Discussion on thermalization in heavy ion collisions

Dietrich Bödeker (Bielefeld U)

Goa, September 2008

Relativistic heavy ion collisions

quarks and gluons are knocked out of nuclei subsequent expansion, initially quasi 1-dimensional

Thermalization?

expansion, finite lifetime

thermalization requires $\Gamma_{interaction} \gg \Gamma_{expansion}$

RHIC: lifetime < 10fm

boost invariant expansion: $\Gamma_{\rm expansion} \sim \tau^{-1}$

 $\Gamma_{\rm interaction} \sim (0.5 {\rm fm})^{-1} {\rm für} \ T \sim 500 {\rm MeV}?$

Thermalization?

hydrodynamics gives experimentally observed elliptic flow v_2

only for early thermalization $au_0 \sim 0.5$ fm [Heinz]

 au_0 need not be that small (for appropriate initial conditions) [Luzum, Romatschke]

Thermalization?

experiments give no indication for longitudinal pressure p_z

$$T^{ij} = \left(egin{array}{ccc} p_{
m t} & 0 & 0 \ 0 & p_{
m t} & 0 \ 0 & 0 & p_z \end{array}
ight)$$

Theoretical framework

weak coupling limit $\alpha_s(Q) \ll 1$

- theoretical control
- ullet valid for momenta, $({\sf density})^{1/3} \sim Q \gg \Lambda_{\rm QCD}$

occupation number $f(Q) \ll 1/g^2$

weakly interacting "hard" quarks and gluons

maximal temperature: $T_{\rm max} \sim g^{2/3}Q$

Momentum anisotropy

 $au \lesssim Q^{-1}$: production of "hard" gluons with

$$p_{\perp} \sim Q$$

(isotropic momentum distribution)

free expansion in z-direction \rightarrow

$$p_z \ll p_\perp$$

while $p_z \sim p_\perp$ in equilibrium

Momentum anisotropy

Bottom up thermalization

at some point $p_z \sim gQ$

weak coupling $g\ll 1$

$$\Rightarrow p_z \ll Q$$

understanding isotropization in weak coupling requires studying extreme anisotropy

other scenario:

$$p_z \gg p_{\perp}$$

initially [Mrowczynski]

Interactions

only $2 \rightarrow 2$ scattering:

$$au_0 \sim \exp(1/\alpha_s)$$
 [Mueller]

ineleastic processes: $2 \leftrightarrow 3$ gluons

soft $(k \ll Q)$ gluon production speeds up thermalization

"bottom up thermalization" [Baier, Mueller, Son, Schiff]

$$au_0 \sim \alpha_s^{-13/5} Q^{-1}$$
, $T_0 \sim \alpha_s^{2/5} Q$

additional mechanism: plasma instabilities

collective effect

known from (QED) plasma physics

affect bottom up thermalization [DB]

Plasma instabilties

anisotropic plasmas are unstable [Weibel,...], small fluctuations grow exponentially

wave vector ${m k}^2 \sim m_0^2 \sim g^2 \int d^3p {\partial f({m p}) \over \partial p} \sim g^2 f Q^2$

Multi-scale problem

hard scale Q

$$p_{\perp} \sim Q$$

soft scale m

$$m^2$$
 \sim polarization tensor
$$\sim g^2 \int d^3p \frac{\partial f_{\rm h}}{\partial p}$$

$$\sim g^2 Q p_z f_h$$

 m/v_z

relevant for strong anisotropy $p_z/p_\perp \sim v_z \ll 1$

difficult to accomodate on one lattice

Which modes are unstable

unstable modes

$$k^2 \sim m^2$$

$$k^2 \sim m^2$$
 , $m^2 \sim g^2 f Q^2$

$$m \ll Q$$

$$m \ll Q$$
 for $f \ll \frac{1}{g^2}$

unstable modes are soft

strong anisotropy, $v_z = p_z/Q \ll 1$:

∃ unstable modes with

$$k \sim \frac{m}{v_z} \gg m$$

 \boldsymbol{k} mainly in z-direction

QED vs **QCD**

weak fields: non qualitative difference between QED and QCD

exponential growth must saturate, non-linear effect

QED: saturation when $\Delta p \sim p \sim Q$ within $t \sim k^{-1}$

- \Leftrightarrow amplitude $e {m B} k^{-1} \sim Q \quad \Leftrightarrow \quad g {m A} \sim Q$
- \rightarrow fast isotropization (?)

QCD: non-linear when

$$g\mathbf{A} \sim \nabla \quad \Leftrightarrow \quad g\mathbf{A} \sim \mathbf{k} \ll Q$$

then effect on hard gluons is still small

or maybe not? nonperturbative problem

Effect of unstable modes on hard gluons

randomly oriented domains of long wavelength gluon fields

hard gluon momenta perform random walk

 $\Rightarrow p_z$ -broadening, isotropization

more efficient than elastic scattering

Effect of unstable modes on hard gluons

Boost-invariant 1-dimensional expansion of free particles:

$$p_z \sim Q(Qt)^{-1}$$

elastic scattering:

$$p_z \sim Q(Qt)^{-1/3}$$

abelian saturation:

$$p_z \sim Q$$

non-abelian saturation:

$$p_z \sim Q(Qt)^{-1/8}$$

We need to know a lot more

how is energy transferred from unstable to stable modes for $k\gg m$?

Open questions

- what is the mechanism for saturation?
- at which amplitude does saturation occur for strong anisotropy?
- what is the spectrum of the UV cascade?
- is there a universal parametric result for the thermalization time and temperature?
- experimental signature of instabilities?
- experimental signature of longitudinal pressure?