Cold matter affects quarkonia production

Raphaël Granier de Cassagnac
LLR – École polytechnique / IN2P3

QM08 satellite meeting
Tata Institute for Fundamental Research
Mumbai, 2008, February 12th
Reminder of the two striking behaviors of J/ψ suppression at RHIC energy

1. $R_{AA}(\text{RHIC}) \approx R_{AA}(\text{SPS})$
2. $R_{AA}(y\approx1.7) < R_{AA}(y\approx0)$
$R_{\text{AuAu}} \ (y \approx 0 \ \text{in PHENIX}) \approx R_{\text{PbPb}} \ (@ \ SPS)$

- Midrapidity R_{AA} looks surprisingly similar, while there are obvious differences:
 - At a given N_{part}, different energy densities...
 - Cold nuclear matter effects ($x_{\text{Bjorken}}, \sigma_{\text{abs}}$...)
$R_{\text{AuAu}} (y \approx 1.7) < R_{\text{AuAu}} (y \approx 0)$ in PHENIX

- @ RHIC, more J/ψ suppression at forward rapidity!
- While energy density should be smaller...

![Graph showing R_{AA} vs. N_{part}.]
How much of this is due to normal nuclear matter?

(what cannot claim anything about quark gluon plasma without first answering this question)
Cold nuclear matter effects?

- Many possible effects:
 - J/ψ (or $c\bar{c}$) absorption/breakup
 - (Anti) shadowing (gluon saturation, CGC...)
 - Energy loss of initial parton
 - p_T broadening (Cronin effect)
 - Complications from feed down
 ψ' & χ_c?
 - Intrinsic charm?
 - Something else?
- Absolute need for data!

Eskola, Kolhinen, Vogt
NPA696 (2001) 729

2008, February 12th
Cold matter affects quarkonia - raphael@in2p3.fr
Nobody is perfect...

@SPS: many pA! High statistics! But small kinematics
(−0.1 < x_F < +0.1)
 – Nuclear absorption does a splendid job
@FNAL: less pA... High statistics! Large rapidity (x_F)
coverage... No AA...
 – Many cold nuclear effects needed!
@HERAB: similar, negative x_F (−0.35 to +0.15)
@RHIC: only dAu, low statistics, but rapidity (−2.2 to +2.2) and centrality dependence
 – Absorption + (anti)shadowing
A snapshot of SPS

To first order, a simple and elegant description of nuclear matter effects

$$\sigma_{\text{abs}} = 4.2 \pm 0.5 \text{ mb}$$
• **Normal nuclear absorption alone** does a splendid job describing pA, SU and peripheral InIn and PbPb:
 – (including one preliminary pA @ 158 GeV from NA60, final yet to come...)

• \(\exp(-\sigma_{\text{abs}} \rho_0 L) \)
 – \(L \) nuclear thickness
 – (or in Glauber model)
 – \(\sigma_{\text{abs}} = 4.2 \pm 0.5 \text{ mb} \)

\[\sigma_{\text{abs}} = 4.2 \pm 0.5 \text{ mb} \]
R_{dAu} rapidity dependence

(Capella et al aussi?)
• At RHIC, J/ψ mostly produced by gluon fusion, and thus sensitive to gluon’s pdf
• In PHENIX, three rapidity ranges probe different momentum fraction of Au partons
 – South ($y < -1.2$) : large x_2 (in gold) ≈ 0.005 to 0.140
 – Central ($y \approx 0$) : intermediate $x_2 \approx 0.011$ to 0.022
 – North ($y > 1.2$) : small x_2 (in gold) ≈ 0.002 to 0.005

An example of gluon shadowing prediction

$R_g^A(x,Q^2)$

$Q^2 = 2.25$ GeV2

$A = 208$

LHC

RHIC

SPS

Eskola, Kolhinen, Vogt
NPA696 (2001) 729

Cold matter affects quarkonia - raphael@in2p3.fr

February 12th

11/16
$R_{dAu}(y)$ @ RHIC

- New analysis of run 3 RHIC data
 - Same p+p reference as Au+Au and Cu+Cu
 - Better (cancellation of) systematics
- Suppression at forward rapidity
 - Shadowing
- Assuming a shadowing scheme, adjust an absorption cross-section

2008, February 12th
Cold matter affects quarkonia - raphael@in2p3.fr
R_{dAu}(y)

NDSG shadowing
\[\sigma_{\text{abs}} = 2.2^{+1.8}_{-1.5} \text{ mb} \]

EKS shadowing
\[\sigma_{\text{abs}} = 2.8^{+1.7}_{-1.4} \text{ mb} \]
Also tried to fit the centrality dependence
 - (assuming a inhomogeneous shadowing scheme)

Consistent results within (large) uncertainties
• Now extrapolate to AuAu collisions →
 - (Also available for CuCu)
 - Mid and forward are correlated through shadowing scheme
 - If you believe this shadowing, large anomalous suppression, larger at forward rapidity

• (NDSG midrapidity)
Yet another shadowing scheme?

Shadowing from Schwimmer multiple scattering:

+ E-p conservation
+ regeneration

Shadowing effect:
NDSG: (y=0) < (y=1.7)
EKS: (y=0) ≈ (y=1.7)
Schwimmer: (y=0) > (y=1.7)

2008, February 12th
Cold matter affects quarkonia - raphael@in2p3.fr

Capella et al, arXiv:0712.4331
Something odd @ SPS?

- Do we fully understand CNM @ SPS?
- Not these surprising rapidity distribution asymmetries →
 - Variation of ~30 to ~50% in one unit of rapidity!
 - Seems large to be (anti)shadowing...
 - Not taken into account in CNM extrapolation...
R_{dAu} centrality dependence
• Re-plot PHENIX R_{dA} vs local impact parameter b from Glauber model
• Phenomenological fit to $R_{dA}(b) \rightarrow$
 – (other shapes tried)
From dA to AA

- For a given A+A collision at b_{AA}, Glauber provides a set of N+N collisions occurring at b_{i1} and b_{i2}

- One minimal assumption is rapidity factorization: $R_{AA}(|y|, b_{AA}) = \Sigma_{\text{collisions}} [R_{dA}(-y, b_{i1}) \times R_{dA}(+y, b_{i2})] / N_{coll}$

- Works (at least) for absorption & shadowing since production

\[\sim pdf1 \times pdf2 \times \exp(-\rho\sigma(L_1+L_2)) \]

RGdC, QM06, hep-ph/0701222
$R_{AA} (N_{\text{part}})$

- Pros and cons:
 - No shadowing scheme nor absorption scheme
 - Mid and forward are not correlated, less model dependent → larger uncertainties (esp. $y\approx 0$)
- Anomalous suppression at least at forward rapidity!
- Anomalous suppression could be identical at midrapidity
- (No dCu, so no CuCu)
Unaccounted cold effects?

- Could $R_{dA}(-y) \times R_{dA}(+y)$ factorization be wrong?
- Yes, in case of strong saturation...
- dAu computation →
- $AuAu$ computation underway... But:
 - Is saturation at play beyond traditional shadowing at $x_2 \approx 0.003$?
 - How to describe $x_2 \approx 0.1$?
Unaccounted cold effects?

- Saturation could suppress forward J/ψ in AuAu
- First numerical estimate, work in progress...

Experiment

Saturation

"Flat anomalous" suppression here?

Normalisation here?

0-20% 20-40% 40-60% 60-93%

2008, February 12th Cold matter affects quarkonia - raphael@in2p3.fr 23/29
R_{dAu} transverse momentum

(Mettre un plot de Roberta)
Various $R_{XY}(p_T)$

- Several (hints of) raising $R_{AA}(p_T)$
 1. R_{CP} PbPb (NA50)
 2. R_{AuAu} (PHENIX)
 3. R_{dAu} (PHENIX)

- Several potential reasons:
 - Leakage effect, J/ψ escape
 - High p_T J/ψ forming beyond QGP
 - Cronin effect
 - Raising x_B = less shadowing
 - 0.02 to 0.05 from 0 to 9 GeV/c
 - See discussion in \rightarrow

- Think about it...

2008, February 12th

Cold matter affects quarkonia - raphael@in2p3.fr

PHENIX, arxiv:0711.3917 compared to Ferreiro, Fleuret, Rakotozafindrabe, arxiv: 0801.4949
3. p_T broadening @ SPS?

- Different scaling in pA and AA collisions
- Something else going on in AA?
 - High p_T J/ψ escape?
Various $R_{XY}(p_T)$

- Several (hints of) $R_{AA}(p_T)$
 1. R_{CP} PbPb (NA50)
 2. R_{AuAu} (PHENIX)
 3. R_{dAu} (PHENIX)

- Several potential reasons:
 - Leakage effect, J/ψ escape
 - High p_T J/ψ forming beyond QGP
 - Cronin effect
 - Raising x_{Bj} = less shadowing
 - 0.02 to 0.05 from 0 to 9 GeV/c
 - See discussion in →

- Think about it…
Three existing cold scenarios could justify the rapidity anomalous dependence

1. The data itself!
2. A given shadowing scheme
3. Color glass condensate
3. p_T broadening @ RHIC? vs N_{part}?

- Widely unknown initial charm production:
 - Recombined R_{AA} are poorly constrained...
- Instead look at p_T:
 - Hot: Inherited p_T should be lower than initial
 - Cold: Cronin effect should broaden initial p_T
- Cronin goes like:
 \[\langle p_T^2 \rangle_{AB} = \langle p_T^2 \rangle_{pp} + \alpha \times L \]

- No strong $\langle p_T^2 \rangle$ dependence...
- Modest rise at forward rapidity
- Could be broadening
- No need for recombination here
• Widely unknown initial charm production:
 – Recomposed R_{AA} are poorly constrained...
• Instead look at p_T:
 – Hot: Inherited p_T should be lower than initial
 – Cold: Cronin effect should broaden initial p_T
• Cronin goes like:
 \[
 \langle p_T^2 \rangle_{AB} = \langle p_T^2 \rangle_{pp} + \alpha \times L
 \]

 – No strong $\langle p_T^2 \rangle$ dependence...
 – Modest rise at forward rapidity
 – Could be broadening
 – No need for recombination here
Let’s wait for this run analysis before to say more about cold matter (and derive decent survival probabilities)
That’s all folks
2. Cold matter again?

- Fitting an effective break-up cross section (depending on y) and extrapolate to CuCu and AuAu...

- Do you agree that we have poor handle on the cold nuclear matter effect?
Face to face

EKS (y=0) ≈ (y=1.7)

NDSG (y=0) < NDSG (y=1.7)
6. STAR upsilon’s

- Proof of principle: dozens of \(Y \) in \(p+p \) & \(A+A! \)
- Nuclear modification factor to come soon
- Suffers less from cold matter (\(x=0.02 \) to 0.1=EKS antishadow)
 - (should be checked with run8 \(d+Au \))
- Should measure (unseparated) excited states melting

2008, February 12th

Cold matter affects quarkonia - raphael@in2p3.fr
Unaccounted CNM?

- Strong initial states effect ala color glass condensate?
 - But they have to violate rapidity symmetrisation $R_{AA}(y) = R_{dA}(-y) \times R_{dA}(+y)$
 - (otherwise taken into account in CNM extrapolation)
- Could this + sequential melting produce $R_{AA}(y \sim 0)$ and $R_{AA}(y \sim 1.7)$?
- Double ratio should drop...
- A possibility...

This calc. is for open charm, but similar for J/ψ?

Tuchin, hep-ph/0402298

$syst_{global} = +14\%$

$\sqrt{s} = 200$ GeV

$\eta = 0$

$\eta = 2$

$R_{AA}(y \sim 1.7)$

$R_{AA}(y \sim 0)$
• Hard probes 2004
 – hep-ph/0504133
• Coherent production of charm (open or closed)
 – (y<0 production time to low to make computation)
 – Shadowing from CGC computation...
+ absorption for SPS & fermilab