The Wroblewski parameter from lattice QCD

Workshop on Field Theories Near Equilibrium
Rajiv V. Gavai
The Wroblewski parameter from lattice QCD

Introduction

λ_s from Quark Number Susceptibility

Pressure for small baryon density

Summary
Introduction

- Quark-Gluon Plasma in Heavy Ion Collisions.

- Reliable signals needed to establish it.

- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett ’82, Phys. Rept ’86...).

- A variety of aspects studied and many different variations proposed.

- Most signal considerations based on Simple Models.
Introduction

- Quark-Gluon Plasma in Heavy Ion Collisions.
- Reliable signals needed to establish it.
- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett ’82, Phys. Rept ’86..).
- A variety of aspects studied and many different variations proposed.
- Most signal considerations based on Simple Models.
Introduction

- Quark-Gluon Plasma in Heavy Ion Collisions.

- Reliable signals needed to establish it.

- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett ’82, Phys. Rept ’86..).

- A variety of aspects studied and many different variations proposed.

- Most signal considerations based on Simple Models.
Introduction

- Quark-Gluon Plasma in Heavy Ion Collisions.

- Reliable signals needed to establish it.

- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett ’82, Phys. Rept ’86..).

- A variety of aspects studied and many different variations proposed.

- Most signal considerations based on Simple Models.
Strangeness Enhancement

- **Key Idea:** $T_{QGP} \gg T_c \approx m_s \approx 150$ MeV

- **Energy Threshold**

 \[
 \begin{align*}
 q + \bar{q} & \rightarrow s + \bar{s} \\
 g + g & \rightarrow s + \bar{s} \\
 \pi + N & \rightarrow \Lambda + K \\
 K + \pi & \rightarrow \bar{\Lambda} + N
 \end{align*}
 \]

 $E_{\text{thres}} \approx 2m_s \approx 300$ MeV
 $E_{\text{thres}} \approx 530$ MeV
 $E_{\text{thres}} \approx 1420$ MeV

- **Production Rate**

 $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$

- **Pauli Blocking**

 \[
 \begin{array}{c}
 \mu \\
 T = 0 \\
 m_s
 \end{array}
 \]

 Expect an enhancement especially for multi-strange anti-baryons.

- **Measure:**

 $\Lambda = (uds) \rightarrow p\pi^- \quad 64\%$

 $\Xi^- = (dss) \rightarrow \Lambda\pi^- \quad 100\%$

 $\Omega^- = (sss) \rightarrow \Lambda K^- \quad 68\%$

 and their anti-particles.
Ratio of newly created strange quarks to light quarks:

\[\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle} \quad (1) \]
Wroblewski Parameter

- Hadron gas fireball model (Becattini-Heinz '97).

- 3 Free parameters: T, V, and N_{ss}.

- Fit many hadron abundances.

- Obtain λ_s from data.

- Find $\lambda_s \sim 0.4 \ (0.2)$ for $AA \ (pp)$.

\[pp \ \sqrt{s} = 27.4 \text{ GeV} \]
Wroblewski Parameter

- Hadron gas fireball model (Becattini-Heinz '97).

- 3 Free parameters: T, V, and N_{ss}.

- Fit many hadron abundances.

- Obtain λ_s from data.

- Find $\lambda_s \sim 0.4\ (0.2)$ for $AA\ (pp)$.
Wroblewski Parameter

- Hadron gas fireball model (Becattini-Heinz ’97).
- 3 Free parameters: T, V, and N_{ss}.
- Fit many hadron abundances.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).
Wroblewski Parameter

- Hadron gas fireball model (Becattini-Heinz ’97).
- 3 Free parameters: T, V, and N_{ss}.
- Fit many hadron abundances.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).
Wroblewski Parameter

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters: T, V, and N_{ss}.
- Fit many hadron abundances.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).
We have argued that

\[\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d}. \]

(1)

(Gavai & Gupta, PR D '02)
Quark Number Susceptibility

We have argued that

\[\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d}. \] \hspace{1cm} (2)

(Gavai & Gupta, PR D '02)

Quark Number Susceptibilities also crucial for other QGP Signatures: Q, B Fluctuations
We have argued that

\[\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d}. \]

\[(Gavai \ & Gupta, \ PR \ D \ '02) \]

Quark Number Susceptibilities also crucial for other QGP Signatures: Q, B Fluctuations

Finite Density Results by Taylor Expansion in \(\mu \)
Quark Number Susceptibility

♠ We have argued that
\[\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d}. \]

(Gavai & Gupta, PR D '02)

♠ Quark Number Susceptibilities also crucial for other QGP Signatures: Q, B Fluctuations

♠ Finite Density Results by Taylor Expansion in \(\mu \)

♠ Theoretical Checks: Resummed Perturbation expansions, Dimensional Reduction..
We have argued that
\[\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d}. \]
\textit{(Gavai & Gupta, PR D '02)}

Quark Number Susceptibilities also crucial for other QGP Signatures: Q, B Fluctuations

Finite Density Results by Taylor Expansion in μ

Theoretical Checks: Resummed Perturbation expansions, Dimensional Reduction..

Our improvement: Fixed m_q/T_c, Continuum limit...
Assuming three flavours, \(u, d, \) and \(s \) quarks, and denoting by \(\mu_f \) the corresponding chemical potentials, the QCD partition function is
Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det} M(m_f,\mu_f).$$

(3)
Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det} M(m_f, \mu_f).$$

(3)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as:

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)
Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det} M(m_f, \mu_f).$$

(3)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as:

$$n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i}, \quad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}$$

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)
Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det} M(m_f, \mu_f).$$ \hspace{1cm} (3)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as:

$$(\text{Gottlieb et al. '87, '96, '97, Gavai et al. '89})$$

$$n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i}, \quad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}$$

Higher order susceptibilities are defined by

$$\chi_{fg\ldots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \ldots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \ldots}.$$ \hspace{1cm} (4)
Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$Z = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det} M(m_f, \mu_f) \ .$$

(3)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as:

\begin{align*}
\eta_i &= \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i}, \\
\chi_{ij} &= \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}
\end{align*}

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} \ .$$

(4)

These are Taylor coefficients of the pressure P in its expansion in μ.

All of these can be written as traces of products of M^{-1} and various derivatives of M.
All of these can be written as traces of products of M^{-1} and various derivatives of M.

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii}'s are
All of these can be written as traces of products of M^{-1} and various derivatives of M.

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii}'s are

\[
\chi_0 = \frac{T}{2V} [\langle O_2(m_u) + \frac{1}{2} O_{11}(m_u) \rangle] \quad (5)
\]

\[
\chi_3 = \frac{T}{2V} \langle O_2(m_u) \rangle \quad (6)
\]

\[
\chi_s = \frac{T}{4V} [\langle O_2(m_s) + \frac{1}{4} O_{11}(m_s) \rangle] \quad (7)
\]
All of these can be written as traces of products of M^{-1} and various derivatives of M.

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii}'s are

$$
\chi_0 = \frac{T}{2V} [\langle O_2(m_u) + \frac{1}{2} O_{11}(m_u) \rangle]
$$

$$
\chi_3 = \frac{T}{2V} \langle O_2(m_u) \rangle
$$

$$
\chi_s = \frac{T}{4V} [\langle O_2(m_s) + \frac{1}{4} O_{11}(m_s) \rangle]
$$

Here $O_2 = \text{Tr} \ M_u^{-1} M_u'' - \text{Tr} \ M_u^{-1} M'_u M_u^{-1} M'_u$, and $O_{11}(m_u) = (\text{Tr} \ M_u^{-1} M'_u)^2$, and the traces are estimated by a stochastic method:

$$
\text{Tr} \ A = \sum_{i=1}^{N_v} R_i^\dagger A R_i / 2N_v
$$

$$
(\text{Tr} \ A)^2 = 2 \sum_{i>j}^L (\text{Tr} \ A)_i (\text{Tr} \ A)_j / L(L-1)
$$

where R_i is a complex vector from a set of N_v subdivided in L independent sets.
χ_{FFT} — Ideal gas results for same Lattice.
χ_{FFT} — Ideal gas results for same Lattice.

![Graph showing data points and curves for χ/χ_{FFT} vs. T/T_c for a 312 x 4 Lattice. The graph includes symbols for $N_f = 2; m_s/T_c = 0.1$ and $N_f = 0; Quenched$.](image)
$\chi_{FFT} \quad \text{Ideal gas results for same Lattice.}$

Note that PDG values for strange quark mass

\[m_{v}^{\text{strange}} / T_c \]
\[\approx 0.3-0.7 \ (N_f=0); \]
\[0.45-1.0 (N_f=2). \]
Perturbation Theory
Perturbation Theory

Weak coupling expansion gives:

\[
\frac{\chi}{\chi_{FFT}} = 1 - 2\left(\frac{\alpha_s}{\pi}\right) + 8\sqrt{1 + 0.167N_f}\left(\frac{\alpha_s}{\pi}\right)^{\frac{3}{2}}
\]

(Kapusta 1989).
Perturbation Theory

Weak coupling expansion gives:

\[
\frac{\chi}{\chi_{FFT}} = 1 - 2\left(\frac{\alpha_s}{\pi}\right) + 8\sqrt{1 + 0.167N_f}\left(\frac{\alpha_s}{\pi}\right)^{\frac{3}{2}}
\]

(Kapusta 1989).

♣ Minm 0.981 (0.986) at 0.03 (0.02) for \(N_f = 0\) (2).
♣ For \(1.5 \leq T/T_c \leq 3\) pert. theory \(\rightarrow 0.99-0.98\) (1.08=1.03) for \(N_f = 0\) (2).
Resummed Perturbation Theory
Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give:

(Blaizot, Iancu & Rebhan, PLB ’01; Chakraborty, Mustafa & Thoma, EPJC ’02).
Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give:
(Blaizot, Iancu & Rebhan, PLB ’01; Chakraborty, Mustafa & Thoma, EPJC ’02).

\[N_f = 0, \quad \bar{\mu} = \pi T \ldots 4\pi T \]

\[N_f = 2, \quad \bar{\mu} = \pi T \ldots 4\pi T \]
Hard Thermal Loop & Self-consistent resummation give:
(Blaizot, Iancu & Rebhan, PLB ’01; Chakraborty, Mustafa & Thoma, EPJC ’02).

Our results for $N_t = 4 \leadsto$ Lattice artifacts?
Check for larger N_t and improved actions.
\[Xud \]
Off-diagonal Susceptibility: $\chi_{ud} = \langle \frac{T}{V} \text{Tr} \, M_u^{-1} M_u' \text{Tr} \, M_d^{-1} M_d' \rangle$
χ_{ud}

Off-diagonal Susceptibility: $\chi_{ud} = \langle \frac{T}{V} \text{Tr} M_u^{-1} M_u' \text{Tr} M_d^{-1} M_d' \rangle$

❤ Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.
\(\chi_{ud} \)

Off-diagonal Susceptibility: \(\chi_{ud} = \langle \frac{T}{V} \text{Tr} \ M_u^{-1} M'_u \text{Tr} \ M_d^{-1} M'_d \rangle \)

\(\heartsuit \) Zero within \(1-\sigma \sim O(10^{-6}) \) for \(T > T_c \).

\(\heartsuit \) Identically zero for Ideal gas but \(O(\alpha_s^3) \) in P.T.

Using the same scale and \(\alpha_s \) as for \(\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4}) \)!!
Off-diagonal Susceptibility: \(\chi_{ud} = \langle \frac{T}{V} \text{Tr} \ M_u^{-1} M'_u \text{Tr} \ M_d^{-1} M'_d \rangle \)

\(\heartsuit \) Zero within \(1-\sigma \sim O(10^{-6}) \) for \(T > T_c \).

\(\heartsuit \) Identically zero for Ideal gas but \(O(\alpha_s^3) \) in P.T. Using the same scale and \(\alpha_s \) as for \(\chi_3 \rightarrow \chi_{ud} \sim O(10^{-4}) \) !!

\(\heartsuit \) NONZERO for \(T < T_c \) and \(\propto M^{-2}_\pi \).
χ_{ud}

Off-diagonal Susceptibility: $\chi_{ud} = \langle \frac{T}{V} \text{Tr} \ M_u^{-1} M'_u \text{Tr} \ M_d^{-1} M'_d \rangle$

♥ Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.

♥ Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T.

Using the same scale and α_s as for $\chi_3 \rightarrow \chi_{ud} \sim O(10^{-4})$!!

♥ NONZERO for $T < T_c$ and $\propto M_\pi^{-2}$.

123 × 4 Lattice; Quenched.

$T = 0.75T_c$

Gavai, Gupta & Majumdar, PR D 2002
Taking Continuum Limit

(Gavai & Gupta, PR D '02 and PR D '03)
Taking Continuum Limit

(Gavai & Gupta, PR D ’02 and PR D ’03)

♠ Investigate larger $N_t : 6, 8, 10, 12$ and 14.
Taking Continuum Limit

(Gavai & Gupta, PR D '02 and PR D '03)

♠ Investigate larger $N_t : 6, 8, 10, 12$ and 14.

♠ Naik action : Improved by $O(a)$ compared to Staggered. Introduction of μ nontrivial but straightforward.

(Naik, NP B 1989; Gavai, NP B '03)
Taking Continuum Limit

(Gavai & Gupta, PR D '02 and PR D '03)

♠ Investigate larger N_t : 6, 8, 10, 12 and 14.

♠ Naik action : Improved by $O(a)$ compared to Staggered. Introduction of μ nontrivial but straightforward.

(Naik, NP B 1989; Gavai, NP B '03)

Does improve the N_t-dependence of the free fermions.
Results at $2T_c$:

![Graph showing data points and trend lines]
Results at $2T_c$:

$N_t^{-2} \sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.
Results at $2T_c$:

χ^3/T^2 vs $1/N_t^2$

- $N_t^{-2} \sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.

- Milder $N_t^{-2} \sim a^2$-dependence for Naik fermions.
The continuum susceptibility vs. T therefore is:
The continuum susceptibility vs. T therefore is:

Naik action (Squares) and Staggered action (circles)
The continuum susceptibility vs. T therefore is:

Naik action (Squares) and Staggered action (circles)

♡ Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.
The continuum susceptibility vs. T therefore is:

Naik action (Squares) and Staggered action (circles)

♡ Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D ’03.

♡ Note that χ_{ud} behaves the same way for ALL N_t and both fermions, leading to the same $O(10^{-6})$ values in continuum too.
Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.
Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.

$m/T_c = 0.03$ for u, d and $m/T_c = 1$ for s quark \rightarrow $\lambda_s(T)$. Extrapolate to T_c.
Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.

$m/T_c = 0.03$ for u, d and $m/T_c = 1$ for s quark $\rightarrow \lambda_s(T)$. Extrapolate to T_c.
• Quenched approximation – Expect a shift of 5-10 % in full QCD.
Caveats

• Quenched approximation – Expect a shift of 5-10 % in full QCD.

• Extrapolation to T_c – Straightforward but better to do it for full QCD.
Caveats

- Quenched approximation – Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c – Straightforward but better to do it for full QCD.
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):
Caveats

- Quenched approximation – Expect a shift of 5-10% in full QCD.
- Extrapolation to T_c – Straightforward but better to do it for full QCD.
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):

\[\begin{array}{cccccc}
T/T_c & 0.38 & 0.4 & 0.42 & 0.44 & 0.46 & 0.48 \\
\lambda_s & 0.8 & 0.85 & 0.9 & 0.95 & 1 & 1.05 \\
\end{array}\]

$N_t=4$, 2 flavour QCD, $\mu/T_c=0.1$, $m_s/T_c=1.0$
Caveats

- Quenched approximation – Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c – Straightforward but better to do it for full QCD.
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):
 - Large finite volume effects below T_c
 - Up to 12^3 Lattices used.
 - Strong dependence on m_s expected.
 - Large finite a effects.
• At SPS and RHIC, \(\mu_B \neq 0 \); But observed \(\lambda_s \) is insensitive to it.
- At SPS and RHIC, $\mu_B \neq 0$; But observed λ_s is insensitive to it.

- Theoretically, Screening mass- Susceptibility correlation and μ-dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
• At SPS and RHIC, $\mu_B \neq 0$; But observed λ_s is insensitive to it.

 – Theoretically, Screening mass- Susceptibility correlation and μ-dependence results of QCD-TARO on screening masses too suggest such an insensitivity.

 – Needs to be checked explicitly.
• At SPS and RHIC, $\mu_B \neq 0$; But observed λ_s is insensitive to it.
 – Theoretically, Screening mass- Susceptibility correlation and μ-dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 – Needs to be checked explicitly.

• Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
• At SPS and RHIC, $\mu_B \neq 0$; But observed λ_s is insensitive to it.
 – Theoretically, Screening mass- Susceptibility correlation and μ-dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 – Needs to be checked explicitly.

• Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 – Observation of spikes in photon production may falsify this.
• At SPS and RHIC, $\mu_B \neq 0$; But observed λ_s is insensitive to it.
 – Theoretically, Screening mass- Susceptibility correlation and μ-dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 – Needs to be checked explicitly.

• Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 – Observation of spikes in photon production may falsify this.

• Assumed: Chemical equilibration in the plasma.
EoS for nonzero baryon density

Recall,
\[
\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots}.
\] (8)

Thus \(\chi_{uuuu}\) involves terms having fourth derivative w. r. to \(\mu\) while \(\chi_{uudd}\) only second derivatives.

In continuum, \(f(a\mu) = 1 + a\mu \rightarrow f'''(0) = 0\).

On lattice, in general, all derivatives exist and depend on the nature of function: prescription dependence!

Fodor-Katz used \(f_{HK}\) and got \(\mu_E = 725\) MeV for \(N_t = 4\). If they were to use \(f_{BG}\), then \(\mu_E = 692\) MeV.

Easy to show that \(f'''(0) = 1\) always but all higher derivatives depend on choice of
Thus, one can write

\[\chi_{uuuu} = \chi_{uuuu}^{HK} + \Delta f^{(3)} \left(\frac{\chi_{uu}}{T^2} \right) \left(\frac{4}{N_t^2} \right), \]

(9)

where \(\Delta f^{(3)} = f^{(3)} - 1 \) is 2 for \(f_{BG} \).

Prescription dependence must go away for small \(a \) or large enough \(N_t \).

How large an \(N_t \) needed? \(N_t \geq 10 \), see below.

Defining

\[\frac{\mu_*}{T} = \sqrt{\frac{12\chi_{uu}/T^2}{|\chi_{uuuu}|}}, \]

(10)

and \(\Delta P = P(\mu) - P(\mu = 0) \), the Taylor series expansion for Pressure \(P \) for 2 flavours can be re-organized as,

\[\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2} \right) \left(\frac{\mu}{T} \right)^2 \left[1 + \left(\frac{\mu/T}{\mu_*/T} \right)^2 + \mathcal{O} \left(\frac{\mu^4}{\mu_*^4} \right) \right]. \]

(11)
Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ.
Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ.

- The above is true for all physical quantities.
Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ.

- The above is true for all physical quantities.

- $\mu \ll \mu^*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuuu}$.
Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ.

- The above is true for all physical quantities.

- $\mu \ll \mu^*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuuu}$.

- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently?
Our Results

Our results for χ_{uuuu} and ΔP:

Gavai and Gupta, PR D68, '03

\[\frac{\chi_{uuuu}}{T/T_c} \]

\[\frac{\Delta P}{T/T_c} \]

\[N_t = 8 \]
\[N_t = 10 \]
\[N_t = 12 \]
\[N_t = 14 \]

Continuum limit

Ideal Gas
Our Results

Our results for χ_{uuuu} and ΔP: Gavai and Gupta, PR D68, ’03

Both reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D68, ’03
Our Results

Our results for χ_{uuuu} and ΔP:

Gavai and Gupta, PR D68, '03

♥ Both reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D68, '03

♥ Our results for P agree with Fodor-Katz (PL B568, '03) and the recent Bielefeld results (PR D68, '03).
Defining μ^*_i to extend the definition of μ^*_2 (i^{th} term = $(i + 2)^{th}$ term), the Taylor series expansion for Pressure ΔP for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu}{\mu^*_2}\right)^2 \left[1 + \left(\frac{\mu}{\mu^*_4}\right)^2 \left[1 + \ldots \right]\right]\right].$$ \hspace{1cm} (12)
Defining μ_i^* to extend the definition of μ_2^* (i^{th} term = ($i + 2$)th term), the Taylor series expansion for Pressure ΔP for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu}{\mu_2^*}\right)^2 \left[1 + \left(\frac{\mu}{\mu_4^*}\right)^2 [1 + \ldots]\right]\right].$$

(12)
Summary

- Quark number susceptibilities \rightarrow RHIC signal physics.
Summary

- Quark number susceptibilities \rightarrow RHIC signal physics.

- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them?
Summary

- Quark number susceptibilities \rightarrow RHIC signal physics.

- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them?

- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c. First full QCD investigations show encouraging trend.
Summary

- Quark number susceptibilities → RHIC signal physics.

- Continuum limit of χ_{uu} and χ_{uudd} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them?

- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c. First full QCD investigations show encouraging trend.

- Pressure for nonzero μ obtained. At both SPS and RHIC, χ_{uu} is the major contribution.
Summary

- Quark number susceptibilities \rightarrow RHIC signal physics.

- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them?

- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c. First full QCD investigations show encouraging trend.

- Pressure for nonzero μ obtained. At both SPS and RHIC, χ_{uu} is the major contribution.

- Phase diagram in $T - \mu$ on small $N_t = 4$ has begun to emerge: Different methods, \sim same (T_E, μ_E). Beware of prescription dependence and look forward to larger N_t.