus the correct decomposition is:

EAM = e−Φ/3

(
eaµ 0

eΦAµ eΦ

)
where we have now included the 10d 1-form as well.

I From this we easily find that:

GMN = e−2Φ/3

(
gµν + e2ΦAµAν e2ΦAµ

e2ΦAν e2Φ

)

I On the other hand, the M-theory 3-form becomes, on
dimensional reduction:

CMNP → Cµνρ = Aµνρ

→ Cµν 10 = Bµν



I With these identifications, we can compactify 11d
supergravity and compare with the Lagrangian of 10d type IIA
supergravity.

I Notice that the former after compactifying has two
parameters, `p and R10. On the other hand, the latter has
two parameters, `s and e〈Φ〉 = gs.

I Thus we should find a relation between the two pairs of
parameters. This will provide us the physical interpretation of
the result.



I Comparing Lagrangians, we right away find:

2πR10
2π

(2π`p)9
=

1
g2
s

2π
(2π`s)8

I Additionally the relation between metrics tells us that:

`p = g1/3
s `s

I Inserting the latter in the former, we find:

R10 = gs`s

I This is a truly striking result! It relates the radius of a
compact dimension to the string length and coupling.



I The proposed interpretation is as follows.

I When we compactify M-theory on a circle of radius R10, it
becomes type IIA string theory in the limit R10 → 0.

I Conversely, if we start with 10d type IIA string theory and
take the coupling gs →∞, the string description breaks down.
In this limit, a new space dimension opens up and we get
M-theory.

I This is a duality.
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Branes and dualities from M-theory

I Let us now try to justify the proposal that M-theory and type
IIA string theory are related as claimed:

M-theory
compactification−→
strong coupling←−

type IIA string theory

I First we review the spectrum of branes in string theory.

I In a classic calculation of the force between D-branes using
open string theory, it was shown that:

TDp =
1
gs

2π
(2π`s)p+1

I We also have:

TF1 =
2π

(2π`s)2
, TNS5 =

1
g2
s

2π
(2π`s)6



I Let us now try to derive these results starting with M-branes.

I In principle this might not be possible at all!

I The tensions of string theory branes were calculated at weak
coupling. One might expect them to be renormalised.

I However, the fact that these are supersymmetric branes saves
us.

I It can be argued that the tension of supersymmetric branes is
exact. This is an example of a non-renormalisation theorem.

I Therefore we can compare the tensions of M-theory branes
with type IIA branes, and we will now do this.



I When we compactify on a circle, the M2-brane can be either
wrapped on the circle or transverse to the circle.

I In the first case it looks (as R10 → 0) like a string or 1-brane.
In the second case it is a 2-brane.

I Doing the same thing for an M5-brane we get a 4-brane or a
5-brane.

I To match with the branes in string theory, the only
possibilities are:

wrapped M2→ F1, transverse M2→ D2

wrapped M5→ D4, transverse M5→ NS5



I This is a definite set of predictions!

I Start with the M2-brane. We had proposed that its tension is:

TM2 =
1

4π2`3p

I Wrapping on the circle, the tension of the resulting brane is:

TM2 wrapped = TM2 × 2πR10

=
1

2π`2s
which is the correct tension for the fundamental string.

I But this result really serves to fix the tension of the M2-brane,
which we had not determined previously.



I Now consider the transverse M2-brane. Its tension is:

TM2 =
1

4π2`3p

=
1

4π2(g1/3
s `s)3

=
1
gs

1
4π2`3s

= TD2

I This is a truly remarkable agreement!



I For the M5-brane, things work out as follows.

I We have proposed that its tension is:

TM5 =
1

32π5`6p

I Wrapping on the circle, the tension of the resulting brane is:

TM5 wrapped = TM5 × 2πR10

=
gs`s

16π4g2
s`

6
s

=
1
gs

2π
(2π`s)5

= TD4

which is correct, but again can be thought of as a
determination of TM5.



I Finally, the transverse M5-brane gives:

TM5 =
1

32π5`6p

=
1
g2
s

1
32π5`6s

=
1
g2
s

2π
(2π`s)6

= TNS5

which is again a remarkable confirmation of the equivalence
between M-theory and type IIA string theory.



I This still leaves the D0 and D6 branes.

I Note that the mass of a D0 brane is:

T0 =
1
gs`s

=
1
R10

I What mode of M-theory can have this mass?

I We will argue that it is the mode with one unit of momentum
along the compact direction.



I Indeed, on a compact dimension of length L, the momentum
is quantised in integers as:

p =
2πn
L

I For massless particles in 11d, we have:

E2 = p2
1 + · · · p2

9 + p2
10

I After compactification, a fixed value of p10 will appear as a
mass.

I Since L = 2πR10, we have:

mass in 10d = |p10| =
n

R10



I Thus a single D0-brane (n = 1) is a single unit of momentum
along x10.

I But we have a new prediction. For every integer n, there
should be a bound state of n D0-branes!.

I This is a statement about string theory that we did not know
before the discovery of M-theory! And it has now been
verified directly within string theory.



I Let us see how the charge of the D0-brane works out.

I Note that in 10 dimensions, a 0-brane is surrounded by S8.
Thus its charge is the integral of the spatial components of an
8-form.

I The Poincaré dual of this 8-form in 10d is a 2-form which
must be the field strength of the Ramond-Ramond 1-form Aµ.

I Therefore the D0-brane is electrically charged under Aµ. From
the M-theory point of view, the latter is a Kaluza-Klein gauge
field.



I As we have seen, it is possible to have a dual object which is
surrounded by S2 and is a magnetic source for the same field
strength.

I Such an object must be a 6-brane. Indeed it is known that in
type IIA string theory, the 6-brane is the magnetic dual of the
0-brane.

I In M-theory, Aµ is a Kaluza-Klein gauge field. Therefore a
magnetically charged object must be a Kaluza-Klein
monopole.



I Let us first discuss Kaluza-Klein monopoles abstractly.

I Consider the metric in 4 Euclidean dimensions:

ds2
Taub-NUT = V (~x) d~x · d~x+

1
V (~x)

(
dy + ~A · d~x

)2

where ~A is the vector potential for a magnetic monopole in 3
dimensions:

~B = ~∇× ~A

and V (~x) is a harmonic function in 3d determined by:

~∇V = − ~B

I This metric solves the 4d Euclidean Einstein equation without
sources.



I We choose a specific harmonic function V depending on a
real number R, namely:

V (~x) = 1 +
R

2r
where r = |~x|.

I Thus the magnetic field is:

~B =
R

2
~x

r3

I As r → 0 this metric is apparently singular due to the terms:

R

2r
dr2 +

2r
R
dy2



I The singularity can be avoided as follows. Define:

r̃ =
√

2rR

I The dangerous terms then become:

dr̃2 +
r̃2

R2
dy2

I Now the second term is non-singular only if y is an angle with
periodicity 2πR.



I Being a non-singular metric with a monopole charge, this is
called a Kaluza-Klein monopole (if we add −dt2 to make it a
particle).

I The monopole is located at the core near r → 0, where the
Kaluza-Klein circle shrinks to zero size.

I Let us now embed this solution in M-theory by taking the ~x
directions to be x7, x8, x9 and the KK direction y to be x10

with periodicity 2πR10.

I The resulting object is translational invariant along
x1, x2, · · · , x6 so it is a 6-brane.

I And it is magnetically charged under the Kaluza-Klein gauge
field arising from compactification of x10.



I So we have a candidate for the D6-brane of type IIA string
theory.

I To compute the tension, we just integrate the energy density
~∇2V along the four dimensions in which the monopole is
embedded.

I Since V is independent of the compact direction, we get:

TKK6 =
2π

(2π`p)9
× 2πR10

∫
d3x ~∇2V

=
2π

(2π`p)9
× (2πR10)2

=
1
gs

2π
(2π`s)7

= TD6

I Success!!



I We know that branes in type IIB string theory can be
obtained from those of type IIA by circle compactification and
T-duality.

I It is easy to check that this reproduces the tensions of all the
branes of type IIB: D1,D3,D5,D7 and NS5.

I However it gives us some more information.

I Recall that in type IIB there are two types of strings:

F-strings of tension:
1

2π`2s

D-strings of tension:
1
gs

1
2π`2s



I It has been argued that type IIB string theory has S-duality:

gs →
1
gs
, `s →

√
gs `s

I Under this symmetry, the F-string and D-string are
interchanged. One can easily check that their tensions get
interchanged.

I It has also been shown that p F-strings and q D-strings form
stable bound states called (p, q) strings, if p, q are co-prime.

I These have tension:

Tp,q =

√
p2 +

q2

g2
s

1
2π`2s

I We will now see that M-theory explains both these facts in a
beautiful way.



I Suppose we compactify M-theory on two circles x10, x9 of
radii R10, R9 to get type IIA string theory in 9 dimensions.

M2-brane wrapped on x10 → type IIA F-string

M2-brane wrapped on x9 → D2-brane wrapped on x9

I Now let us perform a T-duality on x9:

type IIA F-string → type IIB F-string

D2-brane wrapped on x9 → type IIB D-string

I It follows that:

F-string ↔ D-string (IIB) ⇐⇒ x9 ↔ x10 (M-theory)

I But the latter is part of Lorentz invariance and is a manifest
geometrical symmetry of M-theory! This “proves” S-duality.



I In fact we easily find that:

gs (IIB) =
R10

R9
, `s (IIB) =

√
`3p
R10

I Next, suppose in the same compactification, we wrap an
M2-brane p times along x10 and q times along x9.

I The result, after T-dualising on x9, is a string in type IIB
theory that has p units of F-string charge as well as q units of
D-string charge.

I Its tension will be:

TM2 wrapped = TM2

√
p(2πR10)2 + q(2πR9)2

=

√
p2 +

q2

g2
s

1
2π`2s

= Tp,q

reducing the existence of (p, q) strings to Pythagoras theorem!
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M2-brane field theory: Motivation

I In string theory, the discovery of D-branes brought about a
revolution in our understanding of quantum field theory.

I Like any soliton (e.g. monopole, cosmic string), a D-brane
possesses degrees of freedom that are bound to it.

I These can be found by considering the light modes of the bulk
theory expanded about the brane solution.

I They are usually non-gravitational degrees of freedom, namely
gauge fields, scalar fields and fermions.



I The Dirichlet description of branes, in terms of open string
endpoints, provides an explicit construction of these degrees
of freedom - by quantising open strings.

I It also provides information about their interactions.

I Thus we have a worldvolume field theory on D-branes.

I This is generically a non-renormalisable field theory with
arbitrarily high-derivative operators suppressed by the string
scale `s.



I For D-branes, this field theory is in principle completely
calculable in string perturbation theory.

I On taking the string length ls =
√
α′ → 0 it reduces to a

conventional Yang-Mills type field theory.

I Since the D-branes are supersymmetric, the field theory will
also be supersymmetric.

I By taking different brane configurations in different
backgrounds, a variety of field theories can be “engineered” in
this way.



I The simplest special case arises when we take superstring
theory in flat 10d spacetime with a stack of N parallel
Dp-branes.

I The result (as ls → 0) is maximally supersymmetric
Yang-Mills theory:

L = 1
g2YM

tr
{
− 1

4F µνF
µν − 1

2DµX
iDµXi − 1

4 [Xi,Xj ]2

+ fermions
}

where i = 1, 2, · · · , 9− p.

I Here Aµ,X
i,ψ are all in the adjoint of U(N).

I The diagonal components of the scalars parametrise the
transverse directions to the brane.



I The group-theory structure has a nice pictorial representation
in terms of open strings, shown here for the case of U(3).

I This picture has it all: Cartan subalgebra, positive roots,
negative roots, simple roots...

I Using orientifolds (orientation-reversing hyperplanes) one can
get the other classical gauge groups, SO(N), Sp(N).

I Using orbifolds (which do not reverse orientation) one can get
direct product gauge groups and bi-fundamental matter.



I Many features of the field theory can be understood using
branes along with the underlying superstring theory:

I Nonabelian gauge symmetry (from stretched open strings).

I Higgs mechanism (from transverse motions of the branes).

I Supersymmetry (from spatial alignment).

I Duality (from duality of string theory).

I Monopoles (from D-strings ending on D3-branes).

I Conformal invariance for D3 branes (from constancy of
dilaton).



I Conversely the field theory explains many aspects of the
underlying string theory:

I M(atrix) theory.

I AdS/CFT correspondence (here the field theory is the entire
string theory!).



I We would like to have a similar understanding for the
worldvolume theory on M-branes.

I As we have seen, M-theory has two kinds of stable branes:

I M2-branes (membranes)
I M5-branes

I Besides the above motivations, one additional motivation is
that one may be able to use the M-brane field theory to give a
precise definition of M-theory.

I In the following lectures I will describe some recent progress in
understanding the field theory on multiple M2-branes, which
remained unknown for a decade.



I We have seen that type IIA string theory lifts to M-theory as
gs →∞.

I In the process D2-branes lift to M2-branes.

I The field theory on N D2-branes is just maximally
supersymmetric or N = 8 Yang-Mills theory in (2 + 1)d,
which has 7 transverse scalars.

I This is a super-renormalisable theory that inherits its coupling
from the string coupling gs:

gYM =
√
gs
ls



I Therefore in the M-theory limit, gYM →∞.

I For a super-renormalisable theory, this is the infrared limit.

I Thus we may define:

LM2 = lim
gYM→∞

1
g2

YM

LD2

and the problem is to find an explicit form for this limiting
theory.

I The limiting theory, if interacting, must be an infrared fixed
point and therefore conformal invariant.

I Also, if the brane interpretation is to make sense, the field
theory should have 8 scalars with an SO(8) global symmetry,
describing transverse motion.



I Thus we are looking for a (2 + 1)d field theory with:

I N = 8 supersymmetry.

I SO(8) global symmetry.

I Superconformal invariance.

I Possible application also to quantum critical points in
Condensed Matter physics!
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Single M2 brane

I For a single D2-brane the theory is relatively simple.

I It has been known for a long time how to relate it to a single
M2-brane.

I In the limit `s → 0 (the Yang-Mills limit) the D2-brane is
described by a free Abelian gauge theory:

Lsingle D2 = 1
g2YM

{
− 1

4FµνF
µν − 1

2∂µX
i∂µXi + fermions

}
where Xi, i = 1, 2, · · · , 7 parametrise the 7 transverse
directions to the D2-brane.



I The M2-brane action has to be different, because the brane
now has 8 transverse directions so there should be 8 scalar
fields.

I The 8th scalar arises by a duality transformation as follows:

− 1
4g2YM

FµνF
µν → 1

2ε
µνλBµFνλ − 1

2g
2
YMBµB

µ

I Integrating out the auxiliary field Bµ gives:

Bµ = 1
2g2YM

εµνλF
νλ = 1

g2YM
F̃µ

where F̃µ ≡ 1
2εµνλF

νλ is the dual of Fµν .

I Integrating out Aµ instead gives:

∂µBν − ∂νBµ = 0 =⇒ Bµ = 1
g2YM

∂µX
8

where X8 is a new scalar field, whose Lagrangian is then:

− 1
2g2YM

∂µX
8∂µX8



I The field X8 is actually a compact scalar. To see this, note
that the quantisation law for electric charges in the theory is:∫

Σ1

F̃ = 2πngYM

I Let us take the minimum quantum of charge, n = 1. From
the relation between Bµ and F̃µ we have:∫

Σ1

B =
2π
gYM

It follows that: ∫
Σ1

dX8 = 2πgYM

which means X8 has periodicity 2πgYM.



I Note that in our normalisation, XI have dimensions of
length−1. If we want to go to standard conventions where

their dimension is length
1
2 we must multiply by `

3
2
p .

I Performing this on X8 we find that the periodicity becomes:

2πgYM × `
3
2
p = 2π

√
gs
`s
× g

1
2
s `

3
2
s = 2πgs`s = 2πR10

which is the periodicity of the ambient space.

I In the limit gYM →∞, equivalent to R10 →∞, the scalar X
decompactifies, and we can relabel it X8 to find the theory for
a single M2 brane:

Lsingle M2 = −1
2
∂µX

I∂µXI + fermions

where I = 1, 2, · · · , 8.



I This theory satisfies all the desired criteria. However that was
relatively easy, since it’s a free field theory.

I As we know, multiple D-branes form an interacting Yang-Mills
theory.

I In this case the problem of finding the corresponding multiple
M2-brane theory is much more difficult.
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Bagger-Lambert theory

I Let us first give arguments for some general properties of the
multiple membrane theory.

I Since membranes have 8 transverse directions, the field theory
needs to have 8 scalar fields. By supersymmetry, it also must
have 4 two-component fermions.

I In (2 + 1)d the canonical dimensions of fields are as follows:

[X] =
1
2
, [Ψ] = 1

I Then scale invariance restricts the interactions to be of the
form:

(X)6 and (X)2Ψ̄Ψ



I A key insight was that the bosonic field content can, and
should, include a nondynamical (Chern-Simons) gauge field
with a Lagrangian:

SCS =
k

2π
tr
∫
εµνλ

(
Aµ∂νAλ +

2
3
AµAνAλ

)

I This is special to (2 + 1)d. This action is a topological
invariant and does not have any local gauge-invariant degrees
of freedom.

I Therefore the gauge field does not contribute to the
dynamical degrees of freedom, though it can help to close the
supersymmetry algebra.



I The first successful attempt to find an interacting CFT
satisfying all the requirements was made by Bagger and
Lambert (a crucial step was provided independently by
Gustavsson). This is called the Bagger-Lambert A4 theory.

I It relies on a mathematical structure called a Euclidean
3-algebra.

I This involves generators TA, a “three-bracket”, and a totally
antisymmetric 4-index structure constant fABCD satisfying:

[TA, TB, TC ] = fABCDT
D

I A generalised “trace” over the three-algebra indices provides a
“metric” on the 3-algebra:

hAB = tr(TA, TB)



I The structure constants satisfy the ‘fundamental identity’:

fAEFG f
BCDG−fBEFG fACDG+fCEFG f

ABDG−fDEFG fABCG = 0

I The scalars XI and fermions Ψ are three-algebra valued and
the interactions are:

∼ Tr
(

[XA, XB, XC ]2
)

and ∼ Tr
(

[Ψ̄A, XB,ΨC ]XD
)

I And there is a gauge field AABµ with minimal couplings to the
scalars and fermions, and a Chern-Simons interaction:

kεµνλ
(
fABCDA

AB
µ ∂νA

CD
λ +2

3f
G

AEF fBCDGA
AB
µ A CD

ν A EF
λ

)
where k is the quantised level.



I Here fABCD has been left abstract, but it was later shown
that there is only one consistent solution of the fundamental
identity:

fABCD = εABCD, A,B,C,D = 1, · · · , 4

I By taking suitable linear combinations of AABµ one finds a pair

of SU(2) gauge fields Aµ, Ãµ.

I The Chern-Simons term reduces to the difference of two
actions:

k tr
(
A ∧ dA+ 2

3A ∧A ∧A− Ã ∧ dÃ−
2
3Ã ∧ Ã ∧ Ã

)



I The scalars and fermions are bi-fundamentals:

XI
aȧ and Ψaȧ

and, e.g.
DµX = ∂µX −AµX +XÃµ

I In this way the theory reduces to a conventional gauge theory.

I Importantly we see that parity is preserved if we require
A↔ Ã under parity.



I To complete this discussion let us write down the action of
Bagger-Lambert theory in the “bi-fundamental” notation:

SA4 =
k

2π

∫
d3xTr

[
− (D̃µXI)†D̃µX

I + i Ψ̄†Γ̃µD̃µΨ

− 8
3 X

IJK†XIJK

−1
3 i Ψ̄†Γ̃IJ [XI , XJ†,Ψ] + 1

3 i Ψ̄Γ̃IJ [XI†, XJ ,Ψ†]

+1
2 ε

µνλ
(
Aµ∂νAλ + 2

3AµAνAλ

− Ãµ∂νÃλ − 2
3ÃµÃνÃλ

)]
where:

XIJK = X [IXJ†XK]

[XI , XJ†,Ψ] = X [IXJ ]†Ψ−X [IΨ†XJ ] + ΨX [I†XJ ]
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Interpretation of BL theory

I One should now check if this theory really describes
M2-branes.

I It should be noted that there is no coupling constant in the
theory. This is as expected since M-theory also has no
coupling constant.

I However the level k of the Chern-Simons actions acts as a
coupling.

I This is a puzzle: what is k doing here?



I The interpretation of the Bagger-Lambert theory becomes
clearer when we consider the Higgs mechanism.

I Take k = 1 to start with. If we give a vev v to one component
of the bi-fundamental fields, then at energies below this vev,
the Lagrangian becomes:

LBL

∣∣∣
vev v

=
1
v2
L
U(2)
SYM +O

(
1
v3

)
and one SU(2) gauge field has become dynamical!

I This is an unusual result. In Yang-Mills with gauge group G,
when we give a vev to one component of an adjoint scalar, at
low energy the Lagrangian becomes:

1
g2

YM

L
(G)
SYM

∣∣∣
vev v

=
1
g2

YM

L
(G′⊂G)
SYM

where G′ is the subgroup that commutes with the vev.



I Let’s give a quick derivation of this novel Higgs mechanism:

LCS = tr
(
A ∧ dA+ 2

3A ∧A ∧A− Ã ∧ dÃ−
2
3Ã ∧ Ã ∧ Ã

)
= tr

(
A− ∧ F+ + 1

6A− ∧A− ∧A−
)

where A± = A± Ã, F+ = dA+ + 1
2A+ ∧A+.

I Also the covariant derivative on a scalar field is:

DµX = ∂µX −AµX +XÃµ

I If 〈X〉 = v 1 then:

−(DµX)2 ∼ −v2(A−)µ(A−)µ + · · ·
I Thus, A− is massive – but not dynamical. Integrating it out

gives us:
− 1

4v2
(F+)µν(F+)µν +O

(
1
v3

)
so A+ becomes dynamical.



I One can check that the bi-fundamental XI reduces to an
adjoint under A+. The rest of N = 8 SYM assembles itself
correctly.

I But how should we physically interpret this?

LBL

∣∣∣
vev v

=
1
v2
L
U(2)
SYM +O

(
1
v3

)
I It seems like the M2 branes are becoming a pair of D2 branes

with gYM = v.

I Have we somehow compactified the spacetime theory? This is
not really possible because we have not done anything to the
bulk spacetime.



I The resolution is to note that for any finite v, there are
corrections to the Yang-Mills action. These decouple only as
v →∞. So at best we can say that:

LBL

∣∣∣
vev v→∞

= lim
v→∞

1
v2
L
U(2)
SYM

I The RHS is by definition the theory on two M2-branes! So
this is more like a “proof” that the original Chern-Simons
theory really is the theory on M2-branes.

I More precisely, this is the case far out on the moduli space (at
large Higgs vev v).



I However once we introduce the Chern-Simons level k then the
analysis is different:

LBL

∣∣∣
vev v

=
k

v2
L
U(2)
SYM +O

(
k

v3

)

I If we take k →∞, v →∞ with v2/k = gYM fixed, then in this
limit the RHS actually becomes:

1
g2

YM

L
U(2)
SYM

and this is definitely the Lagrangian for two D2 branes at
finite coupling.

I So this time we have compactified the theory! How can that
be?



I It has been proposed that the level k corresponds to the order
of an orbifold group.

I In this proposal, the branes described by Bagger-Lambert
theory are not transverse to R8, but to R8/Zk for some action
of the group Zk.

I This is a potentially nice explanation since the level k is an
integer which fits well with the fact that the order of a finite
group is also an integer.

I The proposed action of the orbifold on the complex
coordinates of the 8-dimensional space is:

(z1, z2, z3, z4)→ (ωz1, ωz2, ωz3, ωz4)

where ω = exp 2πi
k . Thus the space is better thought of as

C/Zk.



I Now we can try to explain the apparent “compactification”.

I In other similar field theories in 4d, it is known that by taking
the order of an orbifold group very large and simultaneously
moving the branes far away, one effectively sees a compact
space.

2π__

k

v  k

k

___v

I As v →∞, k →∞ the brane moves further away from the
orbifold and the opening angle also becomes very small.

I In the limit, the brane sees the space as a cylinder having a
compact circular direction.



I Puzzle: for k > 2 the standard orbifold C4/Zk has N = 6
supersymmetry and SU(4) R-symmetry.

I However, the Bagger-Lambert field theory has N = 8
supersymmetry and SO(8) R-symmetry.

I Therefore, though the basic ideas above seem to be correct,
the Bagger-Lambert theory does not describe M2-branes on a
standard orbifold.

I It remains possible that there is a non-standard orbifold
(“M-fold”) with N = 8 supersymmetry and SO(8)
R-symmetry.

I This is an open problem.



I Beside the problem of interpreting the Bagger-Lambert theory,
there is also the problem of finding generalisations.

I It has been proved mathematically that the 3-algebra arising
in Bagger-Lambert theory is essentially unique.

I In other words there is no generalisation of the
SU(2)× SU(2) theory to SU(N)× SU(N)!

I How can there be a theory of 2 membranes and no theory of
N > 2 membranes?
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ABJM theory

I Subsequently a new class of field theories in (2 + 1)d were
proposed (by Aharony, Bergman, Jafferis and Maldacena) to
be the multiple membrane field theories.

I In this work the starting point was reversed.

I The authors started from a configuration of M2-branes at a
C4/Zk orbifold:

(z1, z2, z3, z4)→ (ωz1, ωz2, ωz3, ωz4)

where ω = exp 2πi
k .

I They accepted the idea that this orbifold breaks
supersymmetry (in the bulk) down to N = 6. Therefore they
looked for a field theory on the branes with N = 6
supersymmetry.



I Theories in (2 + 1)d with this amount of supersymmetry have
SU(4) global symmetry rather than SO(8).

I Therefore the scalar fields of the theory are naturally
described as CI , I = 1, 2, 3, 4.

I The technique of brane constructions in string theory was
used to derive the worldvolume CFT with N = 6
supersymmetry and SU(4) R-symmetry.

I This theory has a U(N)× U(N) Chern-Simons sector for any
N , and the scalars and fermions are bi-fundamentals (N, N̄).



I The ABJM action looks remarkably like the Bagger-Lambert
action.

I There is a sextic potential for the bi-fundamental scalars CI :

V (C,C†) ∼ tr
(
− CIC [I †CJCJ †CKCK] †

+ CIC [I †CJCK †CKCJ ] †
)

I The fermionic interactions are of the type:

CC†Ψ̄Ψ

I And finally there is a difference of two Chern-Simons terms,
with the gauge group being U(N)× U(N).



I For this theory the moduli space was found to be:

(R8/Zk)N

SN

which is the right moduli space for N membranes at a Zk
orbifold.

I This can be compared with the Bagger-Lambert moduli space:

R8 × R8

D2k

where D2k is the dihedral group.

I The ABJM moduli space for N = 2 does not agree with the
Bagger-Lambert moduli space, confirming that the latter does
not describe branes at a conventional orbifold.



I So it seems that the ABJM theory does describe multiple
membranes at a conventional Zk orbifold.

I However for the special case k = 1 there is no orbifold, just
flat spacetime. In this case the ABJM theory should have
N = 8 supersymmetry, and translational invariance but
neither of these is visible!

I The most practical use of the ABJM theory has been in the
limit of large k, where it is weakly coupled.

I In this limit it was argued that there is a new AdS/CFT
correspondence.



I Recall that in his original paper, Maldacena already argued
that N M2-branes are dual to M-theory on AdS4 × S7.

I This argument used the solitonic description of M2-branes.
But because of the lack of knowledge of M2-brane field
theory, one side of the duality could not be explored at all.

I Are we in a better situation now?

I The ABJM theory at level k is dual to M-theory on
AdS4 × S7/Zk.

I Moreover for k →∞ the ABJM theory is weakly coupled so
we should be able to study it reliably.



I But what happens to M-theory on AdS4 × S7/Zk in the same
limit?

I S7 can be thought of as a U(1) fibration over CP 3. The Zk
action reduces the radius of the fibre by a factor k.

I In the limit of large k, the fibre effectively shrinks to zero size.
Then we are left with type IIA string theory on AdS4 × CP 3.

I This is a nice new AdS/CFT duality but unfortunately it
involves type IIA string theory rather than M-theory!



I The only hope we might have to do something in M-theory is
to study the ABJM theory at finite, small k.

I But in this case, notably for k = 1, 2, ABJM theory fails to
have the most basic properties one would expect.

I It does not have N = 8 supersymmetry and SO(8) global
symmetry.

I And at k = 1 where there is really no orbifold, it fails to
explicitly exhibit translation invariance.

I Probably this does not mean the theory is wrong, but simply
that the properties are hidden and not manifest.



I Anyway it seems that ABJM theory simply is not useful to
study M2-branes in flat spacetime.

I In that sense we are more or less back where we were about
two years ago!

I Still a lot of features of M2-branes are much clearer now and
there are many possible directions to follow.

I And perhaps it’s good that there is much more to be done in
the future!



I To conclude the discussion, there are a few interesting points
to discuss.

(i) Do we need 3-algebras any more?

I The ABJM paper makes no reference to 3-algebras.

I And since their theory has only N = 6 supersymmetry, it
cannot be based on the Bagger-Lambert type of 3-algebra
(which always gives N = 8).

I Nevertheless, later on it was shown that the ABJM theory is
an example of a more general type of 3-algebra in which some
of the conditions are relaxed.



I In the more general 3-algebra, the structure constants fABCD

are not taken to be real. In general they are complex.

I They satisfy:

fABCD = −fBACD = −fABDC = f∗CDAB

I The fundamental identity holds, but in the form:

fEFGBf
CBA

D + fFEABf
CBG

D + f∗GAFBf
CEB

D

+ f∗AGEBf
CFB

D = 0

I This structure is shown to guarantee N = 6 supersymmetry.
In the special case where the fABCD are real, this is enhanced
to N = 8.

I The ABJM models can be reproduced from this kind of
3-algebra.



I An additional support for 3-algebras comes from the study of
the first nontrivial `p corrections, which were computed
recently for the Lorentzian 3-algebra theory.

I It was found that these too are expressed in terms of
3-algebra quantities such as the 3-bracket.

I For example, the potential gets corrected by:

− 1
72 `

3
p STr

(
XIJMXKLMXIKNXJLN

+ 1
4X

IJKXIJKXLMNXLMN
)

where we recall that:

XIJK = XI
+[XJ ,XK ] +XJ

+[XK ,XI ] +XK
+ [XI ,XJ ]

I As expected, this correction (being 12th order in scalars) is
non-renormalisable, but is still expressed in terms of the
3-algebra.



(ii) Entropy of black branes

I Over a decade ago, it was argued by analogy with black holes
and their horizon area, that the entropy of black branes scales
as:

S ∼ N
D−2

D−3−p

for the conformal invariant branes, namely D3, M2 and M5.

I Evaluating this for the three cases we find:

D3: S ∼ N2, M2: S ∼ N3/2, M5: S ∼ N3

I The first one is understandable from a count of the N2

degrees of freedom of a gauge theory with adjoint fields.



I The entropy growth for M2 and M5-branes still await a
microscopic explanation.

I An important test of the usefulness of an M2-brane field
theory would be to provide some insight on why there are
N3/2 degrees of freedom.

I This is an open problem.

I The M5-brane is also an open problem!
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