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The thermal propagator and self energy
I At leading order, observe

D0(ωn,p) =
1

ω2
n + p2 + m2

= β2〈ϕn(p)ϕ−n(−p)〉|λ=0

I Natural generalization:

D(ωn,p) = β2〈ϕn(p)ϕ−n(−p)〉 ⇔
D(τ1,x1; τ2,x2) = 〈ϕ(τ1,x1)ϕ(τ2,x2)〉

I Define scalar self energy Π as correction term to inverse
propagator

D(ωn,p)−1 = ω2
n + p2 + m2 + Π(ωn,p)

= D−1
0 (1 + D0Π)
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I Self energy contains information on how the interactions
modify

I The masses and dispersion relations of quasiparticles
I The interaction potential (possible screening)

I Self energy obtainable through computation of all
connected 1PI two-point graphs

I Exercise: Show that Π given by

Π = −2
(
δ ln ZI

δD0

)
1PI
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Introducing finite chemical potentials
I So far in all field theory examples µ = 0

I Reason: No conserved charge associated with real scalar
field

I Consider now Dirac fermions at chemical potential µ

Ĥ → Ĥ − µN̂,

N̂ =

∫
d3xψ†ψ

I Fermion number conserved due to global U(1) symmetry
ψ → eiαψ

I Action changes now to

SE =

∫ β

0
dτ
∫

ddxψ̄
{
γ0(∂τ − µ)− iγi∂i + m

}
ψ

]
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I Conclusion: With finite chemical potentials, Matsubara
frequencies shift by iµ

ωn → ωn + iµ = (2n + 1)πT + iµ

I Exercise: Try to repeat with complex scalar theory with
global U(1) symmetry

I Obvious instability if |µ |> m!
I Result: Bose Einstein condensation at |µ |= m
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How to compute sum-integrals?

I Perturbative calculations at T 6= 0 require performing
sum-integrals

S =
∑
ωn

∫
d3p

(2π)3 f (ωn,p),

ωn = 2nπT or (2n + 1)πT + iµ

I Two generic tricks for evaluating the sums: Contour
integrals and 3d Fourier transforms

I Optimal choice depends on whether fields massive or
massless

I Real time quantities result in additional twists — here,
always assume imaginary time formalism
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Contour integral trick
I Generic observation: May convert Matsubara sum into a

contour integral via Residue theorem

T
∞∑

n=−∞
f (p0 = i × 2nπT ) =

1
4πi

∫
C

dp0f (p0) coth
( p0

2T

)
with C circulating poles of the coth function
(p0 = i × 2nπT ) in a counterclockwise direction

I Separating from coth a piece that vanishes at T = 0:

T
∞∑

n=−∞
f (p0 = i × 2nπT )

=
1

2πT

∫ i∞+ε

−i∞+ε
dp0

[
f (p0) + f (−p0)

]{1
2

+
1

eβp0 − 1

}
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I Advantage: Performing contour integral trick for each loop
momentum, separate vacuum (T = 0) contribution from
each diagram

I T = 0 piece easy to evaluate with standard methods
I Finite-T piece obviously UV safe, and can (usually) be

evaluated by closing integration contour on the R.S. of
complex plane

I Problem: Hard to do analytic calculations at high order
I Exercise: Repeat the above for fermions!
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3d Fourier transforms

I Assume now important simplification: All T = 0 masses
zero. Then...∫

d3q
(2π)3

eiq·r

q2 + (2nπT )2 =
e−2|n|πT r

4πT
,

∫
d3q

(2π)3

eiq·r

q2 + ((2n + 1)πT − iµ)2 =
e−(|2n+1|πT−iµ sign(2n+1))r

4πT

I Performing now the 3d momentum integrations, end up
with

I Simple Matsubara sums: Harmonic series
I (Hyper)trigonometric integrals in coordinate space

I Result: (Almost) analytic results up to 4-loop order!
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Renormalization of the theory

I As always in quantum field theories, in order to obtain finite
results from perturbative calculations, we must renormalize
the theory

I Fields and parameters appearing in Lagrangian not
physical, measurable quantities

I Need to define parameters with renormalization
corrections: ϕ → Z1/2

ϕ ϕR

I Simplification: Finite temperature does not generate any
new divergences

I T = 0 renormalization sufficient
I Reason: Exponential suppression of finite-T contributions

to integrals — T does not affect UV physics

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2



logo

Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary

The dressed propagator and self energy
Systems at finite density
Evaluating sum-integrals
Renormalization

Renormalization of the theory

I As always in quantum field theories, in order to obtain finite
results from perturbative calculations, we must renormalize
the theory

I Fields and parameters appearing in Lagrangian not
physical, measurable quantities

I Need to define parameters with renormalization
corrections: ϕ → Z1/2

ϕ ϕR

I Simplification: Finite temperature does not generate any
new divergences

I T = 0 renormalization sufficient
I Reason: Exponential suppression of finite-T contributions

to integrals — T does not affect UV physics

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2



logo

Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary
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I In practice, need to introduce energy scale (Λ2ε from
yesterday) at which renormalization is performed

I Physical results independent of Λ — however, in practice
useful to choose Λ ∼ T to minimize errors in finite-order
calculations

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2



logo

Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary

Gauge symmetry
Faddeev-Popov ghosts and gauge choices

Outline
Further tools for equilibrium thermodynamics

The dressed propagator and self energy
Systems at finite density
Evaluating sum-integrals
Renormalization

Gauge theories: QED and QCD
Gauge symmetry
Faddeev-Popov ghosts and gauge choices

Linear response theory
Response of system to small disturbation
Example: Screening of static EM fields

Summary

Aleksi Vuorinen, CERN Finite-temperature Field Theory, Lecture 2



logo

Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary

Gauge symmetry
Faddeev-Popov ghosts and gauge choices

Constructing the partition function
I Consider SU(N) YM coupled to m = 0 fundam. fermions

LQCD =
1
4

F a
µνF a

µν + ψ̄ /Dψ,

F a
µν ≡ ∂µAa

ν − ∂νAa
µ + gf abcAb

µAc
ν ,

Dµ ≡ ∂µ − igAa
µT a, Tr T aT b =

1
2
δab

I Easy to restrict to pure Yang-Mills or QED later
I Theory invariant under gauge transformation

Aµ ≡ Aa
µT a → Ω−1AµΩ +

i
g

(
∂µΩ−1

)
Ω,

ψ → Ω−1ψ,

Ω = exp
[
igT aαa]
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Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary

Gauge symmetry
Faddeev-Popov ghosts and gauge choices

I Obvious issue in evaluating Z the overcounting of degrees
of freedom due to gauge symmetry

I Famous example: Free photons in QED give twice the
usual black body pressure!

I How to restrict to physical Hilbert space?
I Usual choice: Temporal A0 = 0 gauge

I Coordinates and momenta now Ai and

Πa
i ≡ δL

δȦa
i

= Ȧa
i ,

I Resulting Hamiltonian

Htemp =

∫
d3x
{

1
2

Πa
i Πa

i −
1
4

F a
ij F a

ij − ψ̄γiDiψ − ψ†∂0ψ

}
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Further tools for equilibrium thermodynamics
Gauge theories: QED and QCD

Linear response theory
Summary

Gauge symmetry
Faddeev-Popov ghosts and gauge choices

I Gauss’ law not part of Hamiltonian equations of motion⇒
Must include it separately

I Introduce into path integral projection operator onto the
space of physical states

P =

∫
Λ(∞)=0

DΛ exp
[
iβ
∫

d3xΛaGa],
Ga ≡ ∂iF a

i0 + gf abcAb
i F c

i0 + T aψ†ψ

I Result: After renaming Λ ⇒ A0, obtain expected
expression

ZQCD =

∫
Aµ per.
ψ antip.

DAµDψ̄Dψ exp
[
−
∫ β

0
dx0

∫
d3x

(
LQCD − ψ†µψ

)]
I Some gauge freedom still remaining — invariance under

transformations periodic in τ
I Locality of gauge group⇒ Still infinite overcounting
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Removing the residual gauge freedom
I Standard choice for fixing residual gauge freedom:

Covariant gauge condition

F a[A] ≡ ∂µAa
µ − f a = 0,

with f a undetermined
I Insert now into the path integral 1 = ∆∆−1 with

∆[A] ≡
∫

Ω per.
∈ SU(N)

DΩ δ[F a[AΩ]]

I And use gauge invariance of action to obtain

ZQCD =

∫
Ω per.
∈ SU(N)

DΩ

∫
AΩ
µ per.
ψ antip.

DAΩ
µDψ̄Dψ∆−1[AΩ]δ[F a[AΩ]] exp

[
− S[AΩ]

]
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I Upon change of variables AΩ → A, the Ω-integral
obviously factorizes⇒

ZQCD =

∫
Aµ per.
ψ antip.

DAµDψ̄Dψ∆−1[A]δ[F a[A]] exp
[
− S[A]

]
I Finally, write gauge condition

∆−1[A] = det
(
δF a(x)

δαb(x ′)

)∣∣∣∣
F a=0

≡ det Mab,

Mab(x , y) = ∂µ

{(
∂µδ

ab + gf abcAc
µ

)
δ(x − y)

}
in terms of anticommuting, but periodic ‘ghost’ fields η, η̄:

det Mab =

∫
η per.
Dη̄Dη exp

[
−
∫ β

0
dx0

∫
d3x

∫ β

0
dy0

∫
d3y η̄a(x)Mab(x , y)ηb(y)

]
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I Multiplying the functional integral by

exp
[
− 1

2ξ

∫ β

0
dx0

∫
d3x(f a(x))2

]
and integrating over f a, we obtain the final result

ZQCD =

∫
Aµ per.
ψ antip.

DAµDψ̄DψDη̄Dη exp
[
−
∫ β

0
dx0

∫
d3x Leff

]
,

Leff = LQCD +
1
2ξ

(∂µAa
µ)2 − ψ†µψ + η̄a

(
∂2δab + gf abcAc

µ∂µ

)
ηb

I Feynman rules again obtained from T = 0 ones taking into
account discreteness of p0

I Gluons and ghosts (despite anticommutativity!) periodic in
τ (ωn = 2nπT )

I Quarks antiperiodic (ωn = (2n + 1)πT )
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I Note difference to T = 0: Even when ghosts decouple
(Abelian theories), they still contribute to grand potential
and other thermodynamic quantities!
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Example: Screening of static EM fields

Linear response
I So far, only equilibrium systems considered

I What if system disturbed by small perturbation:
Ĥ → Ĥ0 + δĤ(t), with δĤ turned on at t = t0?

I Goal: Want to compute shifts in expectation values
〈Â(x, t)〉 up to linear order in δĤ

δ〈Â(x, t)〉 =

∫ t

t0
dt ′ Tr

[
ρ̂ ∂t ′Â(x, t ′)

]
= i

∫ t

t0
dt ′ Tr

[
ρ̂ [δĤ(t ′), Â(x, t ′)]

]
≈ i

∫ t

t0
dt ′ Tr

[
ρ̂ [δĤ(t ′), Â(x, t)]

]
+O(δ2)
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ρ̂ ∂t ′Â(x, t ′)

]
= i

∫ t

t0
dt ′ Tr

[
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Response of system to small disturbation
Example: Screening of static EM fields

I Consider scalar field coupled to external source J:

δĤ(t ′) =

∫
d3x ′ J(x′, t ′)ϕ̂(x′, t ′)

I For change in 〈ϕ̂〉, obtain integral of source coupled to
retarded Green’s function

δ〈ϕ̂(x, t)〉 =

∫ ∞
−∞

dt ′
∫

d3x ′J(x′, t ′)DR(x, t ; x′, t ′),

DR(x, t ; x′, t ′) ≡ Tr
[
ρ̂ [ϕ̂(x, t), ϕ̂(x′, t ′)]

]
θ(t − t ′)

or in Fourier space...

δ〈ϕ̂(ω,p)〉 = J(ω,p)DR(ω,p)

I Retarded G.F. obtained from usual thermal one through

DR(ω,p) = D(iωn → ω + iε,p)
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Coupling of QED plasma to static electric field

I Consider coupling QED plasma to static classical
background field Ecl

H =
1
2

{
(E + Ecl)

2 + B2
}

=
1
2

{
E2 + B2

}
+ E · Ecl +

1
2

E2
cl

≡ H0 + δH

I To first order in E i
cl , obtain now for the shift in 〈E〉:

δ〈Ei(x, t)〉 = −i
∫ ∞
−∞

dt ′
∫

d3x ′E j
cl(x, t) Tr

[
ρ̂ [Ei(x, t),Ej(x′, t ′)]

]
θ(t − t ′)
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I Writing Ei ’s in terms of derivatives of Aµ and going to
Fourier space...

E i
net (x) = −

∫
d3p

(2π)3 eip·xpipjE
j
cl(p)DR

00(ω = 0,p)

where we have assumed a covariant gauge.
I With rotational invariance (Ecl ∼ p), finally obtain

Enet (p) =
Ecl(p)

ε(p)
,

ε(p) ≡ 1 +
Π00(ω = 0,p)

p2

I In IR limit (p � T ), obtain Π00(ω = 0,p)→ m2
D

I Potential between charges V (r) = q1q2
e−mD r

4πr — screening!
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Summary (so far)

So far, we’ve reviewed some basic formalism of FTFT’s:
I Path integral formulation of partition function and other

equilibrium thermodynamic quantities
I Bosons and fermions, zero and finite density
I Interacting theories at weak coupling: Feynman rules at

finite T and evaluation of sum integrals
I Special issues with gauge symmetry

I Ghosts and gauge choices
I Response of system to small external perturbations

I Possible screening of charge due to interactions

Next, we’ll start applying this machinery to QCD...
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