
Classical lattice gauge theory 5

Wilson’s insight: must base implementation on W , not A.

Fields live on points [sites]: W lives on links
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Making gauge invariant objects is easy:

Always connect gauge variant things with W ’s

until you “tie off” all indices.
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Fermion bilinear

ψ̄b̄(y)Wbā(y, x)ψa(x)
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Making gauge invariant objects is easy:

Always connect gauge variant things with W ’s

until you “tie off” all indices.
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ǫrgb

Baryon

ψa(x)ψb(y)ψc(z)Wdā(w, x)Web̄(w, y)Wfc̄(w, z)ǫ
def
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Making gauge invariant objects is easy:

Always connect gauge variant things with W ’s

until you “tie off” all indices.
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Purely gluonic

correlator (B-B

connected by double

Wilson line)

WC:aā(x, x) = TrWC(x, x)
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Application to classical field thy

Kogut/Susskind PRD11:395(1975), Ambjørn et al NuclPhysB353:346(1991)

IR description: nb ≫ nf , no fermions!

Make spacetime a lattice, at ≪ a (1/20 in practice)

Write action which generates all dim. 4 IR terms:

Scontin =

∫

d3xdt
1

2g2
(B2 − E2)

=
1

g2

∫

d3xdt





∑

i<j

Tr FijFij −
∑

i

Tr F0iF0i





Slatt =
2a3at

g2

∑

x





∑

i<j

a−4Tr ij −
∑

i

a−2a−2
t Tr i0





ij is prod of 4 W ’s in a square in i, j direc (“plaquette”)
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Remarks:

• Tr is what? Roughly, ∼ 1 − a2FA
µνT

A

curvature integrated over area of box. Unitarity (SU(3))

requires a4F 2/2 contribution.

• Unlike Euclidean, E and B terms (0i and ij) have

different signs

• Different coefficients, a−4 versus a−2 a−2
t . Makes E

fluct. “stiffer” corresponding to smaller lattice spacing

(asymm lattice)

• Overall coefficient 1/g2 doesn’t matter if we force

δS/δWi(x) = 0 strictly!
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Update rule

Variation of a spatial link:

�
�
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�

�
�

�
�

�
�

Line in red varied: lines in green unknown.

Variation means δW ≡ −iǫAT
A W

So δ ∼ (−iǫBT
B)(1 + ia2F )

Tracing gives a2FB
µν . Forward-backward difference is Dµ.

Corresponds to DiFij = D0F0j or DtE = D ×B

Determines green lines uniquely except for W0’s
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Initial value problem

Two derivatives: fields+time deriv’s, or values on two time

slices. But δS/δW0 a constraint!

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0 = δS/δW0 =
∑

i

(Ei(x) − Ei(x− âi) ∼ DiEi

Gauss’ Law (expected from δS/δA0)

Values of W0 NEVER determined! But that’s gauge

freedom.
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So does it work?

• Good: thermodynamics exactly same as QCD in

Dimensional Reduction (see Vuorinen talk)

• Good: fast, exact thermalization algorithms known GM

hep-ph/9603384, Krasnitz hep-lat/9507025

• Mixed: strange role of g2. Thermalization determines

combination g2aT only

(g2/h̄ dimensionless: a a length, T energy, g2T inverse

length.)

• Bad: dynamics do not have simple a→ 0 limit!
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Dynamics: problem or interesting physics?

Short wavelength lattice excitations act like “particles.”

So describe them using (collisionless) Vlasov theory:

2pµDµn = −pν
{

Fνµ , ∂
µ
pn

}

Here n = naā is in R× R̄ rep, reducible!

naā = nsδaā + nAT
A
aā + . . .

Expand in ns ≫ nA ≫ . . . (justification...)

2pµDµnA = −pνFνµ∂
µ
pns(p)
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Dynamics: Hard (Thermal) Loops

Repeating:

2pµDµnA = −pνFνµ∂
µ
pns(p)

Solving (formally):

nA(x, p) = −
1

2pµDµ

pνFνµ∂
µ
pns(p)

which means

nA(x, p) =
∫

∞

0
dyWAB(0,−yp̂)

−pν

2E
FB

νµ(−yp̂)∂µ
pns(p,−yp̂)

Here
∫

dy is over line backwards in p direction

W is adjoint Wilson line along that path
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Interpretation and importance

Fµν acts on colorless mixture of part. to give “net color”

d[color]

dtdp
∼ pνFA

νµ∂
µ
pns(p)

Particles propagate: coloration at x is
∫

past of color source.

Current

Jµ
A(x) =

∑

species

g2TR

∫

p
pµnA(p, x)

Approx. size ∼
∫ d3p

p
pµ∂pns ∼

∫ d3p

p
p

1

p2

(since ns ∼ T/p). Linear UV divergent!
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Hard (thermal) loops

Current dominated by hard scales–class. field approx fails

For Dµ ∼ g2T , J dominates DµF
µν by O(1/g2)

Dynamics actually dominated by these “hard thermal”

effects on scales up to gT , 1/g larger than nonpert. scale

Need to get them right!

But aren’t these effects already there on the lattice?

Well, yes and no....
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Lattice dispersion: dirty little secret

We saw that for IR fields, our latt action acts like B2 − E2

as it should. Therefore ω2
p = p2 as usual.

But now fluct. with ka ∼ 1 are important. For them

ω2
p =

∑

i

4

a2
sin2 kia

2
=

∑

i

2 − 2 cos kia

which is different.

Can change (make more complicated) action. But cannot

fix! ω2
p must be periodic, px ∈ [−π/a, π/a).

This enters in Hard Loops found above: pµ....

Hard loops from latt modes are “wrong”
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Need to put in “right” hard loops

Find a way to introduce a current obeying

Jµ
A(x) =

∑

species

g2TR

∫

p
pµnA(p, x)

= g2TR

∑

sp

∫ d3p

ω2
p

∫

dyW (0, yp̂)pµpνFνα∂
α
p ns

Wish we could also subtract (false) lattice contrib. with

wrong ωp and d3p range. But this appears hopeless.

Two techniques known: “particles” and “fields”
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Particles method

GM, Hu Müller hep-ph/9710436

Add “particles”:

position x continuous (!)

momentum p with E = |p|

charge qA adjoint valued

qA transforms as chg at nearest site

Vol nearest a site is dual cell...

Free propagation dx/dt = p/E, dp/dt = 0 within dual cell

DiEi = Q with Q sum of q’s of part. within dual cell

On crossing dual face i, qA parallel transports, Ei (link dual to face)

changes by −qA, p changes to conserve tot. energy
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Particles: good and bad

• Good: (almost) no change to equil thermodynamics; therm easy.

• Good: reproduces Hard (thermal) Loops

• Bad: need very large number, very small charges

• Bad: CANNOT interpret literally as UV degrees of freedom!

• Bad: Fake “particle-UV lattice” interactions:

UV latt modes dispersion

v = dE/dp = (1/2aEk)
∑

i
2 sin(kia) < 1 So particles, moving

with v = 1, Cherenkov radiate. Dominates their interactions.

Useful for equilibrium, dubious nonequilibrium.

See however Dumitru Nara Strickland hep-ph/0604149
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Method 2: W fields

Iancu hep-ph/9710543, Bödeker GM Rummukainen hep-ph/9907545, Arnold GM Yaffe hep-ph/0505121,

Rebhan Romatschke Strickland hep-ph/0412016,0505261

Replace nA(x, p) with WA(x, v) =
∫

d|p|nA(x, p). Obey

DνF
µν
A (x) = jµ =

∫

v
vµWA(x, v)

vµDµWA(x, v) =
∑

g2TRv
νFνα∂

α
v Ω(v)

Ω(v) =
∫ 4πp2dp

(2π)3
∂α

p ns

Here Ω(v) is angular dependence of ns, usually taken as

spacetime independent. (Could compute back-reaction but

no one has)
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W fields on a lattice

Must make v space finite: two proposed ways:

• Spherical harmonic expansion (BMR’99):

rewrite W (x, v) =
∑

lmWlm(x)Ylm(v).

Truncate at finite l (can cut m independently)

Treat Wlm as fields.

• Real-space “disco ball” discretization (RRS’04):

tile the sphere with discrete directions v.

Systematic comparison is still lacking.

Other complications [for both]: linear derivatives...
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One comparison

Equilibrium studies of a quantity “sphaleron rate” sensitive

only to nonperturbative IR fields’ dynamics:
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Plasma instabilities

Suppose all p are in-plane. Consider seed B: B̂ · p̂ = 0 and

k̂ · p̂ = 0
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How do the particles deflect?
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Positive charges:
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No net ρ. Net current is induced as indicated.
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Negative charges:
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Induced B adds to seed B. Exponential Weibel instability

Linearized analysis: B grows until bending angles become large.
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This instability is generic

Always occurs if

• weak coupling

• Momenta p dominating energy have n(p) ≪ 1/g2

• Typical momenta have n(p) not isotropic

• IR occupancies not yet 1/g2 large

Instabilities studied using techniques we have discussed,

but still not fully characterized.
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