Finite-temperature Field Theory

Aleksi Vuorinen

CERN

Initial Conditions in Heavy Ion Collisions
Goa, India, September 2008
Outline

Phase diagram of QCD
 Tools for finite-temperature QCD
 The phase diagram
 The phases of QCD

The deconfinement transition
 Preliminaries
 Pure Yang-Mills theory
 Dynamical quarks

Perturbative thermal QCD
 Basic thermal field theory
 IR Problems
 Effective Theory Approach

Summary
Outline

Phase diagram of QCD
 Tools for finite-temperature QCD
 The phase diagram
 The phases of QCD

The deconfinement transition
 Preliminaries
 Pure Yang-Mills theory
 Dynamical quarks

Perturbative thermal QCD
 Basic thermal field theory
 IR Problems
 Effective Theory Approach

Summary
Setting the stage

- Today, specialize to equilibrium thermodynamics of QCD, keeping N_c and quark masses unfixed

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} F_{\mu \nu}^a F_{\mu \nu}^a + \sum_f \bar{\psi}_f (\hat{D} + i m_f) \psi_f,$$

$$F_{\mu \nu}^a \equiv \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g f^{abc} A_\mu^b A_\nu^c,$$

$$D_\mu \equiv \partial_\mu - ig A_\mu^a T^a, \quad \text{Tr } T^a T^b = \frac{1}{2} \delta^{ab}$$

- Want to know (among other things):
 - Structure of QCD phase diagram: Location of transition lines, critical points,...
 - Properties of deconfinement transition
 - Equation of state
Setting the stage

Today, specialize to equilibrium thermodynamics of QCD, keeping N_c and quark masses unfixed

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} F_{\mu\nu}^a F_{\mu\nu}^a + \sum_f \bar{\psi}_f (\Slash{D} + i m_f) \psi_f,$$

$$F_{\mu\nu}^a \equiv \partial_\mu A_{\nu}^a - \partial_\nu A_{\mu}^a + g f^{abc} A_{\mu}^b A_{\nu}^c,$$

$$D_\mu \equiv \partial_\mu - ig A_\mu^a T^a, \quad \text{Tr } T^a T^b = \frac{1}{2} \delta^{ab}$$

Want to know (among other things):

- Structure of QCD phase diagram: Location of transition lines, critical points,...
- Properties of deconfinement transition
- Equation of state
Tools available

- **Lattice QCD**
 - Only non-perturbative first principles tool: Most trustworthy whenever available
 - Limitations: $T \sim T_c$, small μ (sign problem!), realistic quark masses,...
 - Limited use with real time phenomena

- **Weak coupling methods**
 - Asymptotic freedom \Rightarrow At asymptotically high T or μ, perturbation theory guaranteed to "converge"
 - Can probe entire parameter space of theory (μ, N_c, N_f, quark masses); even real time no problem
 - Limitation: Expansions well behaved only at $T \gg T_c$ ($\mu \gg \mu_c$) — excludes most interesting regime
Tools available

- **Lattice QCD**
 - Only non-perturbative first principles tool: Most trustworthy whenever available
 - Limitations: $T \sim T_c$, small μ (sign problem!), realistic quark masses,...
 - Limited use with real time phenomena

- **Weak coupling methods**
 - Asymptotic freedom \Rightarrow At asymptotically high T or μ, perturbation theory guaranteed to "converge"
 - Can probe entire parameter space of theory (μ, N_c, N_f, quark masses); even real time no problem
 - Limitation: Expansions well behaved only at $T \gg T_c$ ($\mu \gg \mu_c$) — excludes most interesting regime
Effective theories

- Ideology: Identify relevant degrees of freedom, and study simpler theory
- Chiral lagrangian, EQCD, Polyakov loop models, Z_NQCD,...
- Seldom obtain quantitatively new insight independent of above two methods

Gauge-gravity duality

- Conjectured duality between $SU(N_c) \mathcal{N} = 4$ Super Yang-Mills in 4d and type IIB string theory in $AdS_5 \times S_5$
- Enables analytic calculations in strongly coupled large N_c non-Abelian gauge theory — including real time observables
- Limitations: $\mathcal{N} = 4$ SYM \neq QCD, having to take $N_c, \lambda \rightarrow \infty,...$
- Immensely active field at the moment; new progress being made every day
Effective theories

- Ideology: Identify relevant degrees of freedom, and study simpler theory
- Chiral lagrangian, EQCD, Polyakov loop models, $Z_N\text{QCD},...$
- Seldom obtain quantitatively new insight independent of above two methods

Gauge-gravity duality

- Conjectured duality between $\text{SU}(N_c) \mathcal{N} = 4$ Super Yang-Mills in $4d$ and type IIB string theory in $\text{AdS}_5 \times S_5$
- Enables analytic calculations in strongly coupled large N_c non-Abelian gauge theory — including real time observables
- Limitations: $\mathcal{N} = 4$ SYM \neq QCD, having to take $N_c, \lambda \to \infty,...$
- Immensely active field at the moment; new progress being made every day
Phase diagram

Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?

- Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities

- Universality arguments (based on symmetries, etc.) useful, but ultimately a numerical problem
 - Lattice QCD invaluable at small μ — compare to situation at high μ, small T

- Answer highly dependent of $N_c, N_f, \text{quark masses}$; here try to get as close to physical case as possible
Phase diagram

- Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?
 - Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities
- Universality arguments (based on symmetries, etc.) useful, but ultimately a numerical problem
 - Lattice QCD invaluable at small μ — compare to situation at high μ, small T
- Answer highly dependent of N_c, N_f, quark masses; here try to get as close to physical case as possible
Phase diagram

Most fundamental question to answer when studying equilibrium thermodynamics: What are the phases of your theory as a function of its parameters?

- Phase transitions characterized by jumps (continuous or discontinuous) in thermodynamic quantities

- Universality arguments (based on symmetries, etc.) useful, but ultimately a numerical problem
 - Lattice QCD invaluable at small μ — compare to situation at high μ, small T

- Answer highly dependent of N_c, N_f, quark masses; here try to get as close to physical case as possible
Phase diagram of QCD
The deconfinement transition
Perturbative thermal QCD
Summary

Tools for finite-temperature QCD
The phase diagram
The phases of QCD
The phases of QCD

1. Small T and μ_B: Hadron gas
 ▶ Dilute gas of color neutral bound states
 ▶ Thermodynamic description in terms of resonance gas model

2. $T \lesssim 10$ MeV, 308 MeV $< \mu_B \lesssim 1$ GeV: Hadron liquid (including nuclear superfluid)
 ▶ Beyond nuclear ground state, hadron gas becomes dense, liquid-like
 ▶ Separated from hadron gas by first order (water-vapor-like) transition line, ending at 2nd order critical point
3. $T \gtrsim 180$ MeV or $\mu_B \gtrsim 1$ GeV, $T \gtrsim 100$ MeV: Quark gluon plasma (QGP)
 - Description in terms of deconfined quarks, gluons; much more to follow

4. Asymptotically high μ_B, $T \lesssim 100$ MeV: Color-flavor locked (CFL) phase
 - Single gluon exchange provides attractive coupling between quarks on Fermi surface \Rightarrow BCS pairing
 - Condensate invariant under simultaneous transformation in color and flavor space, hence CFL
 - Description via effective theories (NJL models, ...)

5. 1 GeV $\lesssim \mu_B \lesssim ?$, $T \lesssim 100$ MeV: Non-CFL superconductor
 - Precise nature still undetermined (kaon condensation?)
 - Problem: Not many first principles method available
In the rest of the talk, look at the high T, small μ region in more detail: Quark gluon plasma
Outline

Phase diagram of QCD
 Tools for finite-temperature QCD
 The phase diagram
 The phases of QCD

The deconfinement transition
 Preliminaries
 Pure Yang-Mills theory
 Dynamical quarks

Perturbative thermal QCD
 Basic thermal field theory
 IR Problems
 Effective Theory Approach

Summary
Elementary considerations

▶ Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 ▶ Asymptotic freedom \Rightarrow Description of system in terms of quarks, gluons
▶ Hard to study experimentally — weak coupling methods only available in asymptopia
▶ Lattice QCD most important quantitative tool
 ▶ Reveals strong dependence on N_c, N_f, m_q
▶ Let’s fix $N_c = 3$ and start from the cleanest case...
Elementary considerations

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - Asymptotic freedom \Rightarrow Description of system in terms of quarks, gluons
- Hard to study experimentally — weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - Reveals strong dependence on N_c, N_f, m_q
- Let’s fix $N_c = 3$ and start from the cleanest case...
Elementary considerations

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - Asymptotic freedom \Rightarrow Description of system in terms of quarks, gluons
- Hard to study experimentally — weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - Reveals strong dependence on N_c, N_f, m_q
- Let’s fix $N_c = 3$ and start from the cleanest case...
Elementary considerations

- Old qualitative argument: When density of nuclear matter exceeds hadron density, nucleons start overlapping
 - Asymptotic freedom \(\Rightarrow \) Description of system in terms of quarks, gluons
- Hard to study experimentally — weak coupling methods only available in asymptopia
- Lattice QCD most important quantitative tool
 - Reveals strong dependence on \(N_c, N_f, m_q \)
- Let’s fix \(N_c = 3 \) and start from the cleanest case...
Pure Yang-Mills theory: The center symmetry

- Full gauge symmetry of SU(3) Yang-Mills theory
 \[A_\mu(x) \to s(x)(A_\mu(x) + i\partial_\mu)s(x)\dagger, \quad s(x) \in SU(3) \]
 \[s(x + \beta\hat{e}_t) = z s(x), \quad z \in Z(3) \]

- The Wilson line transforms as a Z(3) fundamental
 \[\Omega(x) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau A_0(\tau, x) \right] \]
 \[\text{Tr} \Omega(x) \to z \text{Tr} \Omega(x) \]

- \(\Omega \) order parameter for deconfinement transition
 - \(|\langle \text{Tr} \Omega(x) \rangle| = e^{-\beta \Delta F_q(x)} \)
 - Non-zero value signals existence of free color charges
Pure Yang-Mills theory: The center symmetry

- Full gauge symmetry of SU(3) Yang-Mills theory
 \[A_\mu(x) \rightarrow s(x) (A_\mu(x) + i \partial_\mu) s(x)^\dagger, \quad s(x) \in SU(3) \]
 \[s(x + \beta \hat{e}_t) = z s(x), \quad z \in Z(3) \]

- The Wilson line transforms as a Z(3) fundamental
 \[\Omega(x) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau A_0(\tau, x) \right] \]
 \[\text{Tr} \, \Omega(x) \rightarrow z \text{Tr} \, \Omega(x) \]

- \(\Omega \) order parameter for deconfinement transition
 - \(|\langle \text{Tr} \, \Omega(x) \rangle| = e^{-\beta \Delta F_q(x)} \)
 - Non-zero value signals existence of free color charges
Pure Yang-Mills theory: The center symmetry

- Full gauge symmetry of SU(3) Yang-Mills theory
 \[A_\mu(x) \rightarrow s(x) (A_\mu(x) + i \partial_\mu) s(x)^\dagger, \ s(x) \in SU(3) \]
 \[s(x + \beta \hat{e}_t) = z s(x), \ z \in Z(3) \]

- The Wilson line transforms as a Z(3) fundamental
 \[\Omega(x) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau \ A_0(\tau, x) \right] \]
 \[\text{Tr} \Omega(x) \rightarrow z \text{Tr} \Omega(x) \]

- \(\Omega \) order parameter for deconfinement transition
 - \(|\langle \text{Tr} \Omega(x) \rangle| = e^{-\beta \Delta F_q(x)} \)
 - Non-zero value signals existence of free color charges
In deconfined phase, effective potential for Ω has degenerate minima $\Omega_{\text{min}} \sim e^{i2\pi n/3}$, $n \in \{0, 1, 2\}$

- Tunnelings between different vacua important near T_c
- At (1st order) phase transition quadruple point with phase coexistence with the confining one
Inclusion of dynamical quarks

- Dynamical ($m_q < \infty$) quarks break $Z(3)$ symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - Jump (rapid change) in $|\langle \text{Tr} \Omega(x) \rangle|$ nevertheless still visible in phase transition region
- With N_f flavors of (nearly) massless quarks, chiral symmetry explicit at high T
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - Current understanding: Physical transition cross-over at $\mu = 0$ — first order line starts from critical point at $(T, \mu) \approx (170,290)$ MeV
Inclusion of dynamical quarks

- Dynamical ($m_q < \infty$) quarks break $Z(3)$ symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - Jump (rapid change) in $|\langle \text{Tr} \Omega(x) \rangle|$ nevertheless still visible in phase transition region
- With N_f flavors of (nearly) massless quarks, chiral symmetry explicit at high T
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - Current understanding: Physical transition cross-over at $\mu = 0$ — first order line starts from critical point at $(T, \mu) \approx (170,290) \text{ MeV}$
Inclusion of dynamical quarks

- Dynamical \((m_q < \infty)\) quarks break \(Z(3)\) symmetry explicitly
 - Wilson line no longer a strict order parameter for transition
 - Jump (rapid change) in \(|\langle \text{Tr} \Omega(x) \rangle|\) nevertheless still visible in phase transition region
- With \(N_f\) flavors of (nearly) massless quarks, chiral symmetry explicit at high \(T\)
 - At smaller temperatures, spontaneously broken via appearance of quark condensates
 - Chiral and deconfinement transitions closely related
- Huge lattice effort in determining phase diagram as function of quark masses
 - Current understanding: Physical transition cross-over at \(\mu = 0\) — first order line starts from critical point at \((T, \mu) \approx (170,290)\) MeV
Phase diagram of QCD
The deconfinement transition
Perturbative thermal QCD
Summary

Preliminaries
Pure Yang-Mills theory
Dynamical quarks

Aleksi Vuorinen, CERN
Finite-temperature Field Theory, Lecture 3
Outline

Phase diagram of QCD
 Tools for finite-temperature QCD
 The phase diagram
 The phases of QCD

The deconfinement transition
 Preliminaries
 Pure Yang-Mills theory
 Dynamical quarks

Perturbative thermal QCD
 Basic thermal field theory
 IR Problems
 Effective Theory Approach

Summary
Recap of thermal field theory

- For equilibrium thermodynamics, want to compute most importantly the partition function

\[p = \lim_{V \to \infty} \frac{T}{V} \ln Z, \]

\[Z \equiv \text{Tr} \exp \left[- \frac{\mathcal{H} - \sum_f \mu_f N_f}{T} \right] \]

- Recipe of perturbation theory: Expand functional integral in \(g \) to obtain loop expansion (in vacuum diagrams)

- Main difference to \(T = 0 \): Space-time now \(\mathbb{R}^3 \times S^1 \)
Recap of thermal field theory

For equilibrium thermodynamics, want to compute most importantly the partition function

\[p = \lim_{V \to \infty} \frac{1}{V} \ln Z, \]
\[Z \equiv \text{Tr} \exp \left[-\frac{\mathcal{H} - \sum_f \mu_f N_f}{T} \right] = \sum_\phi \langle \phi | \exp \left[-\frac{\mathcal{H} - \sum_f \mu_f N_f}{T} \right] | \phi \rangle \]

\[= \int_{\phi(\tau=0,x)=\phi(\tau=1/T,x)} \mathcal{D}\phi \, e^{-S} \]

Recipe of perturbation theory: Expand functional integral in \(g \) to obtain loop expansion (in vacuum diagrams)

Main difference to \(T = 0 \): Space-time now \(\mathbb{R}^3 \times S^1 \)
Recap of thermal field theory

- For equilibrium thermodynamics, want to compute most importantly the partition function

\[p = \lim_{V \to \infty} \frac{T}{V} \ln Z, \]

\[Z \equiv \text{Tr} \exp \left[-\frac{\mathcal{H} - \sum_f \mu_f N_f}{T} \right] = \sum_{\phi} \langle \phi | \exp \left[-\frac{\mathcal{H} - \sum_f \mu_f N_f}{T} \right] | \phi \rangle \]

\[= \int_{\phi(\tau=0,x)=\phi(\tau=1/T,x)} \mathcal{D} \phi \; e^{-S} \]

- Recipe of perturbation theory: Expand functional integral in \(g \) to obtain loop expansion (in vacuum diagrams)
 - Main difference to \(T = 0 \): Space-time now \(\mathbb{R}^3 \times S^1 \)
IR Sector of QCD

Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order

- To obtain finite result, need to resum infinite classes of diagrams \(\mathcal{O}(g^3) \) term for pressure

- Need detailed understanding of energy scales contributing to the problem
IR Sector of QCD

- Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order
 - To obtain finite result, need to resum infinite classes of diagrams \(\mathcal{O}(g^3) \) term for pressure
- Need detailed understanding of energy scales contributing to the problem
IR Sector of QCD

- Immediate problem: Strict loop expansions of thermodynamic quantities IR divergent at three-loop order
 - To obtain finite result, need to resum infinite classes of diagrams \(\mathcal{O}(g^3) \) term for pressure
- Need detailed understanding of energy scales contributing to the problem
IR Sector of QCD

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales:

- $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T

- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T

- $\lambda \sim 1/(g^2 T)$: Screening length of static color magnetic fluctuations, inverse ”magnetic mass”
 - $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement!
IR Sector of QCD

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left[n_{b/f}(E) \equiv \frac{1}{(e^{E/T} \mp 1)} \right]$:

- $\lambda \sim \frac{1}{(\pi T)}$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T

- $\lambda \sim \frac{1}{(gT)}$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T

- $\lambda \sim \frac{1}{(g^2 T)}$: Screening length of static color magnetic fluctuations, inverse ”magnetic mass”
 - $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement!
IR Sector of QCD

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left[n_{b/f}(E) \equiv 1/(e^{E/T} - 1) \right]$:

- $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T
- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T
- $\lambda \sim 1/(g^2 T)$: Screening length of static color magnetic fluctuations, inverse ”magnetic mass”
 - $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement!
IR Sector of QCD

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $n_{b/f}(E) \equiv 1/(e^{E/T} \mp 1)$:

- $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T

- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T

- $\lambda \sim 1/(g^2 T)$: Screening length of static color magnetic fluctuations, inverse ”magnetic mass”
 - $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement!
IR Sector of QCD

Energy Scales in Hot QCD

At asymptotically high T, with $g \ll 1$, clear separation of three length scales $\left[n_{b/f}(E) \equiv 1/(e^{E/T} \mp 1) \right]$:

- $\lambda \sim 1/(\pi T)$: Wavelength of thermal fluctuations, inverse effective mass of non-static field modes ($p_0 \neq 0$)
 - $n(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T

- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics barely perturbative at high T

- $\lambda \sim 1/(g^2 T)$: Screening length of static color magnetic fluctuations, inverse ”magnetic mass”
 - $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement!
IR Sector of QCD

- Strict loop expansions of thermodynamic quantities IR divergent
 - Solution: Resum contributions of scales gT and g^2T
 - Get terms non-analytic in g^2 in expansions

- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories

- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan
IR Sector of QCD

- Strict loop expansions of thermodynamic quantities IR divergent
 - Solution: Resum contributions of scales gT and g^2T
 - Get terms non-analytic in g^2 in expansions
- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories
- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan

Aleksi Vuorinen, CERN

Finite-temperature Field Theory, Lecture 3
IR Sector of QCD

- Strict loop expansions of thermodynamic quantities IR divergent
 - Solution: Resum contributions of scales gT and $g^2 T$
 - Get terms non-analytic in g^2 in expansions
- Two competing (and completing) approaches: Direct 4d resummations and effective 3d theories
- Resummed perturbation theory systematized with hard thermal/dense loops (HTL/HDL) (Braaten, Pisarski)
 - Reorganize perturbation expansions by treating hard and soft scales on separate footing
 - Not limited to static quantities: Classical result gluon/quark damping rates (Braaten, Pisarski)
 - In equilibrium QCD, notice improved convergence of expansions; extensive work by Andersen, Braaten & Strickland and Blaizot, Iancu & Rebhan
Effective Theories and Hot QCD

- Scale hierarchy \Rightarrow Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof's (Braaten, Nieto)

$$\mathcal{L}_{\text{EQCD}} = g^{-2}_E \left\{ \frac{1}{2} \text{Tr} F_{ij}^2 + \text{Tr} [(D_i A_0)^2] \right\} + m^2_E \text{Tr}(A_0^2) + \lambda_E \text{Tr}(A_0^4) \right\} + \delta \mathcal{L}_E,$$

$$g_E \equiv \sqrt{T} g, \ m_E \sim gT, \ \lambda_E \sim g^2$$

- Parameters available through comparison of long distance correlators in EQCD and full QCD
Effective Theories and Hot QCD

- Scale hierarchy \Rightarrow Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof’s (Braaten, Nieto)

$$
\mathcal{L}_{\text{EQCD}} = g_E^{-2} \left\{ \frac{1}{2} \text{Tr} F_{ij}^2 + \text{Tr}[(D_i A_0)^2] \right\}
+ m_E^2 \text{Tr}(A_0^2) + \lambda_E \text{Tr}(A_0^4) \right\} + \delta \mathcal{L}_E,
$$

$$
g_E \equiv \sqrt{T} g, \ m_E \sim gT, \ \lambda_E \sim g^2
$$

- Parameters available through comparison of long distance correlators in EQCD and full QCD
Effective Theories and Hot QCD

- Scale hierarchy \Rightarrow Natural to integrate out massive (non-static) modes (Appelquist, Pisarski)
 - Effective description accurate for $\lambda \gtrsim 1/(gT)$
- Integrate out heavy modes to obtain 3d effective theory EQCD for static bosonic dof's (Braaten, Nieto)

\[
\mathcal{L}_{\text{EQCD}} = g_E^{-2} \left\{ \frac{1}{2} \text{Tr}F_{ij}^2 + \text{Tr}\left[(D_iA_0)^2 \right] \right. \\
+ \left. m_E^2 \text{Tr}(A_0^2) + \lambda_E \text{Tr}(A_0^4) \right\} + \delta \mathcal{L}_E,
\]

\[
g_E \equiv \sqrt{T}g, \quad m_E \sim gT, \quad \lambda_E \sim g^2
\]

- Parameters available through comparison of long distance correlators in EQCD and full QCD
Effective Theories and Hot QCD

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- Near T_c theory unphysical due to loss of $Z(3)$ symmetry
 - Can be cured by integrating in some heavy dof’s (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected
Effective Theories and Hot QCD

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
 - Near T_c theory unphysical due to loss of $Z(3)$ symmetry
 - Can be cured by integrating in some heavy dof’s (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected
Effective Theories and Hot QCD

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- Near T_c theory unphysical due to loss of $Z(3)$ symmetry
 - Can be cured by integrating in some heavy dof’s (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected
Effective Theories and Hot QCD

- EQCD valuable in reorganizing perturbation theory
 - No need for resummations in full theory
- IR sensitive sector described by EQCD: Non-perturbative contributions available through simulations in a 3d theory
- Near T_c theory unphysical due to loss of $Z(3)$ symmetry
 - Can be cured by integrating in some heavy dof’s (AV, Yaffe), resulting in a physical phase diagram (Kurkela)
 - Breaking of the symmetry automatic in perturbative expansions; no effect at high enough T
- Finite μ has only minor effects as long as $m_D \ll T$ (Hart, Laine, Philipsen; Ipp, Kajantie, Rebhan, AV)
 - One new operator generated to Lagrangian, parameter matching affected
Recent Applications of Dim. Red. Approach

- Equation of state (Kajantie, Laine, Rummukainen, Schröder)
- μ-dependence of p & quark number susceptibilities (AV)
- Spatial ’t Hooft loop (Giovannangeli, Korthals Altes)
- Two-loop gauge coupling at high T (Laine, Schröder)
- Correlation lengths (Hart, Laine, Philipsen; Laine, Vepsäläinen)
- Spatial string tension (Laine, Schröder)
- Standard model pressure (Gynther, Vepsäläinen)
- Four-loop pressure of ϕ^4 theory (Gynther, Laine, Schröder, Torrero, AV)
Example: Spatial String Tension

Laine, Schröder (2005): Compute in EQCD

\[\sigma_s \equiv - \lim_{R_1 \to \infty} \lim_{R_2 \to \infty} \frac{1}{R_1 R_2} \ln W_S(R_1, R_2) \]

to 2-loop order and compare to full theory lattice data.
Example: Spatial String Tension

\[\frac{T_c}{\Lambda_{\overline{MS}}} = 1.10 \ldots 1.35 \]

1-loop

2-loop

4d lattice, \(N_t = 8 \)

Aleksi Vuorinen, CERN

Finite-temperature Field Theory, Lecture 3
Outline

Phase diagram of QCD
 Tools for finite-temperature QCD
 The phase diagram
 The phases of QCD

The deconfinement transition
 Preliminaries
 Pure Yang-Mills theory
 Dynamical quarks

Perturbative thermal QCD
 Basic thermal field theory
 IR Problems
 Effective Theory Approach

Summary
Summary

- At present, limited tools available for studying equilibrium thermodynamics of QCD
 - Lattice QCD most fundamental, weak coupling methods most versatile
- QCD has rich phase structure, now largely determined through lattice studies
 - Open questions: Nature/location of critical endpoint, non-CFL superconducting phases, value of T_c for deconfinement / chiral transitions,...
 - Deconfinement transition believed to be cross-over, critical point at $(T, \mu) \approx (170, 290)$ MeV
- At high T, perturbative QCD suffers from IR problems
 - Long distance properties of QCD describable through dimensionally reduced effective theory