Perturbative + Semiclassical Methods

Perturbation theory in Schwinger-Keldysh formalism
Secular terms and interpretation

Boltzmann approach

Boltzmann-Vlasov

Infrared issues, classical field theory
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Schwinger-Keldysh Perturbation theory

Two sets of fields, currents: ¢, ¢_
Two sets of interaction vertices: £, and L_
Two-by-two propagator: G44:

—1

G+ (Q) =Gr(Q) =ecquil Q? — je + 27T5(Qz)”(‘qo‘)sgn(qo)
G (Q) =G (Q) =cqui 27(n(¢°) + 1)5(Q?)
G_+(Q)=G7(Q) = G (-Q),

G_(Q)=Gr = G(=Q).

In every diagram, sum over each internal vertex being all-+

or all-— [with — sgn]. 2"t times more work!
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Example:

Sum: (+-—), (—4+),

(++), (=)

_I_ -
Interpretation: ++4, —— correct vertices,

+— represents scattering, —+ represents???

Reduces to vacuum theory if n, — 0:
e (G~ represent final state particles (cut)

o (G, G__ are propagators in M, M*.
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Interpretation

e (. _ counts on-shell excitations
e Gr=G,, —G,_ =G__ — G__ off-shell propagation.
In equilibrium, GZ(Q) = (n(¢°) + 1) DiscGr

Best to use avg r = [(+) + (—)]/2, diff a = [(4+) — (—)]
variables: &,, = 0 and

G = (n£1/2)276(Q?)

—1

Gr=Gry = —5 with Q" — ¢ + ie

Vertices have odd # of a's. Vac. interp. ..
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Problem: secular terms.

Consider 2-pt function of 77, in real time. Leading diagram

£ >

[ d3x gives time-independent contribution!

(If on-shell particles are there, they remain forever)

One-loop corrections, A\¢* theory:
>

£ X

X__ () X

give resp. negative, positive \*t contributions
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Secular terms

As such, disastrous. Pert. series is
(TypyTyy) ~ o+ A NET + AT + ...

does not converge for time ¢ > 1/\*T. Why?

One diagram simple: self-energy represents particle loss
by scattering. We know how to resum it: do so

(LT y) ~ coe_)‘2t + cl)\2te_”\2t + 02)\4t26_’\2t + ...

Now finite, but still fails to converge.

Problem is particle propagation. Need to resum it.
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£
first diagram )< _/ }

Destructive interference between propagation (lower line)

and scattering away from propagation:

Other diagram O >

disturbance due to one of scattered particles:
3¢ /\ 3
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Kinetic (Boltzmann) approach

Particles described by G~. In noneq. setting,

G”(z,y) = (o(y)d(7))

Write equation of motion:
02—02G 1 (0,y) = 2 [ (Grilw2) i (2,9) =il 2)Gi(2,))

Change coord to average and difference
v,y — X +r/2,X —r/2
and Fourier transform WRT relative coord r:

0 — 0; = 20x0, = 2ip"9;
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Boltzmann cont.

Now make approximations: On-shell propagation:

G~ (p.x) = — |(n(p.2) £ 13" — wp) + n(—p,2)5(p° +wy)]

Slow variation in space: Assume G~ 's in self-energy given at

same z as G~

Expand self-energy to some order—use some set of collisions
W m(pr) = — / (27) 64 (P+E—P —K')| M?| x
kp' k'

(n(p)n (k) [1En(p)][1£n (k)]
—n(p/)n(k) [1£n(p)]|[1£n(k)))
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You

Discussion

could have guessed most of this.

2p" 0y = (2E) (0, + - V)

“convective deriv': propagation v times spatial

inhomog. causes time change.

1/2F X collision term is o times scatterer flux.

n(p)n(k) initial occupancies, [1 + n(p’)|[1 £ n(k")] are
(Bose stimulation/Pauli blocking) factors

1 +n(p)|... term is “gain” term, particles scattering

Into momentum state p
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Background F),,?

Need to remember
o n(p) really ngq(p) = (Phda)
e 0, really D,

Pick up a commutator term:

2p10,m — 2p*Dn + gp“{ F, on }

p

(Known for ages, eg Vlasov. Careful derivation: Blaizot lancu hep-ph/9903389)

But what makes me think there should be classical field

anyway?
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Schwinger-Keldysh: another interpretation

The propagator Gg(P) represents free propagation.
Valid for classical fields, quantum excitations, anything.

The correlation function G,..(P) = (n(p) + 1/2)2wd(P?)
describes vacuum (1/2) plus particle n(p) fluctuations.

Each vertex has odd number of a's since c, — 2~
Hence one extra G, per loop order.

Vaccum: loops count powers in quantum fluctuations:
Manifest by associating h with G,.,.

Finite T": just adding particle fluctuations on top of vac.
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Schwinger-Keldysh and Classical fields

Consider distribution function in IR region £/ < T

1 1
ny(p) = BT ] really

ehwp T — 1
Expand in small Aw,/T"
1 T Iy,
g )~ g T oy

Leading term is 1/Ah! large occupancy is classical fields.
Corrections down by two powers of i, small for w < 27T'.

One G, ~ ny + 1/2 per loop: no A per loop!
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Classical field approximation

With n, +1/2 — T'/hw, approx,
Pert thy and classical field pert thy are identical aarts hep-ph/o707342

Treat IR region using classical field thy!

We also need to: one factor of n; per loop:
c1 + coagny(w) + czang (w)

fails to converge for hw ~ a1

IR region is nonperturbative!



Solving classical field theory

We need fully nonperturbative technique: lattice!
D, F* =0

is nonlinear as D = 0 — iA and F,, = —i| D,,, D, |.
This equation of motion arose by extremizing action

0S5
0A,(x)

—0, S= /ﬂ%—JHF‘FW
Need lattice implementation of A, and of S.
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Classical lattice gauge theory 1

Numerical methods require finite # of DOF.

Make space finite and discretize it,
r; —an;, n;€0,1,...N)

identifying N with O (periodic boundaries).
Space spacing a. Time spacing a; (in a moment)

Should | then write A, (z) = A, (an; + a;n.)?

NO!
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Classical lattice gauge theory 2

Observation (Wilson '74): essential to keep gauge

Invariance.

Gauge invariance: indexed fields

Va(T) = | 1y(2) invariant under ¥,(x) — U (x)yp(x)

with U ;(x) = R,;(g(x)) rep matrix of group element
g(x) € G (say, G = SU(3))
Essential: INDEPENDENT rotations at each point in space.
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Classical lattice gauge theory 3

Must be able to compare fields at different points:
Need comparator, called Wilson line:
We.as(x, y)ie(y) acts like it's at x, in sense

WC:aE(xa y)wb(y) — Uaé(x)WC:cE(xa y)wb(y)
This requires W transform as
WC:aE(xa y) — Uaé(x)WC:cJ(xa y)Ud_Bl (y)
Still not unique: must specify path C' : y — x.
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Classical lattice gauge theory 4

Assuming W,z generated from something local:
must be of form

Y
We.ai(x,y) = (Pexp —iAfTAdl’“‘)

C:x

ab

with Té% gen. matrices of representation R

Infinitesimal form:

Wz, x+ ') =0, — ie“AZ‘TC‘L%

Include when taking derivatives:

Wi,z +ep)y(a +ei) — p@) _ (0u0a5—1 ATy

€ w = ab

D, g, =




