
Perturbative + Semiclassical Methods

• Perturbation theory in Schwinger-Keldysh formalism

• Secular terms and interpretation

• Boltzmann approach

• Boltzmann-Vlasov

• Infrared issues, classical field theory
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Schwinger-Keldysh Perturbation theory

Two sets of fields, currents: φ+, φ−

Two sets of interaction vertices: L+ and L−

Two-by-two propagator: G±±:

G++(Q) ≡ GT(Q) =equil

−i

Q2 − iǫ
+ 2πδ(Q2)n(|q0|)sgn(q0)

G+−(Q) ≡ G>(Q) =equil 2π(n(q0) ± 1)δ(Q2)

G−+(Q) ≡ G<(Q) = G∗
+−(−Q),

G−−(Q) ≡ GT = G∗
T(−Q) .

In every diagram, sum over each internal vertex being all-+

or all-− [with − sgn]. 2nvert times more work!
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Example:
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Sum: (+−), (−+),

(++), (−−)

Interpretation: ++, −− correct vertices,

+− represents scattering, −+ represents???

Reduces to vacuum theory if nb → 0:

• G> represent final state particles (cut)

• G++, G−− are propagators in M, M∗.
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Interpretation

• G+− counts on-shell excitations

• GR ≡ G++ −G+− = G−+ −G−− off-shell propagation.

In equilibrium, G>(Q) = (n(q0) ± 1) DiscGR

Best to use avg r = [(+) + (−)]/2, diff a = [(+) − (−)]

variables: Gaa = 0 and

Grr = (n± 1/2)2πδ(Q2)

GR = Gra =
−i

Q2
with q0 → q0 + iǫ

Vertices have odd # of a’s. Vac. interp. . .
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Problem: secular terms.

Consider 2-pt function of Txy in real time. Leading diagram�
�

�
�x x

∫

d3x gives time-independent contribution!

(If on-shell particles are there, they remain forever)

One-loop corrections, λφ4 theory:
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give resp. negative, positive λ2t contributions
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Secular terms

As such, disastrous. Pert. series is

〈TxyTxy〉 ∼ c0 + c1λ
2tT + c2λ

4t2T 2 + . . .

does not converge for time t > 1/λ2T . Why?

One diagram simple: self-energy represents particle loss

by scattering. We know how to resum it: do so

〈TxyTxy〉 ∼ c0e
−λ2t + c1λ

2te−λ2t + c2λ
4t2e−λ2t + . . .

Now finite, but still fails to converge.

Problem is particle propagation. Need to resum it.
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first diagram
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Destructive interference between propagation (lower line)

and scattering away from propagation:
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disturbance due to one of scattered particles:

x x

@
@

�
�

14



Kinetic (Boltzmann) approach

Particles described by G>. In noneq. setting,

G>(x, y) = 〈φ(y)φ(x)〉

Write equation of motion:

∂2
x−∂

2
yG+−(x, y) =

∑

i

∫

z

(

G+i(x, z)Σi−(z, y)−Σ+i(x, z)Gi−(z, y)
)

Change coord to average and difference

x, y → X + r/2, X − r/2

and Fourier transform WRT relative coord r:

∂2
x − ∂2

y = 2∂X∂r = 2ipµ∂X
µ
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Boltzmann cont.

Now make approximations: On-shell propagation:

G>(p, x) =
π

ωp

[

(n(p, x) ± 1)δ(p0 − ωp) + n(−p, x)δ(p0 + ωp)
]

Slow variation in space: Assume G>’s in self-energy given at

same x as G>

Expand self-energy to some order–use some set of collisions

2pµ∂µn(p, x) = −

∫

kp′k′

(2π)4δ4(P+K−P ′−K ′)|M2| ×

(

n(p)n(k)[1±n(p′)][1±n(k′)]

−n(p′)n(k′)[1±n(p)][1±n(k)]
)
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Discussion

You could have guessed most of this.

•

2pµ∂µ = (2E)
(

∂t + ~v · ~∇x

)

“convective deriv”: propagation v times spatial

inhomog. causes time change.

• 1/2E × collision term is σ times scatterer flux.

• n(p)n(k) initial occupancies, [1 ± n(p′)][1 ± n(k′)] are

(Bose stimulation/Pauli blocking) factors

• [1 ± n(p)] . . . term is “gain” term, particles scattering

into momentum state p
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Background Fµν?

Need to remember

• n(p) really naā(p) = 〈φ†
āφa〉

• ∂µ really Dµ

Pick up a commutator term:

2pµ∂µn→ 2pµDµn+ gpµ
{

Fµν , ∂
ν
pn

}

(Known for ages, eg Vlasov. Careful derivation: Blaizot Iancu hep-ph/9903389)

But what makes me think there should be classical field

anyway?
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Schwinger-Keldysh: another interpretation

The propagator GR(P ) represents free propagation.

Valid for classical fields, quantum excitations, anything.

The correlation function Grr(P ) = (n(p) + 1/2)2πδ(P 2)

describes vacuum (1/2) plus particle n(p) fluctuations.

Each vertex has odd number of a’s since L+ − L
−

Hence one extra Grr per loop order.

Vaccum: loops count powers in quantum fluctuations:

Manifest by associating h̄ with Grr.

Finite T : just adding particle fluctuations on top of vac.
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Schwinger-Keldysh and Classical fields

Consider distribution function in IR region E ≪ T :

nb(p) =
1

eE/T − 1
really

1

eh̄ωpT − 1

Expand in small h̄ωp/T :

1

2
+ nb(p) ∼

T

h̄ωp

−
h̄ωp

12T
+ . . .

Leading term is 1/h̄! large occupancy is classical fields.

Corrections down by two powers of h̄, small for ω < 2T .

One Grr ∼ nb + 1/2 per loop: no h̄ per loop!
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Classical field approximation

With nb + 1/2 → T/h̄ωp approx,

Pert thy and classical field pert thy are identical Aarts hep-ph/9707342

Treat IR region using classical field thy!

We also need to: one factor of nb per loop:

c1 + c2αsnb(ω) + c3α
2
sn

2
b(ω)

fails to converge for h̄ω ∼ αsT .

IR region is nonperturbative!
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Solving classical field theory

We need fully nonperturbative technique: lattice!

DµF
µν = 0

is nonlinear as D = ∂ − iA and Fµν = −i
[

Dµ , Dν

]

.

This equation of motion arose by extremizing action

∂S

∂Aν(x)
= 0 , S =

∫

d4x
1

2g2
Tr FµνF

µν

Need lattice implementation of Aµ and of S.
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Classical lattice gauge theory 1

Numerical methods require finite # of DOF.

Make space finite and discretize it,

xi → ani , ni ∈ [0, 1, . . . N)

identifying N with 0 (periodic boundaries).

Space spacing a. Time spacing at (in a moment)

Should I then write Aµ(x) = Aµ(ani + atnt)?

NO!
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Classical lattice gauge theory 2

Observation (Wilson ’74): essential to keep gauge

invariance.

Gauge invariance: indexed fields

ψa(x) =













ψr(x)

ψg(x)

ψb(x)













invariant under ψa(x) → Uab̄(x)ψb(x)

with Uab̄(x) = Rab̄(g(x)) rep matrix of group element

g(x) ∈ G (say, G = SU(3))

Essential: INDEPENDENT rotations at each point in space.
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Classical lattice gauge theory 3

Must be able to compare fields at different points:

Need comparator, called Wilson line:

WC:ab̄(x, y)ψb(y) acts like it’s at x, in sense

WC:ab̄(x, y)ψb(y) → Uac̄(x)WC:cb̄(x, y)ψb(y)

This requires W transform as

WC:ab̄(x, y) → Uac̄(x)WC:cd̄(x, y)U
−1

db̄
(y)

Still not unique: must specify path C : y → x.
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Classical lattice gauge theory 4

Assuming WC:ac̄ generated from something local:

must be of form

WC:ab̄(x, y) =
(

Pexp
∫ y

C:x
−iAA

µT
Adlµ

)

ab̄

with TA
ab̄ gen. matrices of representation R

Infinitesimal form:

Wab̄(x, x+ ǫµ) = δab̄ − iǫµAA
µT

A
ab̄

Include when taking derivatives:

Dµψa ≡
W (x, x+ ǫµ̂)ψ(x+ ǫµ̂) − ψ(x)

ǫ
= (∂µδab̄−iA

A
µT

A
ab̄)ψb
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