Lectures on hydrodynamics - Part II: Covariant transport and the hydrodynamic limit

Denes Molnar RIKEN/BNL Research Center & Purdue University

Goa Summer School

September 8-12, 2008, International Centre, Dona Paula, Goa, India

Outline

- Nonrelativistic transport
- Covariant transport
- Connection to hydrodynamics, transport coefficients
- Initial conditions, hadronization
- Heavy-ion collisions cooling, elliptic flow, hydrodynamic limit
- Radiative transport

Covariant transport

- covariant non-equilibrium description, in terms of phase space densities of (quasi-)particles
- dynamics driven by covariant local scattering rates, capable of equilibration

• in heavy-ion physics: used for the plasma and the hadron gas stages

Nonrelativistic kinetic theory

Lagrangian mechanics

$$\vec{k}_i \equiv \frac{\partial L}{\partial \dot{\vec{x}}_i}, \qquad \dot{\vec{k}}_i = \frac{\partial L}{\partial \vec{x}_i} , \qquad L = \sum_i \frac{m \vec{x}_i^2}{2} - V(\{\vec{x}_i\}) , \qquad (1)$$

Klimontovich phase space distribution

$$F(\vec{x}, \vec{k}, t) \equiv \sum_{i} \delta^3 \left(\vec{x} - \vec{x}_i(t) \right) \delta^3 \left(\vec{k} - \vec{k}_i(t) \right)$$
(2)

satisfies the Klimontovich equation (Problem 0)

$$\frac{d}{dt}F = \frac{\partial}{\partial t}F + \frac{\vec{k}}{m}\frac{\partial}{\partial \vec{x}}F - \vec{\mathcal{K}}[F,V]\frac{\partial}{\partial \vec{k}}F = 0$$
(3)

E.g., for static two-body potentials

$$V(\{\vec{x}_i\}) = \frac{1}{2} \sum_{i \neq j} V(|\vec{x}_i - \vec{x}_j|) \implies \vec{\mathcal{K}} = \int d^3 x_2 d^3 k_2 \nabla_x V(|\vec{x} - \vec{x}_2|) F(\vec{x}_2, \vec{k}_2, t)$$
(4)

BBGKY hierarchy [Bogoliubov-Born-Green-Kirkwood-Yvon]

Define 1-, 2-, ...(n-) particle phasespace distributions via averaging over an ensemble of particles

$$\begin{aligned}
f_1(t) &\equiv \langle F(1,t) \rangle \\
f_{12}(t) &\equiv \langle F(1,t)F(2,t) \rangle - \delta^6(1-2)f_1(t) \\
\dots \end{aligned}$$
(5)

where $1 \equiv (\vec{x}_1, \vec{p}_1)$, etc.

Equations of motions for these can be obtained via averaging the Klimontovich eqn, as needed multiplied by F, $F \cdot F$, ... terms

For 2-body potentials the eqns are not closed, lowest-order involves f_{12} on the RHS

$$(\partial_t + \frac{\vec{k}}{m} \vec{\nabla}_{x_1}) f_1(t) = \langle \vec{\mathcal{K}}[F] \vec{\nabla}_{k_1} F(1,t) \rangle$$
(6)

IGNORING correlations $f_{12} = f_1 f_2$ gives the Vlasov eqn

$$\left[\partial_t + \frac{\vec{p}}{m}\vec{\nabla}_x - \left(\int d^3x_2 d^3p_2 f(\vec{x}_2, \vec{p}_2, t)\vec{\nabla}_x V(|\vec{x} - \vec{x}_2|)\right)\vec{\nabla}_p\right] f(\vec{x}, \vec{p}, t) = 0 , \quad (7)$$
which gives in a self-consistent field. E.g., for Coulomb $-(-) - a\vec{E}$, if

which gives in a self-consistent field. E.g., for Coulomb $-(...) = qE_{selfc.}$

With the Vlasov eqn, you can study dielectric properties (Problem 0b) taking a small external field $\delta \vec{E}_{ext}(\vec{x},t) \rightarrow \delta f(\vec{x},\vec{p},t) \rightarrow \delta \vec{E}(\vec{x},t)$ gives $\epsilon_L(\vec{k},\omega) = \frac{\delta E_{ext}(\vec{k},\omega)}{\delta E_{ext}(\vec{k},\omega)}$ (8)

E.g., with a static point-charge δq

$$\epsilon_L(\omega = 0, \vec{k}) = 1 + \frac{4\pi q^2 n}{Tk^2} = 1 + \frac{\mu_D^2}{k^2} \quad \to \quad \phi(r) = \frac{\delta q}{r} e^{-\mu_D r} .$$
 (9)

There is more to the story if you include higher correlations (quite involved). Progress can be made only if one assumes (Bogolyubov) that higher-order correlations evolve on progressively much faster scales then lower-order ones.

Next order (Lenard-Balescu-Landau) gives so-colled collision terms, for Coulomb interactions these correspond to a screened scattering cross section

$$v_{rel} \frac{d^3 \sigma^{\text{eff}}}{d^3 k} = \frac{4e^4 \,\delta \left(\vec{k}(\vec{v}_p - \vec{v}_{p_1})\right)}{|\epsilon_L(\vec{k}, \vec{k} \cdot \vec{v}_p)|^2} \tag{10}$$

Relativistic generalization

NO-GO theorems in relativistic Hamilton dynamics Currie, Jordan, Sudarshan... - no viable relativistic potential approach

Alternatives

• live with Vlasov limit

$$p^{\mu} \left(\partial_{\mu} + q F_{\mu\nu} \frac{\partial}{\partial p_{\nu}} \right) f = 0$$
$$\partial_{\mu} F^{\mu\nu} = J^{\nu} = q \int \frac{d^3 p}{E} p^{\nu} f$$

- have local (in space-time) interactions/rates
- derive from quantum field theory (involved) Heinz, Elze, Gyulassy, Thoma, ...

Covariant transport

(on-shell) phase-space density

$$f(x, \vec{p}) \equiv \frac{dN(\vec{x}, \vec{p}, t)}{d^3 x d^3 p} \qquad (p^{\mu} p_{\mu} = m^2)$$

is a Lorentz scalar (Problem 1)

Free streaming $\vec{x}(t) = \vec{x}(t_0) + \vec{v}(t-t_0)$ implies $f(\vec{x}_0, \vec{p}, t+\Delta t) = f(\vec{x}_0 - \vec{v}\Delta t, \vec{p}, t)$

$$\partial_t f + \vec{v} \,\vec{\nabla} f = 0 \qquad \Leftrightarrow \qquad p^\mu \partial_\mu f = 0$$

manifestly covariant.

Interactions are incorporated via collision term

$$p^{\mu}\partial_{\mu}f(x,\vec{p}) = C[f](x,\vec{p})$$

E.g., introduce two-body scatterings via a rate

$$\frac{dN_{sc}(x)}{dt} \equiv \sigma \cdot j_p(x) \, dA \cdot n_t(x) \, dz$$

 j_p - projectile current density, n_t - target density, σ - cross section Substitute $j_p \equiv n_p v_p$ and obtain the rate per unit volume at x

$$\frac{dN_{sc}(x)}{dVdt} \equiv \frac{dN_{sc}(x)}{d^4x} = \sigma \, \frac{n_p(x)}{E_p} \frac{n_t(x)}{E_t} \, E_p E_t v_p \ .$$

LHS is a Lorentz scalar (# of scatterings is frame independent), and n/E is a scalar. Noticing that in the target rest frame

$$E_p E_t v_p = \sqrt{(p_p \cdot p_t)^2 - m_p^2 m_t^2} \equiv T(p, t) \qquad \leftarrow flux \ factor$$

we DEFINE sigma to be a scalar via the manifestly covariant

$$\frac{dN_{sc}(x)}{d^4x} = \sigma \,\frac{n_p(x)}{E_p} \frac{n_t(x)}{E_t} T(p,t)$$

[an equivalent alternative form is $T(1,2) = E_1 E_2 \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2}$]

Differential $12 \rightarrow 34$ rate per unit incoming/outgoing momentum cell

$$\frac{dN_{sc}(x,\vec{p_1})}{d^4x} = \left(\prod_{i=1}^4 \frac{d^3p_i}{E_i}\right) \left(E_3 E_4 \frac{d\sigma(1,2)}{d^3p_3 d^3p_4}\right) \frac{dn_p(x,\vec{p_1})}{d^3p_1} \frac{dn_t(x,\vec{p_2})}{d^3p_2} T(1,2)$$

Combine rate of particles leaving from momentum cell d^3p_1 - loss term

$$E_{1} \frac{dN_{p}^{loss}(x,\vec{p_{1}})}{d^{4}xd^{3}p_{1}} = -(1 - \frac{1}{2}\delta_{pt}) \int \frac{d^{3}p_{2}}{E_{2}} \frac{d^{3}p_{3}}{E_{3}} \frac{d^{3}p_{4}}{E_{4}} \left(E_{3}E_{4} \frac{d\sigma^{p+t}(1,2)}{d^{3}p_{3}d^{3}p_{4}} \right) \times f_{p}(x,\vec{p_{1}}) f_{t}(x,\vec{p_{2}}) T(1,2)$$

and those entering cell d^3p_1 - $gain \ term$ to obtain

$$E_1 \frac{df_1}{dt} = \left(1 - \frac{1}{2} \delta_{pt}\right) \int_{234} \left(f_3^p f_4^t W_{34 \to 12} - f_1^p f_2^t W_{12 \to 34}\right) \equiv C_{2 \to 2}[f](x, \vec{p_1})$$

with shorthands

$$\int_{i} \equiv \int \frac{d^{3}p_{i}}{E_{i}} , \qquad f_{i}^{a} \equiv f_{a}(x, \vec{p_{i}}) , \qquad W_{12 \to 34} \equiv T(1, 2)E_{3}E_{4}\frac{d\sigma^{p+t}(1, 2)}{d^{3}p_{3}d^{3}p_{4}}$$

With detailed balance (if time-reversal and parity invariance)

$$W_{12\to 34} = W_{34\to 12} \qquad (W_{n\to m} = W_{m\to n})$$

we obtain the $2 \rightarrow 2$ transport equation for a one-component system (p = t)

$$p^{\mu}\partial_{\mu}f_1 = \frac{1}{2} \int_{234} (f_3f_4 - f_1f_2) W_{12 \to 34}$$

Generalization to multicomponent case is straightforward

$$p^{\mu}\partial_{\mu}f_{1}^{a} = \frac{1}{2}\sum_{bcd}\int_{234} (f_{3}^{c}f_{4}^{d} - f_{1}^{a}f_{2}^{b})W_{12\to34}^{ab\to cd}$$

and arbitrary $n \rightarrow m$ interactions can also be included

$$p\partial f = C_{2\to 2}[f] + C_{3\leftrightarrow 2}[f] + \cdots$$

Connection to perturbation theory:

$$W_{12\to 34} \equiv \frac{s(s-4m^2)}{4\pi} \frac{d\sigma}{dt} \delta^4 (p_1 + p_2 - p_3 - p_4)$$
$$\equiv \frac{1}{64\pi^2} |\mathcal{M}_{12\to 34}|^2 \delta^4 (12-34)$$

Covariant transport solutions

Very challenging to solve, integro-differential eqn. in 6+1D

- analytic solutions for free streaming (linear problem), or linearized transport equation
- approximate 0+1D analytic solutions in relaxation time approximation [e.g., Zhang & Gyulassy ('98)]
- numerical codes (3+1D) http://karman.physics.purdue.edu/OSCAR

Cartesian with $2 \rightarrow 2$: Zhang **ZPC**

Cartesian with $2 \rightarrow 2$, $3 \leftrightarrow 2$: Molnar MPC

 $x-y-\eta-\tau$ with $2 \rightarrow 2$: Cheng, Pratt & Csizmadia GROMIT (private)

 $x-y-\eta-t$, $2 \rightarrow 2$, $3 \leftrightarrow 2$: Xu & Greiner BAMS (private)

Hadronic codes: Bleicher, Bass et al UrQMD Ko & Lin & Subrata AMPT Nara et al JAM mean free path: characterizes local conditions

$$\lambda(x) \equiv \frac{1}{\operatorname{cross section} \times \operatorname{density}(\mathbf{x})} \qquad \begin{cases} \lambda = 0 & -\operatorname{ideal hydrodynamics} \\ \lambda = \infty - \operatorname{free streaming} \end{cases}$$

transport opacity: time-integrated, spatially averaged [DM & Gyulassy NPA 697 ('02)]

 $\chi \equiv \langle n_{coll} \rangle \langle \sin^2 \theta_{CM} \rangle \sim \#$ of collisions per parton×mom. transfer efficiency

$$\chi = \int dz \,\rho(z) \,\sigma_{transp} = \int dz \,\frac{1}{\lambda_{tr}(z)}$$

near equilibrium: related to transport coefficients (viscosity, diffusion constants)

e.g., shear viscosity $\eta \approx \frac{4}{5} \frac{T}{\sigma_{tr}}$

Transport opacity scaling

to good approximation, results (from same initial condition) mainly depend on transport opacity DM & Gyulassy, NPA697 ('02)

 $[\mu/T_0 \rightarrow \infty$: isotropic scattering, $\mu/T_0 \rightarrow 0$: forward-peaked]

Exact scalings of solutions

[DM & Gyulassy, PRC62 ('00)]

extended subdivision covariance:

 $f_i \to f'_i \equiv \boldsymbol{\ell} \cdot f_i, \qquad W^{n \to m} \to {W'}^{n \to m} \equiv W^{n \to m} / \boldsymbol{\ell}^{n-1} \qquad (\sigma \to \sigma' \equiv \sigma / \boldsymbol{\ell})$

- rescaled problem gives same answer, provided final f is divided by ℓ
- momentum scaling:

$$f(x,\vec{p}) \to f'(x,\vec{p}) \equiv \ell_p^{-3} f\left(x,\frac{\vec{p}}{\ell_p}\right), W(\{p_i\}) \to W'(\{p_i\}) \equiv \ell_p^{-2} W\left(\left\{\frac{p_i}{\ell_p}\right\}\right)$$
$$m \to m' = m/\ell_p$$

- rescales mometa and W such that particle density is unchanged
- coordinate scaling:

$$f(x, \vec{p}) \to f'(x, \vec{p}) \equiv f\left(\frac{x}{\ell_x}, \vec{p}\right), \quad W \to W' \equiv \frac{W}{\ell_x}$$

- rescales space-time and W such that the particle density stays the same

Suppose you have some initial conditions with timescale τ_0 , lengthscale R_0 , temperature T_0 , momentum/mass scale μ , cross sections σ and rapidity density $dN_0/d\eta$. The scalings imply that

$$\sigma' = l_x^{-1} l^{-1} \sigma, \qquad T'_0 = l_p T_0, \qquad R'_0 = l_x R_0, \frac{dN_0}{d\eta} = l_x l \frac{dN_0}{d\eta} \qquad \mu' = l_p \mu, \qquad \tau'_0 = l_x \tau_0.$$

Therefore, we can scale a solution to others provided that all three ratios

$$rac{\mu}{T_0} \ , \qquad rac{R_0}{ au_0} \ , \qquad \sigma rac{dN_0}{d\eta} \sim rac{ au_0}{\lambda_{MFF}}$$

remain the same ($2 \rightarrow 2$ transport)

Macroscopic quantities

charge current:
$$N_c^{\mu}(x) = \sum_i \int \frac{d^3p}{E} p^{\mu} c_i f_i(x, \vec{p})$$

energy-momentum tensor: $T^{\mu\nu}(x) = \sum_{i} \int \frac{d^{3}p}{E} p^{\mu} p^{\nu} f_{i}(x, \vec{p})$

EOM + conservation laws in scatterings imply:

$$\partial_{\mu}N_{c}^{\mu} = 0$$
 $(c_{1} + c_{2} = c_{3} + c_{4})$, $\partial_{\mu}T^{\mu\nu} = 0$ $(p_{1} + p_{2} = p_{3} + p_{4})$

for a local equilibrium distribution (see next slide)

$$f_{eq}(p,x) = \frac{g}{(2\pi^3)} \exp\left[\frac{\mu(x) - p_{\mu}u^{\mu}(x)}{T(x)}\right]$$

we recover (Problem 2) the ideal hydrodynamic expressions

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - p g^{\mu\nu} , \qquad N^{\mu}_{c} = n_{c} u^{\mu}$$

Hydrodynamic limit

entropy current (g = 1): $S^{\mu}(x) = \sum_{i} \int \frac{d^3 p}{E} p^{\mu} f_i(x, \vec{p}) \{ 1 - \ln[f_i(x, \vec{p})h^3] \}$ **H-theorem:**

 $\partial_{\mu}S^{\mu} \ge 0 \quad \Rightarrow$ entropy production in general

$$\partial_{\mu}S^{\mu} = -\int_{1}^{1} \ln(h^{3}f_{1})C[f_{1}]$$

$$= \frac{1}{2}\int_{1234}^{1234} (f_{3}f_{4} - f_{1}f_{2})W_{12 \to 34} \frac{\ln f_{3} + \ln f_{4} - \ln f_{1} - \ln f_{2}}{4}$$

$$= \frac{1}{8}\int_{1234}^{12} f_{1}f_{2}W_{12 \to 34} (z - 1)\ln z \geq 0$$

where $z \equiv f_3 f_4 / (f_1 f_2) \ge 0$ and $(z - 1) \ln z \ge 0$.

Equality (entropy maximum) requires $f_3f_4 = f_1f_2$ for ANY momenta

$$\Rightarrow \qquad f_{eq}(p,x) = e^{p_{\mu}A^{\mu}(x) + B(x)} = \frac{g}{(2\pi^3)} \exp\left[\frac{\mu(x) - p_{\mu}u^{\mu}(x)}{T(x)}\right]$$

i.e., entropy production until local equilibrium is reached

Transport coefficients

Hydrodynamic eqns come from expansion in small gradients near local equil

 $f(x,\vec{p}) = f_{eq}(x,\vec{p})[1 + \phi(x,\vec{p})] \qquad (|\phi| \ll 1 , \quad |p^{\mu}\partial_{\mu}\phi| \ll |p^{\mu}\partial_{\mu}f_{eq}|/f_{eq})$

AND substitution of the N^{μ} and $T^{\mu\nu}$ moments of the solution into the conservation laws.

As we saw, the 0-th order $\phi = 0$ gives ideal hydrodynamics (N_0^{μ} , $T_0^{\mu\nu}$). The first order solution

$$p^{\mu}\partial_{\mu}f_{eq}(x,\vec{p}) = C[f_{eq}, f_{eq}\phi](x,\vec{p}) + C[f_{eq}\phi, f_{eq}](x,\vec{p})$$
$$C[f,g] \equiv \frac{1}{2}\int_{234} (f_{3}g_{4} - f_{1}g_{2})W_{12\to 34}$$

leads to the Navier-Stokes equations. Comparison to

$$T_{1}^{\mu\nu} = T_{0}^{\mu\nu} + \eta_{s} (\nabla^{\mu}u^{\nu} + \nabla^{\nu}u^{\mu} - \frac{2}{3}\Delta^{\mu\nu}\partial^{\alpha}u_{\alpha}) + \zeta \Delta^{\mu\nu}\partial^{\alpha}u_{\alpha}$$
$$N_{1}^{\mu} = N_{0}^{\mu} + \kappa_{q} \left(\frac{nT}{\varepsilon + p}\right)^{2} \nabla^{\mu} \left(\frac{\mu}{T}\right) \qquad (\Delta^{\mu\nu} \equiv g^{\mu\nu} - u^{\mu}u^{\nu} \quad , \quad \Delta^{\mu} \equiv \Delta^{\mu\nu}\partial_{\nu})$$

gives the shear (η_s) and bulk (ζ) viscosities, and heat conductivity (κ_q) .

Computing transport coefficients can be involved [see De Groot et al, *Relativistic kinetic theory*, or Arnold, Moore & Yaffe, JHEP 0011, 001 ('00) ...]

Nevertheless, because the product $\sigma\phi$ appears, it is clear that $\phi\propto 1/\sigma$ and therefore

$$\eta_s, \zeta \propto \frac{T}{\sigma} \sim nT\lambda_{MFP} , \qquad \kappa_q \propto \frac{1}{\sigma} \sim n\lambda_{MFP}$$

i.e., in the zero mean free path limit the transport coefficients vanish and we recover ideal hydrodynamics.

Heavy-ion applications (early stage)

• perturbative calculations - Debye-screened perturbative cross sections, e.g.,

$$\frac{d\sigma^{gg \to gg}}{dt} = \frac{1}{16\pi s^2} \left| \bar{\mathcal{M}}_{gg \to gg} \right|^2 = \frac{9\pi\alpha_s^2}{2} \frac{1}{t^2} \to \frac{9\pi\alpha_s^2}{2} \frac{1}{(t-\mu_D^2)^2} \quad (\mu_D \sim gT)$$

in radiative $ggg \leftrightarrow gg$, account for the LPM effect (need $\tau_{form} \lesssim \lambda_{MFP}$)

$$|\mathcal{M}_{gg \to ggg}|^{2} = \left(\frac{9g^{4}}{2} \frac{s^{2}}{(\mathbf{q}_{T}^{2} + \mu_{D}^{2})^{2}}\right) \left(\frac{12g^{2}\mathbf{q}_{T}^{2}}{\mathbf{k}_{T}^{2}[(\mathbf{k}_{T} - \mathbf{q}_{T})^{2} + \mu_{D}^{2}]}\right) \,\Theta(k_{T}\lambda_{MFP} - \mathbf{ch}y)$$

 \bullet studies near the hydro limit - match σ to required transport coefficients, e.g.,

$$\eta_s \approx \frac{4T}{5\sigma_{tr}}$$

we need: initial conditions boundary conditions = expansion to vacuum ("empty" outside) and hadronization model

Hadronization

A poorly understood process - significant theory uncertainties.

• local parton-hadron duality (one to one) e.g., Eskola et al

assumes quarks and gluons convert to hadrons (mainly pions), preserving momenta, especially useful at low pT

• independent fragmentation (one to many) Feymann, Field, ...

relevant for high-pT quarks and gluons

• coalescence/recombination (few to one) Hwa, Yang, Biró, Zimányi, Lévai, Csizmadia, Ko,

Lin, Voloshin, DM, Greco, Fries, Müller, Nonaka, Bass, ...

to lowest order $q\bar{q} \to M$, $qqq \to B$

relevant in A+A at intermediate $2 \lesssim$ B $p_T \lesssim 6$ GeV (needs high phasespace densities)

Initial conditions

Similarities with hydrodynamics (one needs to specify initial "shapes"), however, transport also requires momentum distributions as input.

basic density profiles are similar to hydrodynamic calculations

- wounded nucleon (Glauber)
- binary collisions
- saturation model (e.g., Gribov-Levin-Rishikin approach)

momentum distributions are often based on

- at high $p_T > p_0 \sim 2$ GeV, perturbative QCD jet rates
- at low $p_T < p_0 \sim 2$ GeV, saturation physics or extrapolations (to set a certain total dN/dy)

typical initialization times are $\tau_0 \sim 0.1 - 0.2$ fm

in studies at midrapidity, boost invariance can be useful to impose

Cooling

Expanding systems cool due to p dV work

dissipation in transport slows cooling, especially in 3+1D

Elliptic flow

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

- measures strength of interactions
- self-quenching, develops at early times

macroscopically: pressure gradients

microscopically: transport opacity

⇒ larger acceleration in impact parameter direction variation in pathlength \Rightarrow momentum anisotropy v_2

v_2 builds up early

Zhang, Gyulassy & Ko ('99): anisotropy builds up during first $\sim 2~{
m fm}/c$

sharp cylinder $R=5~{
m fm},~ au_0=0.2~{
m fm}/c,~b=7.5~{
m fm},~dN^{cent}/dy=300$

Strong interactions at RHIC

Au+Au @ 130 GeV, b = 8 fm

DM & Gyulassy, NPA 697 ('02): $v_2(p_T,\chi)$ nonlinear opacity dependence 0.2 $v_2(p_T,\chi) pprox v_2^{max}(\chi) anh(p_T/p_0(\chi))$ **H** STAR prelim. (Filimonov, Nov '01) impact parameter averaged v_2 (|y| < 2) $dN_g/d\eta_{cent} = 1000$ 20.15 \rightarrow $v_2^{max} \times 5$ $\sigma_{el} \approx 45 \text{ m}^3$ $\vdash p_0 [\text{GeV}]$ 1.50.1 $\sigma_{el} \approx 20 \text{ mb}$ $p_0 \approx 0.32 \text{ GeV} \times \chi^{0.45}$ 1 0.05 $\sigma_{el} \approx 8 \text{ mb}$ perturbative value 0.50 $\sigma_{el} = 0.6 \text{ mb}$ parton-hadron $v_2^{max} \approx 0.016 \times \chi^{0.61}$ MPC Au+Au @ 130A GeV duality 0 -0.0510 20 30 40 500 0 1 $\mathbf{2}$ 3 4 56 $\chi(b=0)$ p_{\perp} [GeV]

need 15× perturbative opacities - $\sigma_{el} \times dN_g/d\eta \approx 45 \text{ mb} \times 1000$

(saturated gluon $\frac{dN^{cent}}{d\eta} = 1000$, $T_{eff} \approx 0.7$ GeV, $\tau_0 = 0.1$ fm, 1 parton $\rightarrow 1 \pi$ hadronization)

Significant randomization

correlation between initial and final momenta

light parton momenta randomize to large degree, already for $\sigma \sim 7~{\rm mb}~(\chi \sim 7)$

Not an ideal fluid

dissipation reduces v_2 by 30-50% even for $\sigma_{gg \rightarrow gg} \sim 50$ mb

DM & Huovinen, PRL94 ('05): final $v_2(p_T)$

 $v_2(\tau, p_T)$

 \rightarrow dense, strongly collective system, but still dissipative

Hydrodynamic limit and v_2

2+1D calculation (2D space, 2D momenta, no longitudinal expansion)

also works for 3+1D transport - $v_2(p_T, \sigma) = v_2^{max} \tanh(p_T/p_0)$ fits to MPC results for Au+Au at RHIC, b = 8 fm

$$v_2^{max}(\sigma) \approx \frac{0.404}{0.554 \, mb/\sigma + 1} , \qquad p_0(\sigma) \approx \frac{2.92 \, GeV}{0.187 \, mb/\sigma + 1}$$

Radiative transport

higher-order processes also contribute to thermalization

 \Rightarrow inelastic $3 \leftrightarrow 2$ roughly same as elastic with same transport cross section more enhanced for pQCD cross sections because $3 \rightarrow 2$ allows large angles

Greiner & Xu '04: find thermalization time-scale $\tau \sim 2-3$ fm/c

inelastic roughly doubles σ_{tr}

rapid cooling via $2 \rightarrow 3$, but may be because low-momentum region is empty

Xu & Greiner, NPA785, 132 ('07)

this other extreme also indicates short timescales $\sim 2~{
m fm}$

elliptic flow with $ggg \leftrightarrow gg$ (minijet initconds, $p_0 = 1.4$ GeV)

close to the experimental values at RHIC

Other interesting areas

• heavy quarks - useful cross-check of dynamics/equilibration

can also be done in the Fokker-Planck (small-angle) approximation, or in a Langevin approach (many random scatterings - Brownian motion)

Moore & Teaney... Gossiaux...

• coupling to classical color fields

Mrowczynski... Arnold, Moore, Yaffe... Dumitru, Strickland...

Wong equation: color Vlasov-Boltzmann Wong, Heinz

$$p^{\mu} \left(\partial_{\mu} + gt_a F^a_{\mu\nu} \partial_{p\nu} + gf_{abc} A^b_{\mu} t^c \partial_{ta}\right) f = C[f]$$
$$[D_{\mu}, F^{\mu\nu}_a] = J^{\nu}_a = g \int p^{\nu} t_a \left(f_q - \bar{f}_q + f_g\right) dP dQ$$

thermal plasma at $T \gg T_c$ would appear neutral - fast color rotations

 $au_{color}^{-1} \sim g^2 \ln(1/g)T \gg au_{mom}^{-1} \sim g^4 \ln(1/g)T$ Selikhov '91 Gyulassy '92

However, anistropic particle distributions are rapidly isotropised (\sim two-stream instability)

Covariant transport - summary

- covariant transport is a nonequilibrium framework to study a system of on-shell (quasi-)particles
- also useful to test formulations of hydrodynamics (transport is always causal and stable)
- elliptic flow data in Au+Au at RHIC reproduced suprisingly well with 15× enhanced perturbative $2 \rightarrow 2$ rates not enough for ideal fluid behavior
- radiative $3 \leftrightarrow 2$ is very important for thermalization, results challenge the strongly-coupled plasma paradigm (should be verified independently)
- limited equation of state (no phase transition)
- hadronization challenging
- thermalization benefits from new ingredients such as classical fields