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Relativistic heavy ion collisions

quarks and gluons are knocked out of nuclei

subsequent expansion, initially quasi 1-dimensional
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Thermalization?

expansion, finite lifetime

thermalization requires Γinteraction ≫ Γexpansion

RHIC: lifetime < 10fm

boost invariant expansion: Γexpansion ∼ τ−1

Γinteraction ∼ (0.5fm)−1 für T ∼ 500MeV?
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Thermalization?

hydrodynamics gives experimentally observed elliptic flow v2

only for early thermalization τ0 ∼ 0.5 fm [Heinz]

τ0 need not be that small (for appropriate initial conditions) [Luzum, Romatschke]
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Thermalization?

experiments give no indication for longitudinal pressure pz
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Theoretical framework

weak coupling limit αs(Q) ≪ 1

• theoretical control

• valid for momenta, (density)1/3 ∼ Q ≫ ΛQCD

occupation number f(Q) ≪ 1/g2

• weakly interacting “hard” quarks and gluons

maximal temperature: Tmax ∼ g2/3Q
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Momentum anisotropy

τ <
∼Q−1: production of ”hard” gluons

with

p⊥ ∼ Q

(isotropic momentum distribution)

free expansion in z-direction →

pz ≪ p⊥

while pz ∼ p⊥ in equilibrium
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Momentum anisotropy

Bottom up thermalization

at some point pz ∼ gQ

weak coupling g ≪ 1

⇒ pz ≪ Q

understanding isotropization in weak coupling requires studying extreme anisotropy

other scenario:

pz ≫ p⊥ initially [Mrowczynski]
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Interactions

only 2 → 2 scattering:

τ0 ∼ exp(1/αs) [Mueller]

ineleastic processes: 2 ↔ 3 gluons

soft (k ≪ Q) gluon production speeds up thermalization

“bottom up thermalization” [Baier, Mueller, Son, Schiff]

τ0 ∼ α
−13/5
s Q−1, T0 ∼ α

2/5
s Q

additional mechanism: plasma instabilities

collective effect

known from (QED) plasma physics

affect bottom up thermalization [DB]
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Plasma instabilties

anisotropic plasmas are unstable [Weibel,...], small fluctuations grow exponentially
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0 ∼ g2
∫

d3p∂f(p)
∂p ∼ g2fQ2

10



Multi-scale problem

hard scale Q

p⊥ ∼ Q

soft scale m

m2
∼ polarization tensor

∼ g2

∫

d3p
∂fh

∂p

∼ g2Qpzfh

m/vz

relevant for strong anisotropy pz/p⊥ ∼ vz ≪ 1

difficult to accomodate on one lattice
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Which modes are unstable

unstable modes k2 ∼ m2 , m2 ∼ g2fQ2

m ≪ Q for f ≪
1

g2

unstable modes are soft

strong anisotropy, vz = pz/Q ≪ 1:

∃ unstable modes with

k ∼
m

vz
≫ m

k mainly in z-direction
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QED vs QCD

weak fields: non qualitative difference between QED and QCD

exponential growth must saturate, non-linear effect

QED: saturation when ∆p ∼ p ∼ Q within t ∼ k−1

⇔ amplitude eBk−1 ∼ Q ⇔ gA ∼ Q

→ fast isotropization (?)

QCD: non-linear when

gA ∼ ∇ ⇔ gA ∼ k ≪ Q

then effect on hard gluons is still small

or maybe not? nonperturbative problem
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Effect of unstable modes on hard gluons

randomly oriented domains of long

wavelength gluon fields

hard gluon momenta perform random walk

⇒ pz-broadening, isotropization

more efficient than elastic scattering
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Effect of unstable modes on hard gluons

Boost-invariant 1-dimensional expansion of free particles:

pz ∼ Q(Qt)−1

elastic scattering:

pz ∼ Q(Qt)−1/3

abelian saturation:

pz ∼ Q

non-abelian saturation:

pz ∼ Q(Qt)−1/8
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We need to know a lot more

what is the spectrum of the UV

cascade?

how is energy transferred from unstable to stable modes for k ≫ m?
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Open questions

• what is the mechanism for saturation?

• at which amplitude does saturation occur for strong anisotropy?

• what is the spectrum of the UV cascade?

• is there a universal parametric result for the thermalization time and temperature?

• experimental signature of instabilities?

• experimental signature of longitudinal pressure?
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