I’/ spectral function and bulk viscosity
Where we can calculate it

Guy D. Moore, Omid Saremi

Review of bulk viscosity, spectral function

Perturbative regime: kinetic theory

x High frequency: rising cut

x Low frequency: peak

Near the critical point: universal scaling

x Dynamical universality classes: QCD vs. liquid-gas

« Critical slowing down and Bulk viscosity

Summary and conclusions
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Raise and lower a piston: compress and decompress gas
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Pressure rises and falls as you compress and decompress.
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Compress faster: pressure deviates from equilibrium version

7 777 % Pressure
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Compression: pressure higher

Decompression: pressure lOWer second Law of Thermodynamics

Difference is characterized by Bulk Viscosity
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Consider small, sudden compression:
Pressure

A

| =

Tcom press

If operator O causes compression, @2 measures P:
o lim; .o(O1(0)O5(t)) gives height of discontinuity

o [ dt (O1(0)O2(t)) gives area under difference curve.
Scale by AV/V: that defines bulk visc (.
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Think of steady compression as many small ones

Pressure  |-----7 -
A

> Time

Integrated extra pressure is

(P = Pudt = (AVi) [~ dt (01(0)0x(1)
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Interesting quantity is integrated extra pressure.

Defined as the bulk viscosity:

/ dt(P — Po) = —CAV/V = —( / AtV - 7
or
P—Py=—CV-¥

Related to correlator of pressure operator Oy = P = %Tf

and gen. of expansions O; = 5. Usual arguments:

(= 1hm dtew)t/d3 < TZ (1), TJJ(O’O)D |

2 w—0

And small ¢ response described by w integral.
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Is it 7;? Or T}?

It doesn’t matter! [OJ{, (91} = [O}L +c, O1 +c|.
Ty acts almost like constant® as energy is conserved.

Useful choices:
e T intuitively clear
° Tl/j: sum rules and exact results

o T/ — (T ~T!+ 3c2Ty): allows KMS

[ deit (01(1)0(0)) = ew;uT/T - [atet ([o), 00)])

without need to subtract disconnected part

% almost—T°0 shift adds t-independent contrib: §(w), const in Gg (7).
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Application: heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.

Just before: Lorentz contracted nuclei
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Heavy ion collisions

Each nucleus is ~ 200 p, n, each built of ~ 50 ¢,¢q, g
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It is the q, q, g which scatter.
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After the scattering:

“Flat almond” shaped region of g, ¢, g which scattered.

Few thousand. random velocities. Quark-Gluon Plasma
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Density, pressure inhomogeneities

lons “thicker” in centre.
Hence, QGP also denser in
centre. Outward press.
gradients, larger transverse

than longitudinal

Leads to radial expansion and to elliptic flow.
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Radial expansion:

du(r)
dt

but reduction in effective P (bulk viscosity) lowers v(r).

F(r) = = (e + P)

Similarly shear viscosity lowers elliptic flow.
One system: bulk viscosity “looks like” P(¢) (EQS)

Two systems, different sizes/shapes: can separate them.

Bulk viscosity can be measured

So let's calculate it!
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Perturbative regime

Normalize so S = fd%ﬁTr G G*.
Do pure glue for simplicity. Conformal anomaly:

2d
— %TI’ G/u/G'uV ) — #—92 ™~ 94 .

Evaluate Wightman correlator of (3/¢*)G* — (1 — 3c*)T}).

TH

0

Leading diagram.
Note (1 — 3¢?) ~ g* is small;
(1 —3c2)T} is g* suppressed.
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Leading perturbative result

2 [SPER G (PG () 2m) 0 QPR

@)= 9" J (2m)8
x(g"' P-R — P*R")(¢*’ P-R — P*R")

Cut propagator
Gy (P) = [ny(p)+1] 276 (PP 4mig) Y en(Men (N

A
One contribution: both p°, r° same sign.
N B . 2 23%(g) 2da w*
Galw:,0) = [mo(3) + 1] =5 = =

Ol’der g4w4 “CUt” G r has a cut, this is its discontinuity
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“Pole” contribution

Other possibility: one line positive one negative frequency.
Naively: P2 =0=R?*and P+ R=0so P-R=0. Get 0.
Less naive: P? = —m?2 ~ ¢°T".

Need (1 — 3¢2)Ty term (same order).

Groel@,0) = 8(w) 2da - [ n(p)(1 +n(p)
X l(%—cz)szrﬁ?;gO] dp

IR singular: Order ¢"T* area delta function at w = 0.
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Need to know width of peak

Bulk viscosity is G~ (w = 0)/T. Need width of peak
Include imaginary parts on propagators: need ladders as well

Amounts to kinetic treatment. T/" in terms of f:

3 2
(17 43319 = Y [ L [(1—3c§)p2+35;§00 (fo+5f)

(2m)°

Boltzmann equation

v-Vfo+ 0 f =—C|f]

becomes

Jo(1+/o <[1 Cz] 20 Bmg,
9

ET 3 8
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Details of collisions do not change area of peak:

Of(w) = - —1iw lsource] — /dw(Sf(w) = |source]
Shape of peak is crudely
a3 1 , 27% T
G>(W)N/(27£3f0[1+f0] [(3—(33)1? + 57; ] w2+[1€?l[p]

with T'[p] ~ ¢*T"/p* the large-angle scatt. width

Peak height dominated by hard particles.
“Shoulders” and total area by soft particles.
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Shape of low frequency peak
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Summary:

| |
g“lT ngT gT T
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Summary:

Shear viscosit
G> A y

Bulk viscosity
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Another analytically tractible case

Critical region near second-order transition point:
T

A

Possible to compute parametric behaviors analytically
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Static universality

“Chiral” phase transition not true symmetry breaking.
Order parameter 1 = (1)1)) same universality as Ising

Mapping of critical regions between

QCD (T, ) Ising (H,7T) Liq/Gas (P,T)
T H P
A H-like A A ~H-like
S Toike | X
- 1lke 2/ T-like
\ ) IH—Iike
= > > T

All display same static critical phenomena.
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Statics
Distance from critical point t = |T"—T.|/T..
Order parameter 1) correl length & ~ ¢t [v ~ 0.630]
Free energy (pressure) finite, nonsingular:
F[T] = Fronsing|T] + t** Fiing

with o = 0.110. Energy nonsingular
OF

E = TG—T + F = Enonsing + tl—oz(2 T @)Fsing
but heat capacity IS singular:
oF
Cv ~— ~ 1 Cv nonsin
T  ononsing
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Dynamics
Two sets of degrees of freedom:
e Short-distance: AP/AFE ~ 1. Rapid equilibration
e Long-range [¢ fluct]: AP/AFE = 0. Dominate C,.

Long range equilibrate diffusively and slowly:

(Y(k,t)p(—k,0)) ~ x(k) exp(—t/T), T~ k"

with z dynamic critical exponent.

Sudden compression:

e First, short-dist DOF adjust, AP ~ AFE

o Later, 1) adjusts, AP relaxes back in time oc £
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Dynamic universality: value of 2

Long scale dynamics essentially hydrodynamic
Hohenberg Halperin Rev Mod Phys 49 p435 (1977)

Depend on what quantities are conserved (1 is not)
Conserved: T% = (¢, P) and pg

—

Liquid-gas system: ¢, P, p conserved.

Same dynamic universality as Liquid-Gas

Son Stephanov hep-ph/0401052
Dynamics analyzed to death by CM physics people: z ~ 3.

Even bulk viscosity analyzed onuki, Phys Rev E 55 pao3 (1997)
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Previous argument: AV/V leads to instantaneous
AP ~ AE ~T*AV/V.

But AP relaxes to ~ 0 in time 7 ~ &7,

Hence, expect { ~ T5(ET)% ~ T3t7% ~ T3t 2,

Subtlety: 1) relaxes in stages from k ~ T to k ~ &1,
At time 7, modes with & > 771/% are equilibrated.
These carry C,, ~ k=Y. So AP ~ AEEk®/".

Integrate this behavior for all intermediate times....
C N TS(ST)Z—&/V N TSt—zVJroz
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Slow dynamics: another low w peak!

a{w)

-1+a/v z

W
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Implications for Euclidean correlators

Integral relation between G'g(7) and p:

< dw {[O1, O1]) (@

Go(r) = | & . K(w,7),
w cosh|w(T — (/2)]
Kw, ) sinh(Bw/2)

Knowing p, can compute Gg.

Then, ask how we could “guess” that p from Gg.
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The function K(w, 1)

*['Bottom to top: Tr=0.5,0.4,0.3,0.2,0.1

Kernel

frequency w/T

Peak near zero gives common contrib to Gg(7), all 7
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Implications for spectral function

Sharp peak: contribution to Gg(7)
e Almost independent of shape of peak
e Almost independent of value of 7
All Gg(7) raised by common amount: Area under peak.
e Determined by static universality
e Does not diverge as T' — T,

Shape of peak essential to finding ( =height.
Very hard to determine from Gg(7).
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Conclusions

e Slow equilibration = Peak in spectral function
e Slow equil. at weak coupling: “Wide shouldered” peak

e Slow equilibration near critical point:
nearly w™! shaped peak,  ~ &*~/¥

e Euclidean Green function cannot find shape of peak

If crossover is rapid (near-critical): big
In this case, Euclid. methods CANNOT say much directly

we CAN say something useful from universality+static info
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Comment on Kharzeev and Tuchin

Their sum rule:

T°0 (e — 3P
/dw— ( T )

g < 1: RHS~ ¢®T*. LHS~ ¢"T*[peak]+g*T*[cut]

Similar sum rule for 17,1, correlator

G TxyTxy /dw— —

Making same assumption about shape of peak as they make
gives 1 ~ 1% /g not T /g*.

Also, convergence/validity questions with Kramers-Kronig
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