# Probing gluon densities with prompt photons at RHIC and LHC

François Arleo

LAPTH, Annecy

#### Initial Conditions in Heavy-Ion Collisions

Goa - September 2008

#### Motivations

- why probing small-x gluons
- why using prompt photons
- Extracting gluon distributions
  - pQCD prompt photon production in p A collisions
  - Iimitations

#### Phenomenology

- predictions in p A collisions at RHIC and LHC
- measuring shadowing without p p data

#### Reference

FA, T. Gousset, Phys. Lett. B660 (2008) 181 arXiv:0707.2944

Accurate knowledge of gluon density in a proton/nucleus is essential

- Fundamental pQCD ingredient
  - tool for reliable predictions of hard processes at LHC
- Probe of non-linear QCD evolution
  - looking for saturation at small x

Accurate knowledge of gluon density in a proton/nucleus is essential

- Fundamental pQCD ingredient
  - tool for reliable predictions of hard processes at LHC
- Probe of non-linear QCD evolution
  - looking for saturation at small x

Strong activity over the last decade to probe proton densities

- Impressive results from HERA [H1, ZEUS]
- Important theoretical developments in global fit analyses

[CTEQ, GRV, MRST]



From R. Thorne DIS 2007

#### Comparison of different gluon densities at NLO



Francois Arleo (LAPTH)

Accurate knowledge of gluon density in a proton/nucleus is essential

- Fundamental pQCD ingredient
  - tool for reliable predictions of hard processes at LHC
- Probe of non-linear QCD evolution
  - looking for saturation at small x

Strong activity over the last decade to probe proton densities

- Impressive results from HERA [H1, ZEUS]
- Important theoretical developments in global fit analyses

[CTEQ, GRV, MRST]

#### Current precision

 $G^{p}(x, Q^{2})$  fairly well known over a large kinematical range

$$\kappa \sim 10^{-4} ext{--} 10^{-1}$$
 and  $Q^2 \sim 10 ext{--} 10^5$  GeV  $^2$ 

Francois Arleo (LAPTH)

Probing gluon densities with photons

#### Definition

Ratio of gluon distributions in nuclei over that in a proton

$$R_{G}(x, Q^{2}) = G^{A}(x, Q^{2})/G^{p}(x, Q^{2})$$

determined indirectly from DIS data

#### Example

Analysis of scaling violations of  $F_2^A(x, Q^2)$ 

[Gousset, Pirner 1996]



Tiny constraints from NMC data

• Fairly large  $x \sim 10^{-2} - 10^{-1}$  and low  $Q^2 \sim 1 - 10 \ {
m GeV^2}$ 

Francois Arleo (LAPTH)

Global fit analyses

- DIS and Drell-Yan data ٩
- ... and hadron production at RHIC

[EKS, HKM, nDS, nDSg] EPS



#### Definition

Ratio of gluon distributions in nuclei over that in a proton

$$R_{G}(x, Q^{2}) = G^{A}(x, Q^{2})/G^{p}(x, Q^{2})$$

determined indirectly from DIS data

#### Problem

 $R_{G}$  poorly constrained experimentally, especially at small x!

#### Definition

Ratio of gluon distributions in nuclei over that in a proton

$$R_{G}(x, Q^{2}) = G^{A}(x, Q^{2})/G^{p}(x, Q^{2})$$

determined indirectly from DIS data

#### Problem

 $R_{G}$  poorly constrained experimentally, especially at small x!

#### Question

How to probe small-x gluon shadowing at LHC ?

- which observables
- why prompt photons look promising

Francois Arleo (LAPTH)

#### Advantages and limitations

Jets

- high rates, rich phenomenology, forward rapidities
- large scales  $Q^2\gtrsim 10^3~{
  m GeV^2}$
- Large  $p_{\perp}$  dileptons
  - no strong background
  - very low rates
- Heavy-bosons
  - constraints on sea-quark shadowing
  - large scales  $Q^2\gtrsim 10^4~{
    m GeV^2}$
- Prompt photons
  - low  $Q^2\gtrsim 10{-}10^3~{
    m GeV^2},$  rich phenomenology
  - parton-to-photon fragmentation process

### Comparing observables



<sup>[</sup> Aurenche et al. 2006 ]

#### • Very good description of isolated/inclusive photon world-data

Francois Arleo (LAPTH)

Probing gluon densities with photons

Goa – September 2008

### Comparing observables



[ Aurenche et al. 2006 ]

#### • Very good description of isolated/inclusive photon world-data

Francois Arleo (LAPTH)

Probing gluon densities with photons

Goa – September 2008

#### Advantages and limitations

Jets

- high rates, rich phenomenology, forward rapidities
- large scales  $Q^2\gtrsim 10^3~{
  m GeV^2}$
- Large  $p_{\perp}$  dileptons
  - no strong background
  - very low rates
- Heavy-bosons
  - constraints on sea-quark shadowing
  - large scales  $Q^2\gtrsim 10^4~{
    m GeV^2}$
- Prompt photons
  - low  $Q^2\gtrsim 10{-}10^3~{
    m GeV^2},$  rich phenomenology
  - parton-to-photon fragmentation process

# Kinematical range



 $(x, Q^2)$  domain covered at the LHC

- Photons and jets are clearly complementary
- Photons cover small  $Q^2$  where shadowing should be large

Francois Arleo (LAPTH)

Probing gluon densities with photons

#### Definition

Prompt photons are produced by the hard scattering of two incoming nucleons [ hard = w/ large momentum transfer  $Q \gg \Lambda_{_{\rm QCD}}$ ]

Prompt photons carry large  $p_{\perp_{\gamma}} \gg \Lambda_{_{
m QCD}} = \mathcal{O} \left( 1 \ {
m GeV} 
ight)$ 

#### Consequence

Asymptotic freedom

$$\alpha_s(Q \gg \Lambda_{_{\rm QCD}}) \ll 1$$

...allows for a perturbative treatment of prompt photon production in hadronic collisions

[NB: prompt photons do not include photons coming from hadron decays nor thermal production]

### Perturbative production

#### **Dynamics**

Leading-order  $\mathcal{O}(\alpha \ \alpha_s)$  contributions

• Compton scattering  $q(ar q)g 
ightarrow q(ar q) \gamma$ 



• Annihilation process  $q\bar{q} \rightarrow g \gamma$ 



#### Approximation

At high energy, only the Compton scattering process is relevant

Francois Arleo (LAPTH)

Probing gluon densities with photons

Goa – September 2008

# Perturbative production

LO production cross section in p A collisions 
$$(x_{\perp} \equiv 2p_{\perp}/\sqrt{s}, F(x) \equiv F_2(x)/x)$$

$$\frac{1}{A} \frac{\mathrm{d}^3 \sigma^{pA}}{\mathrm{d}y \, \mathrm{d}^2 p_{\perp}} = \int \mathrm{d}v \; F^p \left(\frac{x_{\perp} e^y}{2v}\right) G^A \left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(v) + \int \mathrm{d}v \; G^p \left(\frac{x_{\perp} e^y}{2v}\right) F^A \left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v)$$

LO production cross section in p A collisions  $(x_{\perp} \equiv 2p_{\perp}/\sqrt{s}, F(x) \equiv F_2(x)/x)$ 

$$\frac{1}{A} \frac{\mathrm{d}^3 \sigma^{pA}}{\mathrm{d}y \, \mathrm{d}^2 p_{\perp}} = \int \mathrm{d}v \; F^p \left(\frac{x_{\perp} e^y}{2v}\right) G^A \left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(v) \\ + \int \mathrm{d}v \; G^p \left(\frac{x_{\perp} e^y}{2v}\right) F^A \left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v)$$

#### Problem

The integration over the rapidity of the recoiling jet  $(\leftrightarrow v)$  does not allow for the arguments of *F* and *G* to be fixed

Single photon production not sufficient to probe parton densities

### Extracting parton density ratios

#### Approximation

•  $R_{F_2}$  and  $R_G$  vary slowly as compared to  $F_2$  and G

• Integrand peaked at v = 1/2

$$\frac{1}{A} \frac{\mathrm{d}^3 \sigma^{pA}}{\mathrm{d}y \, \mathrm{d}^2 p_{\perp}} \simeq R_G(x_{\perp} e^{-y}) \int \mathrm{d}v \ F^p\left(\frac{x_{\perp} e^y}{2v}\right) G^p\left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(v)$$

$$+ R_{F_2}(x_{\perp} e^{-y}) \int \mathrm{d}v \ G^p\left(\frac{x_{\perp} e^y}{2v}\right) F^p\left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v)$$

### Extracting parton density ratios

#### Approximation

•  $R_{F_2}$  and  $R_G$  vary slowly as compared to  $F_2$  and G

• Integrand peaked at v = 1/2

$$\frac{1}{A} \frac{\mathrm{d}^3 \sigma^{pA}}{\mathrm{d}y \, \mathrm{d}^2 p_{\perp}} \simeq R_G(x_{\perp} e^{-y}) \int \mathrm{d}v \ F^p\left(\frac{x_{\perp} e^y}{2v}\right) G^p\left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(v)$$

$$+ R_{F_2}(x_{\perp} e^{-y}) \int \mathrm{d}v \ G^p\left(\frac{x_{\perp} e^y}{2v}\right) F^p\left(\frac{x_{\perp} e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v)$$

Simple relationship between prompt photon production and parton densities!

[ NB: especially when one channel is negligible to another ]

Francois Arleo (LAPTH)

### Nuclear production ratio

#### Definition

Nuclear production ratio in p A collisions

$$R_{pA}(x_{\perp}) = \frac{1}{A} \frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y \,\mathrm{d}^{2}p_{\perp}} (p + A \to \gamma + \mathrm{X}) / \frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y \,\mathrm{d}^{2}p_{\perp}} (p + p \to \gamma + \mathrm{X})$$

Most naive estimates

Around mid-rapidity

$$R_{_{PA}}(p_{_{\perp}},y) \simeq 0.5 \left[ R_{_{F_2}}(x_{_{\perp}}e^{-y}) + R_{_G}(x_{_{\perp}}e^{-y}) \right]$$

• At (very) forward rapidity  $R_{_{pA}}(p_{_{\perp}},y)\simeq R_{_G}(x_{_{\perp}}e^{-y})$ 

• At (very) backward rapidity

$$R_{_{pA}}(p_{\perp},y) \simeq R_{_{F_2}}(x_{\perp}e^{-y})$$

# Limitations (1): Fragmentation photons

#### Problem

Photons can also be produced by fragmentation



The collinear divergence of this diagram is absorbed into non-perturbative quantities: quark/gluon fragmentation functions into a (collinear) photon

The  $q \rightarrow q \gamma$  splitting process yields large terms  $\ln(Q/\Lambda_{\rm QCD})$  making fragmentation functions into  $\gamma$  to be  $\mathcal{O}(\alpha/\alpha_s)$ 

The above diagram actually is  $\mathcal{O}(\alpha_s^2)$   $D_{\gamma/k} = \mathcal{O}(\alpha \alpha_s) = \text{LO}$  !

# Limitations (1): Fragmentation photons

#### Problem

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(p \, A \to \gamma \, \mathrm{X}\,)}{\mathrm{d} y \, \mathrm{d}^2 p_{\perp}} \propto \int_0^1 \, \mathrm{d} z \int_0^1 \, \mathrm{d} v \, \dots \left(x_{\perp}/z, Q^2\right) \, D_{\gamma/k}(z, Q^2)$$
  
The extra integration spoils the relationship  $R_{_{pA}} \Leftrightarrow R_{_{F_2}}$  and  $R_{_G}$ 

# Limitations (1): Fragmentation photons

#### Problem

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(p\,A \to \gamma\,\mathrm{X}\,)}{\mathrm{d}y\,\,\mathrm{d}^2 p_{\perp}} \propto \int_0^1 \,\mathrm{d}z \int_0^1 \,\mathrm{d}v\,\,\ldots\,\left(x_{\perp}/z,\,Q^2\right) \,\, D_{\gamma/k}(z,\,Q^2)$$

The extra integration spoils the relationship  $R_{_{PA}} \Leftrightarrow R_{_{F_{\gamma}}}$  and  $R_{_{G}}$ 

#### Solution

We get rid of (most of) them by means of isolation criteria

 $E^{\rm had} < E^{\rm max}$ 

for particles in a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$



# Limitations (2): NLO corrections



Next-to-leading order (NLO) corrections



3-body kinematics in the final state  $\Rightarrow$  needs to integrate over the momentum of the extra-particle radiated

#### Strategy

Let's compute  $R_{_{pA}}(x_{_{\perp}}, y)$  at NLO and check the analytic estimate

# Phenomenology

#### 1. Checking the approximation

 $R_{_{p\!A}}(x_{_\perp},y)$  computed in p A collisions using NLO nDSg parton densities and compared to  $R_{_G}$ 

• At RHIC

• 
$$\sqrt{s_{_{\rm NN}}} = 200$$
 GeV at  $y = 3$ 

• At LHC

• 
$$\sqrt{s_{_{
m NN}}}=$$
 8.8 TeV at  $y=$  0 and 2.5

#### 2. Comparing nPDFs

 $R_{_{pA}}(x_{\perp}, y)$  computed in p A collisions at RHIC and LHC • In pQCD at NLO

• using EKS, HKM, nDS, nDSg, EPS parton densities

• In the Colour Glass Condensate

#### RHIC at forward rapidity y=3



#### • Complete mismatch due to isospin effects

Francois Arleo (LAPTH)

Dominant channel  $q_{_{\mathrm{v}}}(x_{_{1}})g(x_{_{2}}) 
ightarrow q_{_{\mathrm{v}}}\gamma$ 

$$\sigma(dA \to \gamma X) \propto \left[\frac{4}{9}u^{p}(x_{1}) + \frac{1}{9}d^{p}(x_{1}) + \frac{4}{9}u^{n}(x_{1}) + \frac{1}{9}d^{n}(x_{1})\right]g^{A}(x_{2})$$

$$\propto \left[\frac{4}{9}u^{p}(x_{1}) + \frac{1}{9}d^{p}(x_{1}) + \frac{4}{9}d^{p}(x_{1}) + \frac{1}{9}u^{p}(x_{1})\right]g^{A}(x_{2})$$

$$\propto \left[\frac{5}{9}u^{p}(x_{1}) + \frac{5}{9}d^{p}(x_{1})\right]g^{A}(x_{2})$$

Dominant channel  $q_{_{\mathrm{v}}}(x_{_1})g(x_{_2}) 
ightarrow q_{_{\mathrm{v}}}\gamma$ 

$$\sigma(dA \to \gamma X) \propto \left[\frac{4}{9}u^{p}(x_{1}) + \frac{1}{9}d^{p}(x_{1}) + \frac{4}{9}u^{n}(x_{1}) + \frac{1}{9}d^{n}(x_{1})\right]g^{A}(x_{2})$$

$$\propto \left[\frac{4}{9}u^{p}(x_{1}) + \frac{1}{9}d^{p}(x_{1}) + \frac{4}{9}d^{p}(x_{1}) + \frac{1}{9}u^{p}(x_{1})\right]g^{A}(x_{2})$$

$$\propto \left[\frac{5}{9}u^{p}(x_{1}) + \frac{5}{9}d^{p}(x_{1})\right]g^{A}(x_{2})$$

$$\sigma(pp \to \gamma X) \propto \left[\frac{4}{9}u^{p}(x_{1}) + \frac{1}{9}d^{p}(x_{1})\right]g^{A}(x_{2})$$

Dominant channel  $q_{_{\mathrm{v}}}(x_{_1})g(x_{_2}) 
ightarrow q_{_{\mathrm{v}}}\gamma$ 

$$R_{dA/pp} = \frac{5u(x_1) + 5d(x_1)}{8u(x_1) + 2d(x_1)} \times R_G$$

Dominant channel  $q_{_{\mathrm{v}}}(x_{_{1}})g(x_{_{2}}) 
ightarrow q_{_{\mathrm{v}}}\gamma$ 

$$R_{dA/pp} = \frac{5u(x_1) + 5d(x_1)}{8u(x_1) + 2d(x_1)} \times R_{G}$$

#### 2 simple cases

• 
$$x_1 = \mathcal{O}(10^{-1}) \Rightarrow u(x_1) \simeq 2d(x_1)$$
  
 $R_{dA/pp} = \frac{5}{6} R_d$   
•  $x_1 = \mathcal{O}(1) \Rightarrow u(x_1) \gg d(x_1)$   
 $R_{dA/pp} = \frac{5}{8} R_d$ 

RHIC at forward rapidity y=3



• Fair matching ( $\lesssim 10\%)$  between  $R_{_{pA}}$  and  $R_{_G},$  once corrected for isospin

#### LHC at mid-rapidity



• 20% attenuation at  $x_{\perp} \sim 10^{-3}$  measurable (statistically)

• perfect matching (< 2–3%) between  $R_{pA}$  and nuclear density ratios

.7 / 22

LHC at forward rapidity y = 2.5



• Gives "direct" access to  $R_c$  (within 5%) at  $x = 10^{-4} - 10^{-3}$  !

# Comparing nPDFs

At RHIC (y=3)



Significant differences between the various nPDF sets

# Comparing nPDFs

At RHIC (y=3)



• To be compared with predictions within the CGC

# Comparing nPDFs

At LHC (y=2.5)



• Significant differences between the various nPDF sets

#### Problem

No p p collision at  $\sqrt{s} = 8.8$  TeV How to measure  $R_{g}(x)$  without any p p reference data ?

#### Problem

No p p collision at  $\sqrt{s} = 8.8$  TeV How to measure  $R_{g}(x)$  without any p p reference data ?

#### Proposal

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p \ A \to \gamma(+y) \ \mathrm{X})}{\mathrm{d}\sigma(p \ A \to \gamma(-y) \ \mathrm{X})} = R_{pA}(x_{\perp},+y)/R_{pA}(x_{\perp},-y)$$
$$\simeq R_{G}(x_{\perp}e^{-y})/R_{F_{2}}(x_{\perp}e^{y})$$

#### Problem

No p p collision at  $\sqrt{s} = 8.8$  TeV How to measure  $R_{g}(x)$  without any p p reference data ?

#### Proposal

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p \ A \to \gamma(+y) \ \mathrm{X})}{\mathrm{d}\sigma(p \ A \to \gamma(-y) \ \mathrm{X})} = R_{pA}(x_{\perp},+y)/R_{pA}(x_{\perp},-y)$$
$$\simeq R_{G}(x_{\perp}e^{-y})/R_{F_{2}}(x_{\perp}e^{y})$$

 $R_{F_2}$  at large x gives access to  $R_{G}$  at small x !



- Encouraging yet a larger y would be better
- Need to correct for isospin effects

Francois Arleo (LAPTH)

Probing gluon densities with photons

### Counting rates

• LHC 
$$(\mathcal{L} = 1.4 \ 10^{30} \ \mathrm{cm}^{-2} s^{-1}, \ \Delta t = 10^{6} \mathrm{s})$$
  
 $\frac{\mathrm{d}\sigma}{\mathrm{d}y \ \mathrm{d}p_{\perp}}\Big|_{p_{\perp}=100 \ \mathrm{GeV}} \simeq 8 \ 10^{2} \ \mathrm{pb/GeV} \Rightarrow \mathcal{N} \sim 10^{3}/\mathrm{GeV}$   
• RHIC  $(\mathcal{L}_{\mathrm{int}} = 0.45 \ \mathrm{pb}^{-1})$   
 $\frac{\mathrm{d}\sigma}{\mathrm{d}y \ \mathrm{d}p_{\perp}}\Big|_{p_{\perp}=7 \ \mathrm{GeV}} \simeq 8 \ 10^{3} \ \mathrm{pb/GeV} \Rightarrow \mathcal{N} \sim 4 \ 10^{3}/\mathrm{GeV}$   
[At RHIC-I,  $\mathcal{L}_{\mathrm{int}} = 0.02 \ \mathrm{pb}^{-1} \Rightarrow p_{\perp} \lesssim 5 \ \mathrm{GeV}$ 

Statistical accuracy in a year much better than the present spread of theoretical predictions for  $R_{g}$  at small x

#### • Essential to further constrain G(x) at small x

- needed for pQCD predictions at LHC
- looking for saturation

#### • Prompt photon production in p A collisions

• an ideal observable to probe parton densities

#### • Phenomenology at RHIC and LHC

- reliable estimate of  $R_{G}$  from  $R_{PA}$  at forward rapidity
- comparing the predictions in QCD using various sets (soon CGC)
- extracting  $R_{g}$  witout p p data at the same energy

Gluon densities in a proton usually given by

- Jets
- Electroweak bosons
- (Drell-Yan)

Gluon densities in a proton usually given by

- Jets
- Electroweak bosons
- (Drell-Yan)

### Surprisingly

Prompt photons no longer used to constrain gluons, because of the longstanding discrepancy between E706 data and NLO predictions



Goa – September 2008

Gluon densities in a proton usually given by

- Jets
- Electroweak bosons
- (Drell-Yan)

### Surprisingly

Prompt photons no longer used to constrain gluons, because of the longstanding discrepancy between E706 data and NLO predictions

Need to revive this signal and investigate similarly the contraints given by photons in p p collisions at LHC