The Wroblewski parameter from lattice QCD

Workshop on Field Theories Near Equilibrium Rajiv V. Gavai

The Wroblewski parameter from lattice QCD

Workshop on Field Theories Near Equilibrium Rajiv V. Gavai

Introdution

 λ_s from Quark Number Susceptibility

Pressure for small baryon density

Summary

- Quark-Gluon Plasma in Heavy Ion Collisions.
- Reliable signals needed to establish it.
- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).
- A variety of aspects studied and many different variations proposed.
- Most signal considerations based on Simple Models.

- Quark-Gluon Plasma in Heavy Ion Collisions.
- Reliable signals needed to establish it.
- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).
- A variety of aspects studied and many different variations proposed.
- Most signal considerations based on Simple Models.

- Quark-Gluon Plasma in Heavy Ion Collisions.
- Reliable signals needed to establish it.
- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).
- A variety of aspects studied and many different variations proposed.
- Most signal considerations based on Simple Models.

- Quark-Gluon Plasma in Heavy Ion Collisions.
- Reliable signals needed to establish it.
- Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).
- A variety of aspects studied and many different variations proposed.
- Most signal considerations based on Simple Models.

Strangeness Enhancement

- Key Idea: $T_{\mathcal{QGP}} > T_{\mathcal{C}} \approx m_{\mathcal{S}} \approx 150 \text{ MeV}$
- Energy Threshold

 $\begin{array}{ll} q+\overline{q} \rightarrow s+\overline{s} \\ g+g \rightarrow s+\overline{s} \end{array} \qquad E_{thres} \approx 2m_s \approx 300 \ {\rm MeV} \\ \pi+{\rm N} \rightarrow \Lambda+{\rm K} \qquad E_{thres} \approx 530 \ {\rm MeV} \\ {\rm K}+\pi \rightarrow \overline{\Lambda}+{\rm N} \qquad E_{thres} \approx 1420 \ {\rm MeV} \end{array}$

Production Rate

$$\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$$

• Pauli Blocking U d ST=0 Expect an enhancement especially for *multi*-strange *anti*-baryons.

Measure: $\Lambda = (uds) \rightarrow p\pi^- 64\%$ $\Xi^- = (dss) \rightarrow \Lambda\pi^- 100\%$ $\Omega^- = (sss) \rightarrow \Lambda K^- 68\%$ and their anti-particles.

P.G.Janes@bhamac.uk

From STAR Webpage

Ratio of newly created strange quarks to light quarks :

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle} \quad (1)$$

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters : T, V, and $N_{s\bar{s}}$.
- Fit many hadron abundunces.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters : T, V, and $N_{s\overline{s}}$.
- Fit many hadron abundunces.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters : T, V, and $N_{s\bar{s}}$.
- Fit many hadron abundunces.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters : T, V, and $N_{s\bar{s}}$.
- Fit many hadron abundunces.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).

- Hadron gas fireball model (Becattini-Heinz '97).
- 3 Free parameters : T, V, and $N_{s\bar{s}}$.
- Fit many hadron abundunces.
- Obtain λ_s from data.
- Find $\lambda_s \sim 0.4$ (0.2) for AA (pp).

♠ We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{2}$$

(Gavai & Gupta, PR D '02)

 \blacklozenge We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{2}$$

(Gavai & Gupta, PR D '02)

♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations

 \blacklozenge We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{2}$$

(Gavai & Gupta, PR D '02)

♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations

 \blacklozenge Finite Density Results by Taylor Expansion in μ

 \blacklozenge We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{2}$$

(Gavai & Gupta, PR D '02)

♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations

 \blacklozenge Finite Density Results by Taylor Expansion in μ

Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction..

 \blacklozenge We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{2}$$

(Gavai & Gupta, PR D '02)

♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations

 \blacklozenge Finite Density Results by Taylor Expansion in μ

Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction..

 \blacklozenge Our improvement: Fixed m_q/T_c , Continuum limit...

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad . \tag{3}$$

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad . \tag{3}$$

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad .$$
 (3)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$$

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad . \tag{3}$$

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$$

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} . \tag{4}$$

$$\mathbf{\mathcal{Z}} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad . \tag{3}$$

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$$

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
(4)

These are Taylor coefficients of the pressure P in its expansion in μ .

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii} 's are

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii} 's are

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle]$$
(5)

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{6}$$

$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle]$$
(7)

Setting $\mu_i = 0$, $n_i = 0$ but χ are nontrivial. Diagonal χ_{ii} 's are

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle]$$
(5)

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{6}$$

$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle]$$
(7)

Here $\mathcal{O}_2 = \operatorname{Tr} M_u^{-1} M_u'' - \operatorname{Tr} M_u^{-1} M_u' M_u^{-1} M_u'$, and $\mathcal{O}_{11}(m_u) = (\operatorname{Tr} M_u^{-1} M_u')^2$, and the traces are estimated by a stochastic method: $\operatorname{Tr} A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\operatorname{Tr} A)^2 = 2 \sum_{i>j=1}^{L} (\operatorname{Tr} A)_i (\operatorname{Tr} A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002

 χ_{FFT} — Ideal gas results for same Lattice.

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002

 χ_{FFT} — Ideal gas results for same Lattice.

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002

 χ_{FFT} — Ideal gas results for same Lattice.

Note that PDG values for strange quark mass \implies $m_v^{strange}/T_c$ $\simeq 0.3-0.7 \ (N_f=0);$ $0.45-1.0(N_f=2).$

Perturbation Theory

Perturbation Theory

Weak coupling expansion gives: $\frac{\chi}{\chi_{FFT}} = 1 - 2(\frac{\alpha_s}{\pi}) + 8\sqrt{(1 + 0.167N_f)}(\frac{\alpha_s}{\pi})^{\frac{3}{2}}$ (Kapusta 1989).

Perturbation Theory

Weak coupling expansion gives: $\frac{\chi}{\chi_{FFT}} = 1 - 2(\frac{\alpha_s}{\pi}) + 8\sqrt{(1 + 0.167N_f)}(\frac{\alpha_s}{\pi})^{\frac{3}{2}}$ (Kapusta 1989).

Minm 0.981 (0.986) at 0.03 (0.02) for $N_f = 0$ (2). For $1.5 \le T/T_c \le 3$ pert. theory \longrightarrow 0.99-0.98 (1.08=1.03) for $N_f = 0$ (2). **Resummed Perturbation Theory**

Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

Resummed Perturbation Theory

Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

Our results for $N_t = 4 \rightsquigarrow$ Lattice artifacts ? Check for larger N_t and improved actions.

Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

 \heartsuit Zero within 1– $\sigma \sim {\cal O}(10^{-6})$ for $T>T_c.$

Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

$$\heartsuit$$
 Zero within 1- $\sigma \sim O(10^{-6})$ for $T > T_c$.

 \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!

Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

 \heartsuit Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.

 \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!

 \heartsuit NONZERO for $T < T_c$ and $\propto M_{\pi}^{-2}$.

Off-diagonal Susceptibility : $\chi_{ud} = \langle \frac{T}{V} \operatorname{Tr} M_u^{-1} M_u' \operatorname{Tr} M_d^{-1} M_d' \rangle$

 \heartsuit Zero within $1-\sigma \sim O(10^{-6})$ for $T > T_c$.

 \heartsuit Identically zero for Ideal gas but $O(\alpha_s^3)$ in P.T. Using the same scale and α_s as for $\chi_3 \longrightarrow \chi_{ud} \sim O(10^{-4})$!!

 \heartsuit NONZERO for $T < T_c$ and $\propto M_{\pi}^{-2}$.

♣ $12^3 \times 4$ Lattice; Quenched.
♣ $T = 0.75T_c$ ♣ Gavai, Gupta & Majumdar,
PR D 2002

(Gavai & Gupta, PR D '02 and PR D '03)

(Gavai & Gupta, PR D '02 and PR D '03)

 \blacklozenge Investigate larger N_t : 6, 8, 10, 12 and 14.

```
(Gavai & Gupta, PR D '02 and PR D '03)
```

```
\clubsuit Investigate larger N_t: 6, 8, 10, 12 and 14.
```

A Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, NP B '03)

```
(Gavai & Gupta, PR D '02 and PR D '03)
```

 \blacklozenge Investigate larger N_t : 6, 8, 10, 12 and 14.

A Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, NP B '03)

• Does improve the N_t -dependence of the free fermions.

Results at $2T_c$:

Results at $2T_c$:

 $\diamondsuit N_t^{-2} \sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.

Results at $2T_c$:

 $\Diamond N_t^{-2} \sim a^2$ extrapolation works and leads to same results within errors for both staggered and Naik fermions.

 \diamondsuit Milder $N_t^{-2} \sim a^2$ -dependence for Naik fermions.

 \heartsuit Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.

 \heartsuit Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.

 \heartsuit Note that χ_{ud} behaves the same way for ALL N_t and both fermions, leading to the same $O(10^{-6})$ values in continuum too.

Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.

Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.

 $m/T_c = 0.03$ for u, d and $m/T_c = 1$ for s quark $\rightarrow \lambda_s(T)$. Extrapolate to T_c .

Wroblewski Parameter

Using our continuum QNS, ratio χ_s/χ_u can be obtained.

 $m/T_c = 0.03$ for u, d and $m/T_c = 1$ for s quark $\rightarrow \lambda_s(T)$. Extrapolate to T_c .

• Quenched approximation – Expect a shift of 5-10 % in full QCD.

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c Straightforward but better to do it for full QCD

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c Straightforward but better to do it for full QCD .
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c Straightforward but better to do it for full QCD .
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- Extrapolation to T_c Straightforward but better to do it for full QCD .
- Preliminary results for Full 2-flavour QCD (Gavai & Gupta):

 ♣ Large finite volume effects below T_c
 ♣ Up to 12³ Lattices used.
 ♣ Strong dependence on m_s expected.
 ♣ Large finite a effects.

– Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.

- Needs to be checked explicitly.

- Needs to be checked explicitly.
- Assumed : characteristic time scale of plasma are far from the energy scales of strange or light quark production.

- Needs to be checked explicitly.
- Assumed : characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 - Observation of spikes in photon production may falsify this.

- Needs to be checked explicitly.
- Assumed : characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 - Observation of spikes in photon production may falsify this.
- Assumed : Chemical equilibration in the plasma.

EoS for nonzero baryon density

Recall,

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
(8)

Thus χ_{uuuu} involves terms having fourth derivative w. r. to μ while χ_{uudd} only second derivatives.

In continuum, $f(a\mu) = 1 + a\mu \rightarrow f''(0) = 0$. On lattice, in general, all derivatives exist and depend on the nature of function : prescription dependence !

Fodor-Katz used f_{HK} and got $\mu_E = 725$ MeV for $N_t = 4$. If they were to use f_{BG} , then $\mu_E = 692$ MeV.

Easy to show that f''(0) = 1 always but all higher derivatives depend on choice of

f. Thus, one can write

$$\chi_{uuuu} = \chi_{uuuu}^{HK} + \Delta f^{(3)} \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{4}{N_t^2}\right) , \qquad (9)$$

where $\Delta f^{(3)} = f^{(3)} - 1$ is 2 for f_{BG} .

Prescription dependence must go away for small a or large enough N_t . How large an N_t needed ? $N_t \ge 10$, see below.

Defining

$$\frac{\mu_*}{T} = \sqrt{\frac{12\chi_{uu}/T^2}{|\chi_{uuuu}|}} ,$$
 (10)

and $\Delta P = P(\mu) - P(\mu = 0)$, the Taylor series expansion for Pressure P for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu/T}{\mu_*/T}\right)^2 + \mathcal{O}\left(\frac{\mu^4}{\mu_*^4}\right)\right].$$
 (11)

Note that

• Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .

Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.

Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuuu}$.

Note that

- Each term in ΔP is prescription dependent, except the 1st. Physical ΔP may be best obtained by evaluating each in continuum limit, as we do below. More important for larger μ .
- The above is true for all physical quantities.
- $\mu \ll \mu_*$ for prescription independence, provided still higher susceptibilities $\leq \chi_{uuuu}$.
- (T_E, μ_E) may be identified from the radius of convergence using many higher susceptibilities obtained in continuum limit term by term. What about series on finite lattice and estimate of (T_E, μ_E) as done presently ?

Our Results

Our results for χ_{uuuu} and ΔP : Gavai and Gupta, PR D68, '03

Our Results

Our results for χ_{uuuu} and ΔP : Gavai and Gupta, PR D68, '03

 \heartsuit Both reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D68, '03

Our Results

Our results for χ_{uuuu} and ΔP : Gavai and Gupta, PR D68, '03

 \heartsuit Both reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D68, '03 \heartsuit Our results for *P* agree with Fodor-Katz (PL B568, '03) and the recent Bielefeld results (PR D68, '03). Defining μ_i^* to extend the definition of μ_2^* (i^{th} term = $(i+2)^{th}$ term), the Taylor series expansion for Pressure ΔP for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu}{\mu_2^*}\right)^2 \left[1 + \left(\frac{\mu}{\mu_4^*}\right)^2 \left[1 + \dots\right]\right]\right].$$
 (12)

Defining μ_i^* to extend the definition of μ_2^* (i^{th} term =(i + 2)th term), the Taylor series expansion for Pressure ΔP for 2 flavours can be re-organized as,

$$\frac{\Delta P}{T^4} = \left(\frac{\chi_{uu}}{T^2}\right) \left(\frac{\mu}{T}\right)^2 \left[1 + \left(\frac{\mu}{\mu_2^*}\right)^2 \left[1 + \left(\frac{\mu}{\mu_4^*}\right)^2 \left[1 + \dots\right]\right]\right].$$
 (12)

• Quark number susceptibilities \longrightarrow RHIC signal physics.

- Quark number susceptibilities \longrightarrow RHIC signal physics.
- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?

- Quark number susceptibilities \longrightarrow RHIC signal physics.
- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?
- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c . First full QCD investigations show encouraging trend.

- Quark number susceptibilities \longrightarrow RHIC signal physics.
- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?
- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c . First full QCD investigations show encouraging trend.
- Pressure for nonzero μ obtained. At both SPS and RHIC, χ_{uu} is the major contribution.

- Quark number susceptibilities \longrightarrow RHIC signal physics.
- Continuum limit of χ_{uu} and χ_{uuuu} obtained in Quenched QCD. Broadly in agreement with BIR resummation and dimensional reduction. Still scope for improvement in them ?
- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c . First full QCD investigations show encouraging trend.
- Pressure for nonzero μ obtained. At both SPS and RHIC, χ_{uu} is the major contribution.
- Phase diagram in T − μ on small N_t = 4 has begun to emerge: Different methods, → same (T_E, μ_E). Beware of prescription dependence and look forward to larger N_t.