Photons, hydrodynamics & the QCD Equation-of-State

Hot and Dense Matter in the RHIC-LHC Era Mumbai, Feb. 12nd -14th, 2007

David d'Enterria (CERN)

(*) Work with D. Peressounko (& F. Arleo): EPJ-C 46, 451(2006); arXiv:0707.2356; arXiv:0707.2357

Physics text-book plots: HERA, WMAP, ...

DIS scaling violations:

CMB temperature fluctuations:

Hot&Dense QCD matter, Mumbai, Feb. 2008

Text-book plot in high-energy heavy-ion physics ?

Text-book plot in high-energy heavy-ion physics

Lattice Equation-of-State of QCD matter:

(i) rise of degs. of freedom at T_c (deconfinement) (ii) plateau at high ϵ (QGP)

Q: Any chance to reproduce this theoretical plot with experimental data ?

Hot&Dense QCD matter, Mumbai, Feb. 2008

Text-book plot in high-energy heavy-ion physics

Lattice Equation-of-State of QCD matter:

(i) rise of degs. of freedom at T_c (deconfinement) (ii) plateau at high ϵ (QGP)

Plot: $s/T^3 = f(T)$ for various centralities/energies

Hot&Dense QCD matter, Mumbai, Feb. 2008

Photon production in A-A collisions

Overview

1. Hydrodynamics & thermal photon production:

- Relativistic fluid-dynamics: longitud. boost-invariant, cylindrical symm.
- EoS: QGP (ideal gas) + HRG + 1st order phase transition.
- Initial & final conditions fixed by soft hadron data: $s_0(\tau_0)$, μ_B ; Cooper-Frye at T_{fo}
- Photon rates parametrizations: QGP, HRG
- RHIC data vs. hydro+pQCD
- 2. QCD EoS constraints from RHIC data:
 - Thermal γ exponential slopes \rightarrow initial Temperature
 - hadron $dN_{ch}/d\eta \rightarrow entropy$

3. Thermal photon predictions for LHC.

Hydrodynamical evolution

Relativistic hydro eqs. (local conservation of energy-momentum & any charge)

 $\partial_{\mu}T^{\mu\nu} = 0$ $\partial_{\mu}N_{i}^{\mu} = 0, \quad i = B, S, \dots$ $T^{\mu\nu}$ is energy-momentum tensor (10 independ. vars.) N_i^{μ} is charge 4-current (4 independ. vars.)

(5 equations with 14 unknowns)

- (Usual) approximations:
 - Ideal (non-viscous) fluid:

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}
 N^{\mu} = nu^{\mu}$$
(6 unknowns)
 ϵ, P, n, u^{μ}

- Cylindrical symmetry in transverse direction.
- Lorentz boost invariant in longitudinal dir. (Bjorken scaling)

$$u^{\mu} = \ \gamma_r \left(\frac{t}{\tau} \,, \, v_r \,, \, 0 \,, \, \frac{z}{\tau} \right) \, = \gamma_r (\cosh \eta \,, \, v_r \,, \, 0 \,, \, \sinh \eta)$$

Hydro results independent of rapidity (valid around y = 0)

 \rightarrow "2D+1": (z,r,t)

Equation-of-State (relation between thermodyn. vars. of system):

 $P = P(\varepsilon, n)$

closes the system of eqs. (given initial conditions)

[Numerical solution via MacCormack method]

Hydrodynamics: EoS

Equation-of-State:

QGP:

- Lattice parametrization, or
- Ideal (massless) parton gas + MIT bag $\epsilon_{QGP} = \frac{3g_{QGP}}{\pi^2}T^4 + B \qquad [2+1 \text{ flavors, 16 gluons}]$ $g_{QGP} = 42.5$ $P_{QGP} = \frac{1}{3}(\epsilon_{QGP} - 4B) \qquad B = 0.38 \text{ GeV/fm}^3$
- HRG: Hadron resonance gas including ~400 hadrons & resonances up to m~2 GeV/c². Chem. equilibrium (hadron ratios) fixed at T_c

$$P(T,\mu) = \sum_{i} g_{i} \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \frac{\mathbf{k}^{2}}{3E} \frac{1}{e^{(E-\mu_{i})/T} \pm 1}$$
$$= \sum_{i} \frac{g_{i}}{2\pi^{2}} T^{2} m_{i}^{2} \sum_{n=1}^{\infty} \frac{(\mp 1)^{n+1}}{n^{2}} e^{n\frac{\mu_{i}}{T}} \mathrm{K}_{2} \left(n\frac{m_{i}}{T}\right)$$

Maxwell construction for 1st order phase transition at T_c = 165 MeV:

$$P_{QGP}(T_c) = P_{HRG}(T_c) \implies T_c = \left(\frac{\pi^2}{g_{QGP} - g_{\pi}}\right)^{\frac{1}{4}} B^{\frac{1}{4}}$$
, $LH \sim 1.2 \text{ GeV/fm}^3$

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hydrodynamics: initial conditions (RHIC)

Initial conditions for head-on (b=0 fm) Au-Au @ 200 GeV:

$$\begin{split} \tau_{_0} &= 2\text{R}/\gamma = 0.15 \text{ fm/c} \\ \text{s}_{_0} &\sim 500 \text{ fm}^{\text{-3}} \\ \mu_{_\text{B}} &= 25 \text{ MeV} \end{split}$$

(transit time Au-Au: time-scale for secondary parton-parton colls.) (consistent w/ dN_{ch}/dη). $\epsilon_0 \propto s_0^4 = 220 \text{ GeV/fm}^3$ (source center) (consistent w/ exp. hadron ratios at y=0)

Centrality-dependence: Kolb-Heinz-Huovinen-Eskola-Tuominen (Glauber) prescription:

End of evolution: Cooper-Frye freeze-out prescription at T_{fo} = 120 MeV

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hadron spectra (RHIC): Hydro+pQCD vs Au-Au data

• π^{\pm} , K[±], p(\overline{p}) spectra very well reproduced by hydro + (quenched) NLO pQCD:

Au+Au 60-70% periph. (= 11.2 fm)

Au+Au 0-10% central (= 3.2 fm)

10⁴ Au+Au (central) data: Au+Au (peripheral) calculations: Au+Au (peripheral) data: Au+Au (central) calculations: PHENIX π⁻ [0-5%] vdro π⁻ [0-5%] Hydro π' [60-70%] PHENIX π [60-70%] d²N/(π dp_T²dy) (GeV/c) PHENIX π⁰ [0-10%] 10^{3} vdro K [0-5%] ×10⁻² Hydro K [60-70%] x10⁻² STAR π⁺ [5-10%] PHENIX πº [60-70%] łvdro p [0-5%] ×10⁻⁴ Hydro p [60-70%] x10⁻⁴ PHOBOS π [0-15%] 10² STAR # [60-70%] NLO pQCD] × Τ., [0-5%]*0.2, π⁰ BRAHMS π⁻ [0-5%] [NLO pQCD] × T., [60-70%], π⁰ PHENIX K⁺ [0-5%] × 10⁻² [NLO pQCD] × T., [0-5%]*0.2, K × 10² [NLO pQCD] x Taa [50-70%], K x 10⁻² PHENIX K⁺ [60-70%] × 10 STAR K⁺ [5-10%] × 10⁻² 热 10 [NLO pQCD] × T_{an} [0-5%]*0.2, p × 10" [NLO pQCD] x T₄₄ [60-70%], p x 10⁻⁴ STAR K⁰ [0-5%] × 10⁻² STAR K⁺ [60-70%] × 10² PHOBOS K [0-15%] × 10⁻¹ STAR K⁰ [60-80%] × 10⁻² BRAHMS K⁻ [0-5%] × 10⁻² Δ PHENIX p [0-5%] × 10⁻⁴ PHENIX p [60-70%] × 10⁴ 10 STAR p [0-5%] × 10⁻⁴ STAR p [60-70%] × 10⁻⁴ PHOBOS p [0-15%] × 10-0-2 BRAHMS p [0-10%] × 10⁻⁴ 10⁻³ **10⁻⁴** 10 10⁻⁵ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁷ 10⁻⁷ 10⁻⁸ 10⁻⁸ 10⁻⁹ Hydro pQCD (quenched) pQCD Hydro 10⁻¹⁰ l 10⁻⁹ 3 5 n Ω p_T (GeV/c) p_T (GeV/c)

■ "Quenched" pQCD: [NLO (W. Vogelsang), CTEQ6 PDFs, KKP FFs] x R_{ΔΔ} = 0.2(0.7)

Hydrodynamics: direct photon production

QGP thermal photon rates by AMY: Complete Leading-Log+ LPM suppression

Arnold, Moore, Yaffe JHEP 0112 (2001) 009

HRG thermal photon rates by Turbide et al.: Most recent parametrization, includes channels not accounted for before

Turbide, Rapp, Gale, PRC 69, 014903 (2004)

• Latt. T-dependent α_{s} parametrization:

Kaczmarek, Karsch, Zantow, Petercky, PRD 70, 074505 (2004)

 $\alpha_s(T) = 2.095 / \{\frac{11}{2\pi} \ln \left(Q / \Lambda_{\overline{MS}} \right) + \frac{51}{22\pi} \ln \left[2 \ln \left(Q / \Lambda_{\overline{MS}} \right) \right] \}$ with $Q = 2\pi T$

Hot&Dense QCD matter, Mumbai, Feb. 2008

Photon spectra (RHIC): Hydro+pQCD vs Au-Au data

Photon spectra very well reproduced by hydro + N_{coll}-scaled NLO pQCD:

• Hydro consistent with upper limits in the "thermal signal" region $p_{\tau} = 1 - 4 \text{ GeV/c}$

Photon spectra in the thermal region

• Current upper limits in $p_{\tau} = 1 - 4$ GeV/c consistent w/ thermal γ component:

<u>Caveat</u>: Prompt-γ reference used is NOT real p+p data but NLO pQCD

Hot&Dense QCD matter, Mumbai, Feb. 2008

Photon spectra in the thermal region

- Exponential fit of thermal photon spectrum in various p_T ranges & centralities:
 - inverse slopes proportional to initial (max.) temperature.
 - the higher the p_T range where the slope is measured (= fitted), the closer is the apparent Tto the initial QGP $T_0 \sim 500$ MeV

QGP EoS from thermaly & hadron multiplicities (hydro)

- Correlate thermal- γ slopes (T) & hadron multiplicities (dN_{ch}/d $\eta \propto$ entropy, isentropic expansion) for various centralities. $s \approx 3.6 \cdot \frac{dN}{dV} \approx \frac{4.3}{\langle A_{\perp} \rangle \cdot \tau_0} \cdot \frac{dN_{ch}}{d\eta}$
- Effective # of degrees of freedom, g(s,T), for various centralities:

 g_{hydro}(s,T) ~ 42 (QGP) for all centralities: AuAu-200 GeV medium too "hot" (even periph.)

> g_{eff}(dN_{ch}/dη,T_{eff}) not equal to abs. degs. of freedom (volume normalization).
> But, ideal-gas QGP "plateau" should be observable in the data.

g _{eff} (c	$dN_{ch}/d\eta, T_{eff}$). Local thermal γ slope T_{eff} :
-	— 1.5 < p _τ < 2.0 GeV/c
_	— 2.5 < p _τ < 3.0 GeV/c
	3.5 < p _T < 4.0 GeV/c
_	4.5 < p _T < 5.0 GeV/c

QGP EoS fromA-A data at lower sqrt(s)

- AuAu @ 200 GeV produces too hot medium (QGP for all centralities)not sensitive to any centrality-dependent (strong) change due to phase transition.
- Try lighter nuclei &/or lower \sqrt{s} . <u>Preliminary</u> hydro calcs. for AuAu @ 62 GeV

- Apparent phase transition change in g_{eff}(dN_{ch}/dη,T_{eff}) for centrality 50-60%
- Even better: try more central collisions for lighter/lower-√s: AuAu,pp @ 30-40 GeV

LHC predictions

Arleo, DdE, Peressounko arXiv:0707.2356; arXiv:0707.2357

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hydrodynamics: :LHC initial conditions

Hydro input parameters for head-on (b=0 fm) Pb-Pb @ 5.5 TeV:

Hot&Dense QCD matter, Mumbai, Feb. 2008

pQCD + parton energy loss

- NLO pQCD (PHOX code). Scales: μ=p_T
- Parton Distrib. Functions: CTEQ6M + nDSg (DeFlorian-Sassot "strong" shadowing)
- Fragmentation functions: AKK (newest set for kaons, protons)
- Final-state parton energy loss: Medium-modified FFs. BDMPS quenching weights: P(ϵ ,E) $\omega_c = qhat \cdot L^2$, dN/dy ~ $\alpha_s(Q_s^2) Q_s^2$ $\omega_c(LHC) = \omega_c(RHIC)^*(5500/200)^{\lambda=0.3}$ $\omega_c(LHC) \sim 50 \text{ GeV} (for dN_{ch}/dy \sim 1700)$

Max. quenching ("corona emission"): R_{AA} (b=0 fm) = $N_{part}/N_{coll} \sim 400/2200 \sim 0.15$

Fragmentation γ (dominant at low p_{τ}) also suppressed^o

F. Arleo, JHEP 0609:015 (2006)

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hadron spectra: hydro+pQCD predictions

• π^{\pm} , K[±], p(\overline{p}) spectra: hydro + quenched NLO pQCD:

Pb-Pb 0-10% <u>central</u> (~ 3 fm)

Pb-Pb 60-90% <u>periph</u>. (~ 13 fm)

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hadron spectra: hydro (LHC)

Collective transverse flow of hadrons:

Direct γ spectra: hydro+pQCD prediction (LHC)

Photon spectra: hydro + (quenched) NLO pQCD:

Pb-Pb 0-10% <u>central</u> (~ 3 fm)

Pb-Pb 60-90% <u>periph</u>. (~ 13 fm)

Hot&Dense QCD matter, Mumbai, Feb. 2008

Summary

Backup slides ...

Summary

- 0. Hadron & direct photon production in high-energy A-A collisions:
 - Prompt (pQCD): T_{AA}-scaled p-p (NLO) + parton energy loss
 - Hydrodynamics: thermal emission from hot expanding medium (i.c., EoS)
- 1. Hydrodynamics:
 - 2D+1 ideal fluid, longitud. boost-invariant, cylindrical symm.
 - EoS: QGP (ideal gas w/ MIT bag or latt. parametrization) + HRG
 - + 1^{st} order phase transition (T_c=165 MeV)
 - Initial conditions: $\epsilon_0 \sim 650$ GeV/fm³ (dN/dy~2200 RHIC extrapolation), $T_0 \sim 770$ MeV,

 $\tau_0 \sim 1/Q_s = 0.1$ fm/c, $\mu_B \sim 5$ MeV

- Freeze-out: T_{chem}=155 MeV, Cooper-Frye at T_{fo} = 120 MeV
- Photon rates parametrizations: AMY (QGP), Turbide-et-al (HRG)
- 2. pQCD:
 - NLO (scale $\mu = p_T$). PDF: CTEQ6M + nDSg shadowing. FF: AKK
 - Final-state suppr.: BDMPS parton energy-loss ($\omega_c \sim 50 \text{ GeV}$) for hadrons & γ -fragm.
- 3. LHC predictions (validated in Au-Au @ RHIC):
 - Hydro-pQCD crossing line at $p_T \sim 3 4$ GeV/c for hadrons & photons.

QGP EoS from thermaly & hadron multiplicities (II)

Different medium EoS (e.g. HRG-like) should result in significantly

- Concurrent reproduction of hydro models of experimental data on: (i) thermal γ, and (ii) hadron spectra imposes severe constraints in the initial thermodynamical conditions of the system.
- Combined measurement of (i) thermal γ inverse slopes, and (ii) dN_{ch}/dη in diff. AuAu centralities provides direct information on the evolution (with T) of the # of degrees of freedom (EoS) of the produced medium

Hot&Dense QCD matter, Mumbai, Feb. 2008

Overview

- 1. Photon production in high-energy A-A collisions:
 - Prompt photon (pQCD): T_{AB}-scaled p+p (or NLO) reference
 - Thermal photon (Hydro) \rightarrow Connection to QCD thermodynamics
- 2. Hydrodynamical evolution:
 - Relativistic fluid-dyn. (2D+1): longitudinally boost-invariant, cylindrical symm.
 - EoS: QGP (ideal gas) + HRG + 1st order phase transition.
 - Initial & final conditions fixed by soft hadron data: s_0 , τ_0 , μ_B ; Cooper-Frye at T_{fo}
- 3. Thermal photon production:
 - Photon rates parametrizations: QGP, HRG.
 - Hydro vs. data: Hydro (+ pQCD) vs dN/dpT in AuAu @ RHIC-200 GeV
- 4. Thermal γ (exponential inverse) slopes \rightarrow initial QGP Temperature
- 5. Thermal γ slopes, hadron $dN/d\eta \rightarrow T$, entropy $\rightarrow QCD = EoS$
- 6. Outlook: RHIC(-II) light A+A at lower sqrt(s) ?

Prompt (pQCD) photon in p+p @ $\sqrt{s} = 5.5$ TeV

Photon production in p+p @ 200 GeV:

Figure 2.1: Compton diagrams.

Figure 2.2: Annihilation diagrams.

Figure 2.3: Bremsstrahlung diagrams.

Hot&Dense QCD matter, Mumbai, Feb. 2008

Thermal photon slopes vs. initial temperature

31/25

Hot&Dense QCD matter, Mumbai, Feb. 2008

- Photon expo inverse slopes proportional to initial (max.) temperature of the system at diff. centralities.
- For QGP+HRG EoS, the higher the p_T range where the slope is measured (= fitted), the closer is the apparent Tto the initial QGP T_o~ 500 MeV
 HRG EoS alone (w/ lower initial T_o):
 (i) results in systematically smaller photon slopes compared to QGP + HRG (T_{eff} < 250 MeV)
 - (ii) All p_T ranges yield the same

apparent temperature (specified by expo pre-factors in HRG rates). David d'Enterria (CERN)

Text-book plot in high-energy heavy-ion physics

- Probe the phase diagram of hot & dense QCD matter.
- Study the properties of deconfined quark-gluon matter (QGP).

- Q: Are there any exp. observables that provide unambiguous info on the thermodynamical properties & the EoS of the matter produced in HI colls. ?
- A: Combine thermal photons (slope = direct measure of T) w/ hadron multiplicities (~ entropy density) for diff. A-A centralities. Plot: s/T³ = f(T

Hot&Dense QCD matter, Mumbai, Feb. 2008

Hydro details

Prompt photons: p+p, Au+Au @ 200 GeV

AuAu and (reference) pp photon production above p_T~4 GeV/c well described by NLO pQCD :

NN scaling in Au+Au @ 200 GeV: Direct Photons

Direct photon production in Au+Au (all centralities) consistent w/

p+p incoherent scattering (NN-scaled pQCD) predictions:

Direct photon production in Au+Au unmodified by QCD medium.

Hot&Dense QCD matter, Mumbai, Feb. 2008

Thermal photons from other hydros

Our predictions are very similar to those of Jyvaskyla group :

Disentangling "thermal" γ from quenched prompt γ

Step 1: Measure $p+p \rightarrow \gamma(isolated) + X$ down to $p_T = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on γ from qg-Compton, qqbar annihilation

Step 2: Measure $p+p \rightarrow \gamma(\text{total}) + X$ down to $p_{\tau} = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on fragmentation γ production

Step 3: Measure Au+Au $\rightarrow \gamma$ (total) + X down to p_T = 1 GeV/c with uncertainties ~10%

Step 4: (AuAu
$$\gamma_{total}$$
) – T_{AB}•(pp $\gamma_{isolated}$)

Hot&Dense QCD matter, Mumbai, Feb. 2008

Photons from quark jets in the medium ?

- Duke group predictions for Compton & annih. of fast quark in medium
- LO for photons (& not most recent thermal photon rates)
- But NLO (K = 2.5) for jets, no energy loss taken into account ...

Energy loss in Au+Au $\rightarrow \gamma + X @ \sqrt{s} = 200 \text{ GeV}$?

(Part of the) prompt photons can be distorted by the dense QCD medium (esp. in the region $p_T < 4$ GeV/c).

Hot&Dense QCD matter, Mumbai, Feb. 2008

R_{AA} for photons @ $\sqrt{s} = 200 \text{ GeV}$ (I)

Back-of-the-envelope ansatz for γ suppression: $R_{AA}(\gamma \text{ frag.}) = R_{AA}(q,g) \approx 0.25$

R_{AA} for photons @ $\sqrt{s} = 200 \text{ GeV}$ (II)

Zakharov does NOT predict any suppression (but enhancement):

Zakharov, hep-ph/0405101

Ratios of particle yields

• Ratios of hadron yields consistent w/ system at chemical equilibrium at

