Finite-temperature Field Theory

Aleksi Vuorinen

CERN

Initial Conditions in Heavy Ion Collisions Goa, India, September 2008

Outline

Phase diagram of QCD

Tools for finite-temperature QCD

The phase diagram

The phases of QCD

The deconfinement transition

Preliminaries

Pure Yang-Mills theory

Dynamical quarks

Perturbative thermal QCD

Basic thermal field theory

IR Problems

Effective Theory Approach

Summary

Outline

Phase diagram of QCD

Tools for finite-temperature QCD

The phase diagram

The phases of QCD

The deconfinement transition

Preliminaries

Pure Yang-Mills theory

Dynamical quarks

Perturbative thermal QCD

Basic thermal field theory

IR Problems

Effective Theory Approach

Summary

Setting the stage

► Today, specialize to equilibrium thermodynamics of QCD, keeping *N_c* and quark masses unfixed

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_f \bar{\psi}_f (\not\!\!D + i m_f) \psi_f, \\ F^a_{\mu\nu} &\equiv \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu, \\ D_\mu &\equiv \partial_\mu - i g A^a_\mu T^a, \ \operatorname{Tr} T^a T^b &= \frac{1}{2} \delta^{ab} \end{split}$$

- Want to know (among other things)
 - Structure of QCD phase diagram: Location of transition lines, critical points,...
 - Properties of deconfinement transition
 - Equation of state

Setting the stage

► Today, specialize to equilibrium thermodynamics of QCD, keeping *N_c* and quark masses unfixed

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_f \bar{\psi}_f (\not\!\!D + i m_f) \psi_f, \\ F^a_{\mu\nu} &\equiv \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu, \\ D_\mu &\equiv \partial_\mu - i g A^a_\mu T^a, \ \operatorname{Tr} T^a T^b &= \frac{1}{2} \delta^{ab} \end{split}$$

- Want to know (among other things):
 - Structure of QCD phase diagram: Location of transition lines, critical points,...
 - Properties of deconfinement transition
 - Equation of state

Tools available

- Lattice QCD
 - Only non-perturbative first principles tool: Most trustworthy whenever available
 - Limitations: $T \sim T_c$, small μ (sign problem!), realistic quark masses....
 - Limited use with real time phenomena
- Weak coupling methods
 - Asymptotic freedom \Rightarrow At asymptotically high T or μ , perturbation theory guaranteed to "converge"
 - Can probe entire parameter space of theory (μ, N_c, N_f quark masses); even real time no problem
 - Limitation: Expansions well behaved only at $T \gg T_c$ $(\mu \gg \mu_c)$ excludes most interesting regime

Tools available

- Lattice QCD
 - Only non-perturbative first principles tool: Most trustworthy whenever available
 - Limitations: $T \sim T_c$, small μ (sign problem!), realistic quark masses....
 - Limited use with real time phenomena
- Weak coupling methods
 - Asymptotic freedom \Rightarrow At asymptotically high T or μ , perturbation theory guaranteed to "converge"
 - ► Can probe entire parameter space of theory (μ , N_c , N_f , quark masses); even real time no problem
 - Limitation: Expansions well behaved only at $T \gg T_c$ $(\mu \gg \mu_c)$ excludes most interesting regime

Effective theories

- Ideology: Identify relevant degrees of freedom, and study simpler theory
- ► Chiral lagrangian, EQCD, Polyakov loop models, Z_NQCD,...
- Seldom obtain quantitatively new insight independent of above two methods
- Gauge-gravity duality
 - ▶ Conjectured duality between $SU(N_c)$ $\mathcal{N}=4$ Super Yang-Mills in 4d and type IIB string theory in $AdS_5 \times S_5$
 - Enables analytic calculations in strongly coupled large N_c non-Abelian gauge theory — including real time observables
 - ▶ Limitations: $\mathcal{N} = 4$ SYM \neq QCD, having to take N_c , $\lambda \to \infty$,...
 - Immensely active field at the moment; new progress being made every day

Effective theories

- Ideology: Identify relevant degrees of freedom, and study simpler theory
- ► Chiral lagrangian, EQCD, Polyakov loop models, Z_NQCD,...
- Seldom obtain quantitatively new insight independent of above two methods
- Gauge-gravity duality
 - ▶ Conjectured duality between $SU(N_c)$ $\mathcal{N}=4$ Super Yang-Mills in 4d and type IIB string theory in $AdS_5 \times S_5$
 - Enables analytic calculations in strongly coupled large N_c non-Abelian gauge theory — including real time observables
 - ▶ Limitations: $\mathcal{N} = 4$ SYM \neq QCD, having to take N_c , $\lambda \to \infty$,...
 - Immensely active field at the moment; new progress being made every day

Phase diagram

- Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?
 - Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities
- Universality arguments (based on symmetries, etc.) useful but ultimately a numerical problem
 - ▶ Lattice QCD invaluable at small μ compare to situation at high μ , small T
- ▶ Answer highly dependent of N_c , N_f , quark masses; here try to get as close to physical case as possible

Phase diagram

- Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?
 - Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities
- Universality arguments (based on symmetries, etc.) useful, but ultimately a numerical problem
 - ▶ Lattice QCD invaluable at small μ compare to situation at high μ , small T
- Answer highly dependent of N_c, N_f, quark masses; here try to get as close to physical case as possible

Phase diagram

- Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?
 - Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities
- Universality arguments (based on symmetries, etc.) useful, but ultimately a numerical problem
 - ▶ Lattice QCD invaluable at small μ compare to situation at high μ , small T
- ▶ Answer highly dependent of N_c , N_f , quark masses; here try to get as close to physical case as possible

The phases of QCD

- 1. Small T and μ_B : Hadron gas
 - Dilute gas of color neutral bound states
 - Thermodynamic description in terms of resonance gas model
- 2. $T \lesssim$ 10 MeV, 308 MeV $< \mu_B \lesssim$ 1 GeV: Hadron liquid (including nuclear superfluid)
 - Beyond nuclear ground state, hadron gas becomes dense, liquid-like
 - Separated from hadron gas by first order (water-vapor-like) transition line, ending at 2nd order critical point

- 3. $T \gtrsim$ 180 MeV or $\mu_B \gtrsim$ 1 GeV, $T \gtrsim$ 100 MeV: Quark gluon plasma (QGP)
 - Description in terms of deconfined quarks, gluons; much more to follow
- 4. Asymptotically high $\mu_{B}, T \lesssim 100$ MeV: Color-flavor locked (CFL) phase
 - Single gluon exchange provides attractive coupling between quarks on Fermi surface ⇒ BCS pairing
 - Condensate invariant under simultaneous transformation in color and flavor space, hence CFL
 - Description via effective theories (NJL models,...)
- 5. 1 GeV $\lesssim \, \mu_{B} \, \lesssim$?, $T \, \lesssim \,$ 100 MeV : Non-CFL superconductor
 - Precise nature still undetermined (kaon condensation?)
 - Problem: Not many first principles method available

Tools for finite-temperature QCD The phase diagram The phases of QCD

In the rest of the talk, look at the high T, small μ region in more detail: Quark gluon plasma

Outline

Phase diagram of QCD

Tools for finite-temperature QCD The phase diagram The phases of QCD

The deconfinement transition

Preliminaries
Pure Yang-Mills theory
Dynamical guarks

Perturbative thermal QCD

Basic thermal field theory IR Problems Effective Theory Approach

Summary

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - ▶ Asymptotic freedom ⇒ Description of system in terms of quarks, gluons
- Hard to study experimentally weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - ► Reveals strong dependence on N_c , N_f , m_q
- ▶ Let's fix $N_c = 3$ and start from the cleanest case..

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - ▶ Asymptotic freedom ⇒ Description of system in terms of quarks, gluons
- Hard to study experimentally weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - ► Reveals strong dependence on N_c , N_f , m_q
- ▶ Let's fix $N_c = 3$ and start from the cleanest case..

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - ➤ Asymptotic freedom ⇒ Description of system in terms of quarks, gluons
- Hard to study experimentally weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - Reveals strong dependence on N_c, N_f, m_q
- Let's fix $N_c = 3$ and start from the cleanest case...

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - ▶ Asymptotic freedom ⇒ Description of system in terms of quarks, gluons
- Hard to study experimentally weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - Reveals strong dependence on N_c, N_f, m_q
- Let's fix $N_c = 3$ and start from the cleanest case...

Pure Yang-Mills theory: The center symmetry

► Full gauge symmetry of SU(3) Yang-Mills theory

$$egin{aligned} A_{\mu}(x) &
ightarrow s(x) \left(A_{\mu}(x) + i \, \partial_{\mu}\right) s(x)^{\dagger}, \ s(x) \in SU(3) \ s(x + eta \, \hat{e}_t) &= z \, s(x) \,, \ z \in Z(3) \end{aligned}$$

The Wilson line transforms as a Z(3) fundamental

$$\Omega(\mathbf{x}) \equiv \mathcal{P} \exp \left[i \int_0^{\beta} \mathrm{d} \tau \, A_0(\tau, \mathbf{x}) \right]$$

 $\operatorname{Tr} \Omega(\mathbf{x}) \rightarrow z \operatorname{Tr} \Omega(\mathbf{x})$

- $\triangleright \Omega$ order parameter for deconfinement transition
 - $|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle| = e^{-\beta \Delta F_q(\mathbf{x})}$
 - Non-zero value signals existence of free color charges

Pure Yang-Mills theory: The center symmetry

► Full gauge symmetry of SU(3) Yang-Mills theory

$$egin{aligned} A_{\mu}(x) &
ightarrow s(x) \left(A_{\mu}(x) + i \, \partial_{\mu}\right) s(x)^{\dagger}, \ s(x) \in SU(3) \ s(x + eta \, \hat{\mathbf{e}}_t) &= z \, s(x) \,, \ z \in Z(3) \end{aligned}$$

▶ The Wilson line transforms as a Z(3) fundamental

$$\Omega(\mathbf{x}) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau \, A_0(\tau, \mathbf{x}) \right]$$
 $\operatorname{Tr} \Omega(\mathbf{x}) \rightarrow z \operatorname{Tr} \Omega(\mathbf{x})$

- Ω order parameter for deconfinement transition
 - $|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle| = e^{-\beta \Delta F_q(\mathbf{x})}$
 - Non-zero value signals existence of free color charges

Pure Yang-Mills theory: The center symmetry

Full gauge symmetry of SU(3) Yang-Mills theory

$$egin{aligned} A_{\mu}(x) &
ightarrow s(x) \left(A_{\mu}(x) + i \, \partial_{\mu}\right) s(x)^{\dagger}, \ s(x) \in SU(3) \ s(x + eta \, \hat{e}_t) &= z \, s(x) \,, \ z \in Z(3) \end{aligned}$$

The Wilson line transforms as a Z(3) fundamental

$$\Omega(\mathbf{x}) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau \, A_0(\tau, \mathbf{x}) \right]$$
$$\operatorname{Tr} \Omega(\mathbf{x}) \rightarrow z \operatorname{Tr} \Omega(\mathbf{x})$$

- Ω order parameter for deconfinement transition
 - $|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle| = e^{-\beta \Delta F_q(\mathbf{x})}$
 - Non-zero value signals existence of free color charges

- ▶ In deconfined phase, effective potential for Ω has degenerate minima $\Omega_{\min} \sim e^{i2\pi n/3}\mathbf{1}$, $n \in \{0, 1, 2\}$
 - Tunnelings between different vacua important near T_c
 - At (1st order) phase transition quadruple point with phase coexistence with the confining one

Inclusion of dynamical quarks

- ▶ Dynamical $(m_q < \infty)$ quarks break Z(3) symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - ▶ Jump (rapid change) in $|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle|$ nevertheless still visible in phase transition region
- With N_f flavors of (nearly) massless quarks, chiral symmetry explicit at high T
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - ▶ Current understanding: Physical transition cross-over at $\mu = 0$ first order line starts from critical point at $(T, \mu) \approx (170.290)$ MeV

Inclusion of dynamical quarks

- ▶ Dynamical $(m_q < \infty)$ quarks break Z(3) symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - ▶ Jump (rapid change) in $|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle|$ nevertheless still visible in phase transition region
- With N_f flavors of (nearly) massless quarks, chiral symmetry explicit at high T
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - ▶ Current understanding: Physical transition cross-over at $\mu = 0$ first order line starts from critical point at $(T, \mu) \approx (170.290)$ MeV

Inclusion of dynamical quarks

- ▶ Dynamical ($m_q < \infty$) quarks break Z(3) symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - ▶ Jump (rapid change) in $|\langle {\rm Tr}\,\Omega({\bf x})\rangle|$ nevertheless still visible in phase transition region
- With N_f flavors of (nearly) massless quarks, chiral symmetry explicit at high T
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - ▶ Current understanding: Physical transition cross-over at $\mu = 0$ first order line starts from critical point at $(T, \mu) \approx (170,290)$ MeV

Outline

Phase diagram of QCD

Tools for finite-temperature QCD The phase diagram

The phases of QCD

The deconfinement transition

Preliminaries
Pure Yang-Mills theory
Dynamical guarks

Perturbative thermal QCD

Basic thermal field theory IR Problems Effective Theory Approach

Summary

Recap of thermal field theory

► For equilibrium thermodynamics, want to compute most importantly the partition function

$$p = \lim_{V \to \infty} \frac{T}{V} \ln Z,$$

$$Z \equiv \operatorname{Tr} \exp \left[-\frac{\mathcal{H} - \sum_{f} \mu_{f} N_{f}}{T} \right]$$

- Recipe of perturbation theory: Expand functional integral in g to obtain loop expansion (in vacuum diagrams)
 - ▶ Main difference to T = 0: Space-time now $\mathbb{R}^3 \times S^1$

Recap of thermal field theory

► For equilibrium thermodynamics, want to compute most importantly the partition function

$$\begin{split} \rho &= \lim_{V \to \infty} \frac{T}{V} \ln Z, \\ Z &\equiv \operatorname{Tr} \exp \left[-\frac{\mathcal{H} - \sum_{f} \mu_{f} N_{f}}{T} \right] = \sum_{\phi} \langle \phi | \exp \left[-\frac{\mathcal{H} - \sum_{f} \mu_{f} N_{f}}{T} \right] | \phi \rangle \\ &= \int_{\phi(\tau = 0, x) = \phi(\tau = 1/T, x)} \mathcal{D} \phi \, \mathrm{e}^{-S} \end{split}$$

- ▶ Recipe of perturbation theory: Expand functional integral in g to obtain loop expansion (in vacuum diagrams)
 - ▶ Main difference to T = 0: Space-time now $\mathbb{R}^3 \times S$

Recap of thermal field theory

 For equilibrium thermodynamics, want to compute most importantly the partition function

$$\begin{split} \rho &= \lim_{V \to \infty} \frac{T}{V} \ln Z, \\ Z &\equiv \operatorname{Tr} \exp \left[-\frac{\mathcal{H} - \sum_{f} \mu_{f} N_{f}}{T} \right] = \sum_{\phi} \langle \phi | \exp \left[-\frac{\mathcal{H} - \sum_{f} \mu_{f} N_{f}}{T} \right] | \phi \rangle \\ &= \int_{\phi(\tau = 0, \mathbf{x}) = \phi(\tau = 1/T, \mathbf{x})} \mathcal{D} \phi \, \mathrm{e}^{-S} \end{split}$$

- ► Recipe of perturbation theory: Expand functional integral in *g* to obtain loop expansion (in vacuum diagrams)
 - ▶ Main difference to T = 0: Space-time now $\mathbb{R}^3 \times S^1$

IR Sector of QCD

- Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order
 - ► To obtain finite result, need to resum infinite classes of diagrams $\Rightarrow \mathcal{O}(a^3)$ term for pressure
- Need detailed understanding of energy scales contributing to the problem

IR Sector of QCD

- Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order
 - ▶ To obtain finite result, need to resum infinite classes of diagrams $\Rightarrow \mathcal{O}(g^3)$ term for pressure
- Need detailed understanding of energy scales contributing to the problem

IR Sector of QCD

- Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order
 - ▶ To obtain finite result, need to resum infinite classes of diagrams $\Rightarrow \mathcal{O}(g^3)$ term for pressure
- Need detailed understanding of energy scales contributing to the problem

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales:

- ▶ $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - ▶ $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high 7
- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - ▶ $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high 7
- $\lambda \sim 1/(g^2T)$: Screening length of static color magnetic fluctuations, inverse "magnetic mass"
 - ▶ $n_b(E)g^2(T) \sim g^0(T)$ ⇒ Physics non-perturbative at high T

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left\lceil n_{b/f}(E) \equiv 1/(\mathrm{e}^{E/T} \mp 1) \right\rceil$:

- ▶ $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - ▶ $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T
- ▶ $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - ▶ $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T
- $\lambda \sim 1/(g^2T)$: Screening length of static color magnetic fluctuations, inverse "magnetic mass"
 - ▶ $n_b(E)g^2(T) \sim g^0(T)$ ⇒ Physics non-perturbative at high T

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left\lceil n_{b/f}(E) \equiv 1/(\mathrm{e}^{E/T} \mp 1) \right\rceil$:

- ▶ $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - ▶ $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T
- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - ▶ $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T
- $\lambda \sim 1/(g^2T)$: Screening length of static color magnetic fluctuations, inverse "magnetic mass"
 - ▶ $n_b(E)g^2(T) \sim g^0(T)$ ⇒ Physics non-perturbative at high T

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left\lceil n_{b/f}(E) \equiv 1/(\mathrm{e}^{E/T} \mp 1) \right\rceil$:

- ▶ $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - ▶ $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T
- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - ▶ $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T
- $\lambda \sim 1/(g^2T)$: Screening length of static color magnetic fluctuations, inverse "magnetic mass"
 - ▶ $n_b(E)g^2(T) \sim g^0(T)$ ⇒ Physics non-perturbative at high T

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left\lceil n_{b/f}(E) \equiv 1/(\mathrm{e}^{E/T} \mp 1) \right\rceil$:

- ▶ $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - ▶ $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T
- ▶ $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - ▶ $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T
- $\lambda \sim 1/(g^2T)$: Screening length of static color magnetic fluctuations, inverse "magnetic mass"
 - ▶ $n_b(E)g^2(T) \sim g^0(T)$ ⇒ Physics non-perturbative at high T

- Strict loop expansions of thermodynamic quantities IR divergent
 - ▶ Solution: Resum contributions of scales gT and g^2T
 - Get terms non-analytic in g^2 in expansions
- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories
- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan

- Strict loop expansions of thermodynamic quantities IR divergent
 - ▶ Solution: Resum contributions of scales gT and g^2T
 - ▶ Get terms non-analytic in g^2 in expansions
- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories
- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan

- Strict loop expansions of thermodynamic quantities IR divergent
 - ▶ Solution: Resum contributions of scales gT and g^2T
 - ▶ Get terms non-analytic in g^2 in expansions
- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories
- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - ► Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan

- Scale hierarchy ⇒ Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - ▶ Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof's (Braaten, Nieto)

$$\mathcal{L}_{\text{EQCD}} = g_{\text{E}}^{-2} \left\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [(D_i A_0)^2] \right.$$

$$+ m_{\text{E}}^2 \operatorname{Tr} (A_0^2) + \lambda_{\text{E}} \operatorname{Tr} (A_0^4) \right\} + \delta \mathcal{L}_{\text{E}},$$

$$g_{\text{E}} \equiv \sqrt{T} g, \ m_{\text{E}} \sim gT, \ \lambda_{\text{E}} \sim g^2$$

 Parameters available through comparison of long distance correlators in EQCD and full QCD

- Scale hierarchy ⇒ Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - ▶ Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof's (Braaten, Nieto)

$$\mathcal{L}_{\text{EQCD}} = g_{\text{E}}^{-2} \left\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [(D_i A_0)^2] \right.$$

$$+ m_{\text{E}}^2 \operatorname{Tr} (A_0^2) + \lambda_{\text{E}} \operatorname{Tr} (A_0^4) \right\} + \delta \mathcal{L}_{\text{E}},$$

$$g_{\text{E}} \equiv \sqrt{T} g, \ m_{\text{E}} \sim gT, \ \lambda_{\text{E}} \sim g^2$$

 Parameters available through comparison of long distance correlators in EQCD and full QCD

- Scale hierarchy ⇒ Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - ▶ Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof's (Braaten, Nieto)

$$\begin{split} \mathcal{L}_{\text{EQCD}} &= g_{\text{E}}^{-2} \bigg\{ \frac{1}{2} \, \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} \big[(D_i A_0)^2 \big] \\ &+ m_{\text{E}}^2 \, \mathrm{Tr} (A_0^2) + \lambda_{\text{E}} \, \mathrm{Tr} (A_0^4) \bigg\} + \delta \mathcal{L}_{\text{E}}, \\ g_{\text{E}} &\equiv \sqrt{T} g, \; m_{\text{E}} \sim g T, \; \lambda_{\text{E}} \sim g^2 \end{split}$$

 Parameters available through comparison of long distance correlators in EQCD and full QCD

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- ▶ Near T_c theory unphysical due to loss of Z(3) symmetry
 - Can be cured by integrating in some heavy dof's (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- Near T_c theory unphysical due to loss of Z(3) symmetry
 - Can be cured by integrating in some heavy dof's (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- ▶ Near T_c theory unphysical due to loss of Z(3) symmetry
 - Can be cured by integrating in some heavy dof's (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- ▶ Near T_c theory unphysical due to loss of Z(3) symmetry
 - Can be cured by integrating in some heavy dof's (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected

Recent Applications of Dim. Red. Approach

- Equation of state (Kajantie, Laine, Rummukainen, Schröder)
- μ -dependence of p & quark number susceptibilities (AV)
- Spatial 't Hooft loop (Giovannangeli, Korthals Altes)
- ► Two-loop gauge coupling at high *T* (Laine, Schröder)
- Correlation lengths (Hart, Laine, Philipsen; Laine, Vepsäläinen)
- Spatial string tension (Laine, Schröder)
- Standard model pressure (Gynther, Vepsäläinen)
- Four-loop pressure of ϕ^4 theory (Gynther, Laine, Schröder, Torrero, AV)

Example: Spatial String Tension

Laine, Schröder (2005): Compute in EQCD

$$\sigma_{s} \equiv -\lim_{R_{1}\to\infty}\lim_{R_{2}\to\infty}\frac{1}{R_{1}R_{2}}\ln W_{S}(R_{1},R_{2})$$

to 2-loop order and compare to full theory lattice data.

Example: Spatial String Tension

Outline

Phase diagram of QCD

Tools for finite-temperature QCD

The phase diagram

The phases of QCD

The deconfinement transition

Preliminaries

Pure Yang-Mills theory

Dynamical quarks

Perturbative thermal QCD

Basic thermal field theory

IR Problems

Effective Theory Approach

Summary

Summary

- At present, limited tools available for studying equilibrium thermodynamics of QCD
 - Lattice QCD most fundamental, weak coupling methods most versatile
- QCD has rich phase structure, now largely determined through lattice studies
 - Open questions: Nature/location of critical endpoint, non-CFL superconducting phases, value of T_c for deconfinement / chiral transitions,...
 - ▶ Deconfinement transition believed to be cross-over, critical point at $(T, \mu) \approx (170, 290)$ MeV
- ▶ At high *T*, perturbative QCD suffers from IR problems
 - Long distance properties of QCD describable through dimensionally reduced effective theory

