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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

The thermal propagator and self energy
» At leading order, observe
1

R 32 (en(P)p—n(—P))|r=0

DO(Wna p)
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

The thermal propagator and self energy
» At leading order, observe
1

» Natural generalization:

D(wn,p) = B*(en(P)p—n(—P)) <
D(71,X1;72,X2) = (p(11,X1)0(72,X2))

Do(wn, p) = B%(en(P)p-n(—P))lr=0
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

The thermal propagator and self energy
» At leading order, observe
1

» Natural generalization:

D(wn,p) = B*(en(P)p-n(—P)) &

Do(wn, p) = B%(en(P)p-n(—P))lr=0

D(m1,X1;72,%2) = (¢(71,X1)¢(72,X2))
» Define scalar self energy I as correction term to inverse
propagator
D(wn,p)”' = w2+ p?+ m? + N(wp,p)

= Dy'(1+ Do)
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» Self energy contains information on how the interactions
modify
» The masses and dispersion relations of quasiparticles
» The interaction potential (possible screening)
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Systems at finite density

Evaluating sum-integrals
Renormalization

» Self energy contains information on how the interactions
modify
» The masses and dispersion relations of quasiparticles
» The interaction potential (possible screening)
» Self energy obtainable through computation of all
connected 1Pl two-point graphs
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» Self energy contains information on how the interactions
modify
» The masses and dispersion relations of quasiparticles
» The interaction potential (possible screening)

» Self energy obtainable through computation of all
connected 1Pl two-point graphs

» Exercise: Show that I1 given by

n — 2<(5an/>
000/ 1pr
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Introducing finite chemical potentials

» So far in all field theory examples ;. =0
» Reason: No conserved charge associated with real scalar
field
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
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Evaluating sum-integrals
Renormalization

Introducing finite chemical potentials

» So far in all field theory examples ;. =0
» Reason: No conserved charge associated with real scalar

field
» Consider now Dirac fermions at chemical potential x
H — H-uN,
N = / dBxyply
> Zermiclpnwnumber conserved due to global U(1) symmetry
— el
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Introducing finite chemical potentials

» So far in all field theory examples ;. =0
» Reason: No conserved charge associated with real scalar

field
» Consider now Dirac fermions at chemical potential x

H — H-uN,
N = / d®xytey
» Fermion number conserved due to global U(1) symmetry

¢ — ey
» Action changes now to

s
Se = /0 dT/ddMZ{'yo(@T—u)—i%aﬂrm}w]
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» Conclusion: With finite chemical potentials, Matsubara
frequencies shift by iu

wp — wp+ip = @n+1)rT +ip
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» Conclusion: With finite chemical potentials, Matsubara
frequencies shift by iu

wp — wp+ip = @n+1)rT +ip

» Exercise: Try to repeat with complex scalar theory with
global U(1) symmetry
» Obvious instability if | 11|> m!
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» Conclusion: With finite chemical potentials, Matsubara
frequencies shift by iu

wp — wp+ip = @n+1)rT +ip

» Exercise: Try to repeat with complex scalar theory with
global U(1) symmetry
» Obvious instability if | u|> m!
» Result: Bose Einstein condensation at |u|=m
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

How to compute sum-integrals?

» Perturbative calculations at T # 0 require performing
sum-integrals

d3
S = %/ gup fr®)

wp = 2ntT or 2n+1)nT +ip
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

How to compute sum-integrals?

» Perturbative calculations at T # 0 require performing
sum-integrals

d3p
s = T/ G ltop)
wp = 2ntT or 2n+1)nT +ip

» Two generic tricks for evaluating the sums: Contour
integrals and 3d Fourier transforms
» Optimal choice depends on whether fields massive or
massless
» Real time quantities result in additional twists — here,
always assume imaginary time formalism
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Contour integral trick

» Generic observation: May convert Matsubara sum into a
contour integral via Residue theorem

oo . 1
T Z f(po=1ix2nxT) = o /Cdpof(po)coth (5—3_)

nN=—o00

with C circulating poles of the coth function
(po = i x 2nmT) in a counterclockwise direction
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
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Evaluating sum-integrals
Renormalization

Contour integral trick

» Generic observation: May convert Matsubara sum into a
contour integral via Residue theorem

oo . 1
T Z f(po=1ix2nxT) = o /Cdpof(po)coth (5—3_)

nN=—o00

with C circulating poles of the coth function
(po = i x 2nmT) in a counterclockwise direction
» Separating from coth a piece that vanishes at T = 0:

T Z f(po =i x 2nxT)

nN=—o0
= o7 )., 90 [f(Po) + f(—Po)} {2 T et —1 }
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The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Further tools for equilibrium thermodynamics

» Advantage: Performing contour integral trick for each loop
momentum, separate vacuum (T = 0) contribution from
each diagram

» T = 0 piece easy to evaluate with standard methods
» Finite-T piece obviously UV safe, and can (usually) be
evaluated by closing integration contour on the R.S. of

complex plane

temperature Field Theory, Lecture 2
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
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Evaluating sum-integrals
Renormalization

» Advantage: Performing contour integral trick for each loop
momentum, separate vacuum (T = 0) contribution from
each diagram

» T = 0 piece easy to evaluate with standard methods

» Finite-T piece obviously UV safe, and can (usually) be
evaluated by closing integration contour on the R.S. of
complex plane

» Problem: Hard to do analytic calculations at high order
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

v

Advantage: Performing contour integral trick for each loop
momentum, separate vacuum (T = 0) contribution from
each diagram

» T = 0 piece easy to evaluate with standard methods

» Finite-T piece obviously UV safe, and can (usually) be
evaluated by closing integration contour on the R.S. of
complex plane

» Problem: Hard to do analytic calculations at high order
» Exercise: Repeat the above for fermions!
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

3d Fourier transforms

» Assume now important simplification: All T = 0 masses

zero. Then...
d3q efa-r e—2lnl=Tr
(2m)® @2 4 (2nxT)? AnT
&q ot o—(12n+1|w T—ipsign(2n+1))r
/(27r)3 R+ (@n+)xT —ip)? 4rT
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

3d Fourier transforms

» Assume now important simplification: All T = 0 masses

zero. Then...
d3q efa-r e—2lnl=Tr
(2m)® @2 4 (2nxT)? AnT
&q ot o—(12n+1|w T—ipsign(2n+1))r
/(27r)3 R+ (@n+)xT —ip)? 4rT

» Performing now the 3d momentum integrations, end up
with
» Simple Matsubara sums: Harmonic series
» (Hyper)trigonometric integrals in coordinate space
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

3d Fourier transforms

» Assume now important simplification: All T = 0 masses

zero. Then...
d3q efa-r e—2lnl=Tr
(2m)® @2 4 (2nxT)? AnT
&q ot o—(12n+1|w T—ipsign(2n+1))r
/(27r)3 R+ (@n+)xT —ip)? 4rT

» Performing now the 3d momentum integrations, end up
with
» Simple Matsubara sums: Harmonic series
» (Hyper)trigonometric integrals in coordinate space

» Result: (Almost) analytic results up to 4-loop order!
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

p(T) _ = z‘: if (4.9)
0~ a0 2T\as) e

i=0

where g = [y*(A)]'/2, and the coefficients read

po = 1, (4.3)
=D (4.9)
P2 (4.5)
s = (4.5)
P4 =
(4.7)
P =
(1.8)
iy = llJS:\ +z{[72.{,-\'+2'.—G.,m’+s‘,n-’} ln("'_
_‘ 2
(W +8)?2m
e

. A (3)
N2 [ 2n — T ¢
+1 [(Z‘F_ 12)1114T+G 129 + 72+ SG:|+

493 5y 3CN(—1) 3H(-3) A
T | G Vi 4 S/}
+ K 80 T2 T2oD) 4¢3/ "&T

— (LDDDUG[JMZ(Z)} B

‘.) lu% e ‘JJ]D[)EGST&M{S)} } . (49)
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Renormalization of the theory

» As always in quantum field theories, in order to obtain finite
results from perturbative calculations, we must renormalize
the theory

» Fields and parameters appearing in Lagrangian not
physical, measurable quantities
» Need to define parameters with renormalization

corrections: ¢ — ZJ/%R
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

Renormalization of the theory

» As always in quantum field theories, in order to obtain finite
results from perturbative calculations, we must renormalize
the theory

» Fields and parameters appearing in Lagrangian not
physical, measurable quantities

» Need to define parameters with renormalization
corrections: ¢ — ZJ/%R

» Simplification: Finite temperature does not generate any
new divergences

» T = 0 renormalization sulfficient
» Reason: Exponential suppression of finite-T contributions
to integrals — T does not affect UV physics
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Further tools for equilibrium thermodynamics The dressed propagator and self energy
Systems at finite density

Evaluating sum-integrals
Renormalization

» In practice, need to introduce energy scale (A% from
yesterday) at which renormalization is performed
» Physical results independent of A — however, in practice
useful to choose A ~ T to minimize errors in finite-order
calculations
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Outline

Gauge theories: QED and QCD
Gauge symmetry
Faddeev-Popov ghosts and gauge choices
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Constructing the partition function
» Consider SU(N) YM coupled to m = 0 fundam. fermions

1 -
Laco = 2 Finil, + Dy,
Fa, = 0,A2—0,A2 + gfe™ALAS,
1
- 5ab
2
» Easy to restrict to pure Yang-Mills or QED later

D, = 0,—igAeT? TrTeT? =
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Constructing the partition function
» Consider SU(N) YM coupled to m = 0 fundam. fermions
1

Laco = 2 Fi,F + 0Dy,
F2, = 0,A3—0,A3+ gl AbAC,
D, = 0,—igAeT? TrTeT? = %5"3"

» Easy to restrict to pure Yang-Mills or QED later
» Theory invariant under gauge transformation

A, = AITE Q—1Au§2+; (a.27") 2.
o= Q'
Q = expligT??
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Obvious issue in evaluating Z the overcounting of degrees
of freedom due to gauge symmetry
» Famous example: Free photons in QED give twice the
usual black body pressure!
» How to restrict to physical Hilbert space?
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Obvious issue in evaluating Z the overcounting of degrees
of freedom due to gauge symmetry

» Famous example: Free photons in QED give twice the
usual black body pressure!
» How to restrict to physical Hilbert space?
» Usual choice: Temporal Ay = 0 gauge
» Coordinates and momenta now A; and
oL .
dA?
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Obvious issue in evaluating Z the overcounting of degrees
of freedom due to gauge symmetry

» Famous example: Free photons in QED give twice the
usual black body pressure!
» How to restrict to physical Hilbert space?

» Usual choice: Temporal Ay = 0 gauge
» Coordinates and momenta now A; and

oL -
|—|a — a
T sAa A
1
» Resulting Hamiltonian

1 1 _
I-Itemp = /d3x{2 I_I/an/a - Z I:/jal://a - W)’/Dﬂﬂ - Waow}
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Gauss’ law not part of Hamiltonian equations of motion =
Must include it separately

» Introduce into path integral projection operator onto the
space of physical states

P = / DAexp|if / d*xN2GA,
A(c0)=0

G® = O;F3+ gf*™ ARG+ Tl
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Gauss’ law not part of Hamiltonian equations of motion =
Must include it separately

» Introduce into path integral projection operator onto the
space of physical states

P = / DAexp|if / d*xN2GA,
A(c0)=0
G® = O;F3+ gf*™ ARG+ Tl

» Result: After renaming A = Ao, obtain expected

expression 5
Zacp = /A , DAuDTZDIb CXP[_/O dXO/dSX (£OCD —le“/’)]
i er.
v antip.
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Gauss’ law not part of Hamiltonian equations of motion =
Must include it separately

» Introduce into path integral projection operator onto the
space of physical states

P = / DAexp|if / d*xN2GA,
A(o0)=0
G® = O;F3+ gf*™ ARG+ Tl

» Result: After renaming A = Ao, obtain expected
expression

_ B
Zoco = [, DADIDGexp] - /O dxo / 4% (Laco — 01 )]

4 antip.

» Some gauge freedom still remaining — invariance under
transformations periodic in 7

» Locality of gauge group = Still infinite overcounting

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2



Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Removing the residual gauge freedom

» Standard choice for fixing residual gauge freedom:
Covariant gauge condition

FIAl = 9,A2—f2 = 0,

with f@ undetermined
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Removing the residual gauge freedom

» Standard choice for fixing residual gauge freedom:
Covariant gauge condition

FIAl = 9,A2—f2 = 0,

with f& undetermined
» Insert now into the path integral 1 = AA~" with

AJA] = / . DRIFAT]

€ SU(N)
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

Removing the residual gauge freedom

» Standard choice for fixing residual gauge freedom:
Covariant gauge condition

FelA] = 9,AT—f8 = 0,
with f& undetermined
» Insert now into the path integral 1 = AA~" with
AJA] = /  DQs[FA%)
€S0

» And use gauge invariance of action to obtain

Zaco = /QPELDQ /AQ pe,DAgpiszA’1[AQ]5[F‘3[AQ]] exp| — S[AY]]

€ SU(N) < antip.
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Upon change of variables A? — A, the Q-integral
obviously factorizes =

Zeo = [, DADIDG A AGIFA] exp - SIA]
% antip.
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Upon change of variables A? — A, the Q-integral
obviously factorizes =

Zeo = [, DADIDG A AGIFA] exp - SIA]
% antip.

» Finally, write gauge condition

- dF3(x) > b
ATTA] = det< = detM?,
A 505(0x) )| paco

Mab(X,y) — 8#{ <8u5ab +gfabcAz) 5(X —}/)}

in terms of anticommuting, but periodic ‘ghost’ fields 7, 7:

detM?® = DiDnexp| — [ dxo [ d®x [ dyo [ Sy F2(x)M®(x,y)n(y)
0 0

n per.
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Multiplying the functional integral by

and integrating over f2, we obtain the final result

Zoco = / DA ’Dzﬂh/ﬂ)vﬂ)nexp[ / dxo / d3x Eeff:|7

P ant/p

Lo = Lacp+ — 5 (0, Aa) — oty + 7 (825ab+gfabCA28M> P

5
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Multiplying the functional integral by

and integrating over f2, we obtain the final result

Zoco = / DA ’Dzﬂh/ﬂ)vﬂ)nexp[ / dxo / d3x Eeff:|7

P ant/p

Lo = Lacp+ — 2 (0, Aa) — oty + 7 (825ab+gfabcA28M> P

£
» Feynman rules again obtained from T = 0 ones taking into
account discreteness of py
» Gluons and ghosts (despite anticommutativity!) periodic in
7 (wp=2n7T)
» Quarks antiperiodic (w, = (2n+1)7T)
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Gauge theories: QED and QCD Gauge symmetry

Faddeev-Popov ghosts and gauge choices

» Note difference to T = 0: Even when ghosts decouple
(Abelian theories), they still contribute to grand potential
and other thermodynamic quantities!
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

Outline

Linear response theory
Response of system to small disturbation
Example: Screening of static EM fields

Aleksi Vuorinen, CERN temperature Field Theory, Lecture 2



Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

Linear response

» So far, only equilibrium systems considered

» What if system disturbed by small perturbation:
H — Hy + dH(t), with §H turned on at t = §?
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

Linear response

» So far, only equilibrium systems considered

» What if system disturbed by small perturbation:
H — Hy + dH(t), with §H turned on at t = §?

> G.pal: Want to compute shifts in expectation values
(A(x, t)) up to linear order in H

S(A(X, 1)) = / tdt’ Tr [ﬁ OpA(X, t’)}

fo t
— i/ dt’Tr[ﬁ[&I:l(t’),/z\(X, t’)]]
b

~ i / tdt’Tr[ﬁ [OH(t), A(x, t)]} +0(5%)

b
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Consider scalar field coupled to external source J:

SH(t) — / X' J(X, )X, 1)
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Consider scalar field coupled to external source J:
SH(t) — / X' J(X, )X, 1)

» For change in ($), obtain integral of source coupled to
retarded Green’s function

S, 1) = / at / X' Jx, ) DR(x, t: X, 1),

DR(x, t;x',t') = [ﬁ[gﬁ(x 1), (X, t')]} o(t — t)
or in Fourier space...
§(@(w,p) = J(w,p)D(w,p)
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Consider scalar field coupled to external source J:
SH(t) — / X' J(X, )X, 1)

» For change in ($), obtain integral of source coupled to
retarded Green’s function

S, 1) = / at / X' Jx, ) DR(x, t: X, 1),

DR(x, X, t) = Tr|pla(x. 1), a(x, )] ot — 1)
or in Fourier space...

5(p(w,p)) = J(w,p)D(w,p)
» Retarded G.F. obtained from usual thermal one through
DR(w,p) = D(iwp— w + ie,p)
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Linear response theory

Response of system to small disturbation

Example: Screening of static EM fields

Coupling of QED plasma to static electric field

» Consider coupling QED plasma to static classical
background field E,

H =

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2

1
5 { (E+Eq)” +B?)

1 1
E{E2+BZ}+E-EC,+§E§,
Ho + 6H



Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

Coupling of QED plasma to static electric field

» Consider coupling QED plasma to static classical
background field E,

1
H = 5 {(E+Eq) +B%
1 1
— E{E2+BZ}+E-EC,+§E§,
= Ho+dH

» To first order in E!,, obtain now for the shift in (E):

S(Ei(x, t)) = —// dt’/dsx/E/ (X, 1) Tr [ﬁ [E;i(x, t),E,-(x’,ﬂ)]} o(t —t')
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Writing E;’s in terms of derivatives of A, and going to
Fourier space...

. d3 . ,
) = = [ 3 PP ELPIOGy(w = 0.p)

where we have assumed a covariant gauge.
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Writing E;’s in terms of derivatives of A, and going to
Fourier space...

. d3 . ,
) = = [ 3 PP ELPIOGy(w = 0.p)

where we have assumed a covariant gauge.
» With rotational invariance (E ~ p), finally obtain

Erelp) = 1)
ep) = 1+|_|00(w:0,p)

02
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Response of system to small disturbation

Linear response theory Example: Screening of static EM fields

» Writing E;’s in terms of derivatives of A, and going to
Fourier space...

. d3 . ,
) = = [ 3 PP ELPIOGy(w = 0.p)

where we have assumed a covariant gauge.
» With rotational invariance (E ~ p), finally obtain

Erelp) = 1)
ep) = 1+|_|00(w:0,p)

02
> In IR limit (p < T), obtain Mgg(w = 0,p) — M3,

> Potential between charges V(r) = gig2%;—= — screening!
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Summary

Outline

Summary
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Summary (so far)

So far, we've reviewed some basic formalism of FTFT’s:

» Path integral formulation of partition function and other
equilibrium thermodynamic quantities

» Bosons and fermions, zero and finite density
» Interacting theories at weak coupling: Feynman rules at
finite T and evaluation of sum integrals

» Special issues with gauge symmetry
» Ghosts and gauge choices

» Response of system to small external perturbations
» Possible screening of charge due to interactions

Next, we'll start applying this machinery to QCD...
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