Classical lattice gauge theory 5

Wilson's insight: must base implementation on W, not A.

Fields live on points [sites]: W lives on links

$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$egin{array}{c} W_y \ \psi \ W_x \end{array}$	$W_y \ \psi \ W_x$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$
$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$egin{bmatrix} W_y \ \psi \ W_x \end{bmatrix}$	$egin{bmatrix} W_y \ \psi \ W_x \end{bmatrix}$	$egin{bmatrix} W_y \ \psi \ W_x \end{bmatrix}$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$
$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$egin{bmatrix} W_y \ \psi \ W_x \end{bmatrix}$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$	$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$
$\begin{bmatrix} W_y \\ \psi & W_x \end{bmatrix}$				

Making gauge invariant objects is easy: Always connect gauge variant things with W's until you "tie off" all indices.

Fermion bilinear

$$\bar{\psi}_{\bar{b}}(y)W_{b\bar{a}}(y,x)\psi_a(x)$$

Making gauge invariant objects is easy: Always connect gauge variant things with W's until you "tie off" all indices.

Baryon

$$\psi_a(x)\psi_b(y)\psi_c(z)W_{d\bar{a}}(w,x)W_{e\bar{b}}(w,y)W_{f\bar{c}}(w,z)\epsilon^{def}$$

Making gauge invariant objects is easy: Always connect gauge variant things with W's until you "tie off" all indices.

Purely gluonic correlator (B-B connected by double Wilson line)

$$W_{C:a\bar{a}}(x,x) = \operatorname{Tr} W_C(x,x)$$

Application to classical field thy

Kogut/Susskind PRD11:395(1975), Ambjørn et al NuclPhysB353:346(1991)

IR description: $n_b \gg n_f$, no fermions!

Make spacetime a lattice, $a_t \ll a$ (1/20 in practice)

Write action which generates all dim. 4 IR terms:

$$S_{\text{contin}} = \int d^3x dt \frac{1}{2g^2} (B^2 - E^2)$$

$$= \frac{1}{g^2} \int d^3x dt \left(\sum_{i < j} \text{Tr } F_{ij} F_{ij} - \sum_i \text{Tr } F_{0i} F_{0i} \right)$$

$$S_{\text{latt}} = \frac{2a^3 a_t}{g^2} \sum_x \left(\sum_{i < j} a^{-4} \text{Tr } \square_{ij} - \sum_i a^{-2} a_t^{-2} \text{Tr } \square_{i0} \right)$$

 \square_{ij} is prod of 4 W's in a square in i, j direc ("plaquette")

Remarks:

- Tr \square is what? Roughly, $\square \sim 1 a^2 F_{\mu\nu}^A T^A$ curvature integrated over area of box. Unitarity (SU(3)) requires $a^4 F^2/2$ contribution.
- Unlike Euclidean, E and B terms (0i and ij) have different signs
- Different coefficients, a^{-4} versus a^{-2} a_t^{-2} . Makes E fluct. "stiffer" corresponding to smaller lattice spacing (asymm lattice)
- Overall coefficient $1/g^2$ doesn't matter if we force $\delta S/\delta W_i(x)=0$ strictly!

Update rule

Variation of a spatial link:

Line in red varied: lines in green unknown.

Variation means $\delta W \equiv -i\epsilon_A T^A W$

So
$$\delta \Box \sim (-i\epsilon_B T^B)(1 + ia^2 F)$$

Tracing gives $a^2 F_{\mu\nu}^B$. Forward-backward difference is D_{μ} .

Corresponds to
$$D_i F_{ij} = D_0 F_{0j}$$
 or $D_t E = D \times B$

Determines green lines uniquely except for W_0 's

Initial value problem

Two derivatives: fields+time deriv's, or values on two time slices. But $\delta S/\delta W_0$ a constraint!

$$0 = \delta S/\delta W_0 = \sum_{i} (E_i(x) - E_i(x - a\hat{i}) \sim D_i E_i$$

Gauss' Law (expected from $\delta S/\delta A_0$)

Values of W_0 NEVER determined! But that's gauge freedom.

So does it work?

- Good: thermodynamics exactly same as QCD in Dimensional Reduction (see Vuorinen talk)
- Good: fast, exact thermalization algorithms known GM
 hep-ph/9603384, Krasnitz hep-lat/9507025
- Mixed: strange role of g^2 . Thermalization determines combination g^2aT only $(g^2/\hbar \text{ dimensionless: } a \text{ a length, } T \text{ energy, } g^2T \text{ inverse length.})$
- Bad: dynamics do not have simple $a \rightarrow 0$ limit!

Dynamics: problem or interesting physics?

Short wavelength lattice excitations act like "particles."

So describe them using (collisionless) Vlasov theory:

$$2p^{\mu}D_{\mu}n = -p^{\nu}\left\{F_{\nu\mu}, \,\partial_p^{\mu}n\right\}$$

Here $n = n_{a\bar{a}}$ is in $R \times \bar{R}$ rep, reducible!

$$n_{a\bar{a}} = n_s \delta_{a\bar{a}} + n_A T_{a\bar{a}}^A + \dots$$

Expand in $n_s \gg n_A \gg \dots$ (justification...)

$$2p^{\mu}D_{\mu}n_A = -p^{\nu}F_{\nu\mu}\partial_p^{\mu}n_s(p)$$

Dynamics: Hard (Thermal) Loops

Repeating:

$$2p^{\mu}D_{\mu}n_A = -p^{\nu}F_{\nu\mu}\partial_p^{\mu}n_s(p)$$

Solving (formally):

$$n_A(x,p) = -\frac{1}{2p^{\mu}D_{\mu}} p^{\nu} F_{\nu\mu} \partial_p^{\mu} n_s(p)$$

which means

$$n_A(x,p) = \int_0^\infty dy W_{AB}(0, -y\hat{p}) \frac{-p^{\nu}}{2E} F_{\nu\mu}^B(-y\hat{p}) \partial_p^{\mu} n_s(p, -y\hat{p})$$

Here $\int dy$ is over line backwards in p direction W is adjoint Wilson line along that path

Interpretation and importance

 $F_{\mu\nu}$ acts on colorless mixture of part. to give "net color"

$$\frac{d[\mathsf{color}]}{dtdp} \sim p^{\nu} F_{\nu\mu}^{A} \partial_{p}^{\mu} n_{s}(p)$$

Particles propagate: coloration at x is \int_{past} of color source.

Current

$$J_A^{\mu}(x) = \sum_{\text{species}} g^2 T_{\text{R}} \int_p p^{\mu} n_A(p, x)$$

Approx. size
$$\sim \int \frac{d^3p}{p} p^\mu \partial_p n_s \sim \int \frac{d^3p}{p} p \frac{1}{p^2}$$

(since $n_s \sim T/p$). Linear UV divergent!

Hard (thermal) loops

Current dominated by hard scales—class. field approx fails

For $D_{\mu} \sim g^2 T$, J dominates $D_{\mu} F^{\mu\nu}$ by $\mathcal{O}(1/g^2)$

Dynamics actually dominated by these "hard thermal" effects on scales up to gT, 1/g larger than nonpert. scale

Need to get them right!

But aren't these effects already there on the lattice? Well, yes and no....

Lattice dispersion: dirty little secret

We saw that for IR fields, our latt action acts like B^2-E^2 as it should. Therefore $\omega_p^2=p^2$ as usual.

But now fluct. with $ka \sim 1$ are important. For them

$$\omega_p^2 = \sum_i \frac{4}{a^2} \sin^2 \frac{k_i a}{2} = \sum_i 2 - 2 \cos k_i a$$

which is different.

Can change (make more complicated) action. But cannot fix! ω_p^2 must be periodic, $p_x \in [-\pi/a, \pi/a)$.

This enters in Hard Loops found above: p^{μ}

Hard loops from latt modes are "wrong"

Need to put in "right" hard loops

Find a way to introduce a current obeying

$$J_A^{\mu}(x) = \sum_{\text{species}} g^2 T_{\text{R}} \int_p p^{\mu} n_A(p, x)$$
$$= g^2 T_{\text{R}} \sum_{\text{sp}} \int \frac{d^3 p}{\omega_p^2} \int dy W(0, y \hat{p}) p^{\mu} p^{\nu} F_{\nu \alpha} \partial_p^{\alpha} n_s$$

Wish we could also *subtract* (false) lattice contrib. with wrong ω_p and d^3p range. But this appears hopeless.

Two techniques known: "particles" and "fields"

Particles method

GM, Hu Müller hep-ph/9710436

Add "particles": position x continuous (!) momentum p with E=|p| charge q^A adjoint valued q^A transforms as chg at nearest site

Vol nearest a site is dual cell...

Free propagation dx/dt=p/E, dp/dt=0 within dual cell $D_iE_i=Q$ with Q sum of q's of part. within dual cell On crossing dual face i, q^A parallel transports, E_i (link dual to face) changes by $-q^A$, p changes to conserve tot. energy

Particles: good and bad

- Good: (almost) no change to equil thermodynamics; therm easy.
- Good: reproduces Hard (thermal) Loops
- Bad: need very large number, very small charges
- Bad: CANNOT interpret literally as UV degrees of freedom!
- Bad: Fake "particle-UV lattice" interactions: UV latt modes dispersion $v = dE/dp = (1/2aE_k) \sum_i 2\sin(k_ia) < 1 \text{ So particles, moving with } v = 1 \text{, Cherenkov radiate. Dominates their interactions.}$

Useful for equilibrium, dubious nonequilibrium.

See however Dumitru Nara Strickland hep-ph/0604149

Method 2: W fields

lancu hep-ph/9710543, Bödeker GM Rummukainen hep-ph/9907545, Arnold GM Yaffe hep-ph/0505121,

Rebhan Romatschke Strickland hep-ph/0412016,0505261

Replace
$$n_A(x,p)$$
 with $W_A(x,v) = \int d|p| n_A(x,p)$. Obey

$$D_{\nu}F_{A}^{\mu\nu}(x) = j^{\mu} = \int_{v} v^{\mu}W_{A}(x,v)$$

$$v^{\mu}D_{\mu}W_{A}(x,v) = \sum_{s} g^{2}T_{R}v^{\nu}F_{\nu\alpha}\partial_{v}^{\alpha}\Omega(v)$$

$$\Omega(v) = \int \frac{4\pi p^{2}dp}{(2\pi)^{3}}\partial_{p}^{\alpha}n_{s}$$

Here $\Omega(v)$ is angular dependence of n_s , usually taken as spacetime independent. (Could compute back-reaction but no one has)

W fields on a lattice

Must make v space finite: two proposed ways:

- Spherical harmonic expansion (BMR'99): rewrite $W(x,v) = \sum_{lm} W_{lm}(x) Y_{lm}(v)$. Truncate at finite l (can cut m independently) Treat W_{lm} as fields.
- Real-space "disco ball" discretization (RRS'04): tile the sphere with discrete directions v.

Systematic comparison is still lacking.

Other complications [for both]: linear derivatives...

One comparison

Equilibrium studies of a quantity "sphaleron rate" sensitive only to nonperturbative IR fields' dynamics:

Plasma instabilities

Suppose all p are in-plane. Consider seed $B\colon\thinspace \hat{p} = 0$ and $\hat{k}\cdot\hat{p} = 0$

How do the particles deflect?

Positive charges:

No net ρ . Net current is induced as indicated.

Negative charges:

Induced B adds to seed B. Exponential Weibel instability Linearized analysis: B grows until bending angles become large.

This instability is generic

Always occurs if

- weak coupling
- Momenta p dominating energy have $n(p) \ll 1/g^2$
- ullet Typical momenta have n(p) not isotropic
- IR occupancies not yet $1/g^2$ large

Instabilities studied using techniques we have discussed, but still not fully characterized.