Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Introduction

GW relation and $\mu \neq 0$

Our Results

Summary

Introduction

- The finite temperature transition in our world, i.e., QCD with \(2 + 1\) flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.

- Staggered fermions have dominated the area of nonzero temperatures and densities.
Introduction

- The finite temperature transition in our world, i.e., QCD with $2 + 1$ flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.

- Staggered fermions have dominated the area of nonzero temperatures and densities.

- The hadronic screening lengths, advocated by DeTar & Kogut (PRD ’87) to explore the large scale composition of QGP, illustrate their deficiency in the pionic screening length.

- Obtained from the long-distance behaviour of the correlator

$$\langle C_{AB}(z) \rangle = \langle \bar{A}(z) \bar{B}(0) \rangle - \langle \bar{A}(0) \rangle \langle \bar{B}(0) \rangle \sim \exp(-\mu(T)z), \text{ as } z \to \infty.$$ Here

$$\bar{A}(z) = \sum_{x,y,t} A(x, y, z, t)/N_s^2 N_t$$ is a local meson or baryon operator.
Introduction

• The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.

• Staggered fermions have dominated the area of nonzero temperatures and densities.

• The hadronic screening lengths, advocated by DeTar & Kogut (PRD ’87) to explore the large scale composition of QGP, illustrate their deficiency in the pionic screening length.

• Obtained from the long-distance behaviour of the correlator
 \[
 \langle C_{AB}(z) \rangle = \langle \bar{A}(z) \bar{B}(0) \rangle - \langle \bar{A}(0) \rangle \langle \bar{B}(0) \rangle \sim \exp(-\mu(T)z), \text{ as } z \to \infty. \]
 Here \(\bar{A}(z) = \sum_{x,y,t} A(x, y, z, t)/N_s^2 N_t \) is a local meson or baryon operator.

• Overlap fermions appear to do better.
Local masses \[\sim \ln(C(r)/C(r + 1)) \] show nice plateau behaviour for pi & rho for Overlap (left) unlike staggered (right) fermions.

Gavai, Gupta, Lacaze PRD 2008

Gavai, Gupta PRD 2002
The pionic screening length shows significant a^2 corrections for staggered (left) unlike Overlap (right) fermions.

Gavai, Gupta PRD 2002

Gavai, Gupta, Lacaze PRD 2008
QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in $T-\mu_B$ plane;
A fundamental aspect of QCD – Critical Point in $T-\mu_B$ plane; Based on symmetries and models, Expected QCD Phase Diagram

From Rajagopal-Wilczek Review
A fundamental aspect of QCD – Critical Point in $T-\mu_B$ plane; Based on symmetries and models, Expected QCD Phase Diagram … but could, however, be …

From Rajagopal-Wilczek Review
QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in T-μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review
A fundamental aspect of QCD – Critical Point in $T - \mu_B$ plane; Based on symmetries and models,
Expected QCD Phase Diagram

... but could, however, be ...

McLerran-Pisarski 2007
GW relation and $\mu \neq 0$

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5 D$.
GW relation and $\mu \neq 0$

♦ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5D$.

♦ In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi = \alpha\gamma_5(1 - \frac{a}{2}D)\psi$ and $\delta\bar{\psi} = \alpha\bar{\psi}(1 - \frac{a}{2}D)\gamma_5$, leave the action $S = \sum \bar{\psi}D\psi$ invariant:

$$
\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5D + D\gamma_5 - \frac{a}{2}D\gamma_5D - \frac{a}{2}D\gamma_5D \right]_{xy} \psi_y = 0 \tag{1}
$$
GW relation and $\mu \neq 0$

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5 D$.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D) \gamma_5$, leave the action $S = \sum \bar{\psi} D \psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D\gamma_5 - \frac{a}{2} D\gamma_5 D - \frac{a}{2} D\gamma_5 D \right]_{xy} \psi_y = 0 \quad (1)$$

♠ Overlap fermions, and Domain Wall fermions in the limit of large fifth dimension satisfy this relation.
Neuberger (PLB 1998) proposed the overlap-Dirac operator:

\[aD = 1 + A(A^\dagger A)^{-1/2} = 1 + \gamma_5 \text{sign}(\gamma_5 A) \quad \text{with} \quad A = aD_w, \quad (2) \]
Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator:

\[aD = 1 + A(A^\dagger A)^{-1/2} = 1 + \gamma_5 \text{sign}(\gamma_5 A) \quad \text{with} \quad A = aD_w, \quad (2) \]

♠ Here \(D_w \) is the Wilson-Dirac Operator given by,

\[aD_w = \frac{1}{2} \{ \gamma_\mu (\partial_\mu^* + \partial_\mu) - a\partial_\mu^* \partial_\mu \} + M, \quad (3) \]

with \(-2 < M < 0\) and \(\partial_\mu\) and \(\partial_\mu^*\) as forward and backward gauge-invariant difference operators. An extra \(a/a_4\) factor for \(\mu = 4\) at \(T \neq 0\).
Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator:

\[aD = 1 + A(A^\dagger A)^{-1/2} = 1 + \gamma_5 \text{sign}(\gamma_5 A) \quad \text{with} \quad A = aD_w, \quad (2) \]

♠ Here \(D_w \) is the Wilson-Dirac Operator given by,

\[aD_w = \frac{1}{2}\{\gamma_\mu(\partial^*_\mu + \partial_\mu) - a\partial^*_\mu\partial_\mu\} + M, \quad (3) \]

with \(-2 < M < 0\) and \(\partial_\mu\) and \(\partial^*_\mu\) as forward and backward gauge-invariant difference operators. An extra \(a/a_4\) factor for \(\mu = 4\) at \(T \neq 0\).

♠ quark with a mass: \(D(ma) = ma + (1 - ma/2)D \)
Domain Wall Fermions

Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

\[S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \overline{\psi}(x,s) D_{dw}(x,s; x', s') \psi(x', s') , \]

(4)
Domain Wall Fermions

Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

\[S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \]

where \(D_{dw} \) is defined in terms of \(D_w \) as

\[D_{dw}(x,s;x',s') = [a_5 D_w + 1] \delta_{s,s'} - [P_+ \delta_{s,s' - 1} + P_- \delta_{s,s' + 1}] , \]

with boundary conditions \(P_+ \psi(x,0) = -am \ P_+ \psi(x,N_5) \) and \(P_- \psi(x,N_5 + 1) = -am \ P_- \psi(x,1) \).
Domain Wall Fermions

Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

\[S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x' \neq 1} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \]

(4)

where \(D_{dw} \) is defined in terms of \(D_w \) as

\[D_{dw}(x,s;x',s') = [a_5 D_w + 1] \delta_{s,s'} - [P- \delta_{s,s'-1} + P+ \delta_{s,s'+1}] , \]

(5)

with boundary conditions \(P+ \psi(x,0) = -am P+ \psi(x,N_5) \) and \(P- \psi(x,N_5+1) = -am P- \psi(x,1) \).

Only light modes attached to the wall(s) are physical. Divide out heavy modes by having the \(D_{dw}(am)/D_{dw}(am = 1) \) as the effective Domain Wall operator in \(\mathbb{Z} \).
As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

\[
[(1 + am) - (1 - am)\gamma_5\tanh\left(\frac{N_5}{2} \ln |T|\right)] ,
\]

with

\[T = (1 + a_5\gamma_5 D_w P_+)^{-1}(1 - a_5\gamma_5 D_w P_-).\]
As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

\[
[(1 + am) - (1 - am)\gamma_5\tanh\left(\frac{N_5}{2} \ln |T|\right)] ,
\]

with \(T = (1 + a_5\gamma_5D_wP_+)^{-1}(1 - a_5\gamma_5D_wP_-) \).

Taking the limit \(N_5 \to \infty \) for \(a_5 = 1 \), one obtains sign function of \(\log |T| \), proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.

Taking the limit \(a_5 \to 0 \) such that \(L_5 = a_5N_5 = \text{constant} \), one can show \(N_5 \ln T \to L_5\gamma_5D_{dw} \). Further, for \(L_5 \to \infty \), DWF reduce to the overlap fermions.

We use this form in our numerical work.
Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).
Introducing Chemical Potential

- Ideally, one should construct the conserved charge as a first step.

- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Simpler alternative: $D_w \rightarrow D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
Introducing Chemical Potential

- Ideally, one should construct the conserved charge as a first step.

- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Simpler alternative: $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

- Note $\gamma_5 D_w(a\mu)$ is no longer Hermitian, requiring an extension of the sign function. B & W proposal: For complex $\lambda = (x + iy)$, $\text{sign}(\lambda) = \text{sign}(x)$.
Introducing Chemical Potential

- Ideally, one should construct the conserved charge as a first step.

- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Simpler alternative: $D_w \rightarrow D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

- Note $\gamma_5 D_w(a\mu)$ is no longer Hermitian, requiring an extension of the sign function. B & W proposal: For complex $\lambda = (x + iy)$, $\text{sign}(\lambda) = \text{sign}(x)$.

- Gattringer-Liptak, PRD 2007, showed for $M = 1$ numerically that no μ^2 divergences exist for the free case ($U = 1$).
We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that \(K(a\mu) \cdot L(a\mu) = 1 \) for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero \(\mu \). Note that

\[
\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2} D(0)\gamma_5 D(a\mu) - \frac{a}{2} D(a\mu)\gamma_5 D(0) \right]_{xy} \psi_y ,
\]

under Lüscher’s chiral transformations.
• We show this to be true analytically and for all \(M \) as well. Furthermore, this holds for all functions such that \(K(a\mu) \cdot L(a\mu) = 1 \) for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero \(\mu \). Note that

\[
\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2} D(0)\gamma_5 D(a\mu) - \frac{a}{2} D(a\mu)\gamma_5 D(0) \right] \psi_y ,
\]

under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

\[
\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a \ D(a\mu)\gamma_5 D(a\mu) = 0 ,
\]

which is not sufficient to make \(\delta S = 0 \).
• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that \(K(a\mu) \cdot L(a\mu) = 1 \) for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero \(\mu \). Note that

\[
\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right] \psi_y ,
\]

under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

\[
\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - a \ D(a\mu) \gamma_5 D(a\mu) = 0 ,
\]

which is not sufficient to make \(\delta S = 0 \). True for both Overlap and Domain Wall fermions and any \(K,L \).
Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.

- μ-dependent mass for even massless quarks.
Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.

- μ-dependent mass for even massless quarks.

- Only smooth chiral condensates: No (clear) chiral transition for any (large) μ possible. How small a, or large N_T may suffice?

- All coefficients of a Taylor expansion in μ do have the chiral invariance but the series will be smooth and should always converge.
What if . . .

♠ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5$?
What if . . .

♠ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5$? $\delta S = 0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
What if . . .

♦ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \bar{\alpha} \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5$? $\delta S = 0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

• Symmetry transformations should not depend on “external” parameter μ. Chemical potential is introduced for charges N_i with $[H, N_i] = 0$. At least the symmetry should not change as μ does.
What if . . .

♠ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \alpha \psi (1 - \frac{a}{2} D(a\mu)) \gamma_5$? $\delta S = 0$ then cleanly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

• Symmetry transformations should not depend on “external” parameter μ. Chemical potential is introduced for charges N_i with $[H, N_i] = 0$. At least the symmetry should not change as μ does.

• Moreover, symmetry groups different at each μ. Recall we wish to investigate $\langle \bar{\psi} \psi \rangle(a\mu)$ to explore if chiral symmetry is restored.

• The symmetry group remains same at each T with $\mu = 0$ $\implies \langle \bar{\psi} \psi \rangle(am = 0, T)$ is an order parameter for the chiral transition.
Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

- Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.
Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.

• Dirac operator is diagonal in momentum space. Use its eigenvalues to compute Z:

$$\lambda_{\pm} = 1 - [\text{sgn} \left(\sqrt{h^2 + h_5^2} \right) h_5 \pm i\sqrt{h^2}] / \sqrt{h^2 + h_5^2},$$

with

$$h_i = -\sin a p_i, \quad i = 1, 2 \text{ and } 3, \quad h_4 = -a \sin(a_4 p_4)/a_4 \text{ and}$$

$$h_5 = M - \sum_{i=1}^{3} [1 - \cos(a p_i)] - a[1 - \cos(a_4 p_4)]/a_4.$$
• Easy to show that $\epsilon = 3P$ for all a and a_4.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ/ϵ_{SB} which is also P/P_{SB}.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ/ϵ_{SB} which is also P/P_{SB}.

• Hiding p_i-dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i, n} F(\omega_n) = \frac{2}{N^3 N_T} \sum_{p_i, n} \left[(g + \cos \omega_n) + \sqrt{d + 2g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2g \cos \omega_n)(f + \sin^2 \omega_n)} \right]$$

(9)

where ω_n are the Matsubara frequencies.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ/ϵ_{SB} which is also P/P_{SB}.

• Hiding p_i-dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i,n} F(\omega_n) = \frac{2}{N^3 N_T} \sum_{p_i,n} \left[(g + \cos \omega_n) + \sqrt{d + 2 g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2 g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2 g \cos \omega_n)(f + \sin^2 \omega_n)} \right]$$

(9)

where ω_n are the Matsubara frequencies.

• Can be evaluated using the standard contour technique or numerically.
Analytic Evaluation: $\mu = 0$.

\[
\begin{align*}
\text{Im} \omega &= 0 \\
\text{i} \cosh^{-1} \frac{d}{2g} &= \\
\text{i} \sinh^{-1} \sqrt{f} &= \\
\text{i} \sinh^{-1} \sqrt{f} &= \\
-\text{i} \cosh^{-1} \frac{d}{2g} &= \\
\end{align*}
\]
Analytic Evaluation: \(\mu = 0 \).

- Poles at \(\omega = \pm i \sinh^{-1} \sqrt{f} \) and Poles (branch points) at \(\pm i \cosh^{-1} \frac{d}{2g} \).
Analytic Evaluation: $\mu = 0$.

- Poles at $\omega = \pm i \sinh^{-1}\sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1}\frac{d}{2g}$.

- Evaluating integrals, $\epsilon a^4 = 4N^{-3} \sum_{p_j} \left[\sqrt{f/1+f} \right] [\exp(N_T \sinh^{-1}\sqrt{f}) + 1]^{-1} + \epsilon_3 + \epsilon_4$, where $f = \sum_i \sin^2(ap_i)$.

ω
Analytic Evaluation: $\mu = 0$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.

- Evaluating integrals, $\epsilon a^4 = 4N^{-3} \sum p_j \left[\sqrt{f/1+f} \right] [\exp(N_T \sinh^{-1} \sqrt{f}) + 1]^{-1} + \epsilon_3 + \epsilon_4$, where $f = \sum_i \sin^2(ap_i)$.

- Can be seen to go to ϵ_{SB} as $a \to 0$ for all M.
More Details : $T = 0, \mu \neq 0$

- Defining $K(\mu) + L(\mu) = 2R \cosh \theta$ and $K(\mu) - L(\mu) = 2R \sinh \theta$, the same treatment as above goes through by substituting $\sin \omega_n \rightarrow R \sin(\omega_n - i\theta)$ and $\cos \omega_n \rightarrow R \cos(\omega_n - i\theta)$.
More Details: \(T = 0, \mu \neq 0 \)

- Defining \(K(\mu) + L(\mu) = 2R \cosh \theta \) and \(K(\mu) - L(\mu) = 2R \sinh \theta \), the same treatment as above goes through by substituting \(\sin \omega_n \rightarrow R \sin(\omega_n - i\theta) \) and \(\cos \omega_n \rightarrow R \cos(\omega_n - i\theta) \).

- Energy density is also functionally the same with \(F(1, \omega_n) \rightarrow F(R, \omega_n - i\theta) \).

- Additional observable, number density: Has the same pole structure so similar computation.
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:

$$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f}\right) + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:
 \[
 \epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} F(R, \omega) \Theta (K(a\mu) - L(a\mu) - 2\sqrt{f}) \\
 + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].
 \]

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.

Divergence Cancellation at $T = 0$, $\mu \neq 0$

- Doing the contour integral, the energy density turns out to be:
 \[
 \epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right)
 + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].
 \]

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.

- K and L should be such that $K(a\mu) - L(a\mu) = 2a \mu + \mathcal{O}(a^3)$ with $K(0) = 1 = L(0)$.
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be :
 \[\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta (K(a\mu) - L(a\mu) - 2\sqrt{f}) \right. \]
 \[\left. + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].\]

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.

- K and L should be such that $K(a\mu) - L(a\mu) = 2a \mu + O(a^3)$ with $K(0) = 1 = L(0)$.

- Generalization to $T \neq 0$ and $\mu \neq 0$ case straightforward. One merely needs two different contours depending on pole locations and value of θ.
Numerical Evaluation

♣ Zero temperature contribution : as \(N_T \to \infty \), \(\omega \) sum becomes integral which we estimated numerically.
♣ Continuum limit by holding \(\zeta = N/N_T = LT \) fixed and increasing \(N_T \).
Numerical Evaluation

Zero temperature contribution: as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T.

![Graph showing numerical evaluation results](image)

R. V. Gavai Top 19
Numerical Evaluation

Zero temperature contribution: as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T.

![Graph 1](image1.png)

![Graph 2](image2.png)
Approach to SB-Limit

\[\frac{\varepsilon}{\varepsilon_{SB}} \]

\[\frac{1}{N_T^2} \]

\[\zeta = 5 \]
Approach to SB-Limit

\[\epsilon / \epsilon_{SB} \]

\[\frac{p}{p_{SB}} \]

\[N_{\tau} \]

\[(\pi / N_{\tau})^2 \]

\[\zeta = 5 \]

Banerjee, Gavai & Sharma, PRD78, 2008

Hegde, Karsch, Laermann & Shcheredin, arXiv:0801.4883
Approach to SB-Limit

Results for $M = 1$ agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.
Approach to SB-Limit

Results for $M = 1$ agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

$\heartsuit 1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12$.
Domain Wall Fermions \((a_5 \rightarrow 0)\)

Rajiv V. Gavai and Sayantan Sharma, in preparation.
Domain Wall Fermions \((a_5 \rightarrow 0)\)

\(L_5 \geq 14\) seems to be large enough to get \(L_5\)-independent results.
Domain Wall Fermions \((a_5 \rightarrow 0) \)

\[\frac{\varepsilon}{\varepsilon_{SB}} \] vs \(\frac{1}{N_T^2} \)

\[\frac{\beta_{SB}}{\varepsilon} \] vs \(\frac{1}{N_T^2} \)

Rajiv V. Gavai and Sayantan Sharma, in preparation.

\(L_5 \geq 14 \) seems to be large enough to get \(L_5 \)-independent results.

\(\diamond \) Optimal range again seems to be \(1.50 \leq M \leq 1.60 \).
Domain Wall Fermions \((a_5 = 1)\)

Rajiv V. Gavai and Sayantan Sharma, in preparation.
Domain Wall Fermions \((\alpha_5 = 1)\)

\[\begin{array}{c}
\begin{array}{c}
\text{M}=1.50 \\
\zeta=2 \\
\zeta=3 \\
\zeta=4 \\
\zeta=5
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{M}=1.0 \\
\text{M}=1.40 \\
\text{M}=1.45 \\
\text{M}=1.50 \\
\text{M}=1.55 \\
\text{M}=1.60
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{M}=1.0 \\
\text{M}=1.40 \\
\text{M}=1.45 \\
\text{M}=1.50 \\
\text{M}=1.55 \\
\text{M}=1.60
\end{array}
\end{array} \]

Rajiv V. Gavai and Sayantan Sharma, in preparation.

\[\begin{array}{c}
\diamond \zeta \geq 4 \text{ seems to be large enough to get thermodynamic limit.} \\
\diamond \text{Optimal range now seems to be } 1.40 \leq M \leq 1.50; \ M = 1.9 \text{ used by Chen et al. (PRD 2001) in their study of order parameters of FTQCD.}
\end{array}\]
Numerical Evaluation

◊ Two Observables: $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.
Numerical Evaluation

◊ Two Observables: $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.

◊ For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.
Numerical Evaluation

◊ Two Observables: $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.

◊ For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

◊ Former computed for two $r = \mu/T = 0.5$ and 0.8 while latter for $\mu = 0$
Numerical Evaluation

◊ Two Observables: \(\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T) \) and Susceptibility, \(\sim \partial^2 \ln Z / \partial \mu^2 \).

◊ For odd \(N_T \) and large enough \(\mu \) the sign function is undefined as an eigenvalue becomes pure imaginary.

◊ Former computed for two \(r = \mu/T = 0.5 \) and 0.8 while latter for \(\mu = 0 \).
Susceptibility too behaves the same way as the energy density.
Susceptibility too behaves the same way as the energy density.

Again $1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12$.
Domain Wall Fermions \((a_5 = 1)\)

 воп sustainability behaves the same way as the energy density.
Domain Wall Fermions ($a_5 = 1$)

♥ Again Susceptibility behaves the same way as the energy density.

♥ Again $1.40 \leq M \leq 1.50$ seems optimal, with small deviations already $N_T = 12$.
Summary

• Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.
Summary

• Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.

• However, any μ^2-divergence in the continuum limit is avoided for it and an associated general class of functions $K(\mu)$ and $L(\mu)$ with $K(\mu) \cdot L(\mu) = 1$.

• For the choice of $1.5 \leq M \leq 1.6$ ($1.4 \leq M \leq 1.5$), both the energy density and the quark number susceptibility at $\mu = 0$ exhibited the smallest deviations from the ideal gas limit for $N_T \geq 12$ for Overlap (Domain Wall) Fermions.