Problem Set 2 (due Sep 19, 2017)

1. Scattering Theory Compute, in the first Born approximation, the differential and the total scattering cross-section for an atractive exponential potential,

$$
\begin{equation*}
V(\mathbf{r})=-\lambda e^{-\kappa r}, \lambda>0, \kappa>0 \tag{1}
\end{equation*}
$$

Discuss the criterion of validity. Analyze the energy dependence of the total crosssection and the energy dependence of the angular distribution.
2. T-matrix Write down the series equation in momentum space for the T-matrix for two particles interacting via a potential of the form

$$
\begin{equation*}
V(\mathbf{r})=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \mathbf{q} \cdot \mathbf{r}} V(\mathbf{q}) . \tag{2}
\end{equation*}
$$

Sum the series if

$$
V(q)=\left\{\begin{array}{ll}
\lambda & q<\lambda \tag{3}\\
0 & q>\lambda
\end{array} .\right.
$$

3. Field operators Write down the Hamiltonian for a multi-particle system in terms of the field operator $\psi(\mathbf{r})$ and its conjugate for a system of particles in the presence of a background potential $U(\mathbf{r})$, with particles interacting with a two-body potential $V_{2}\left(\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}\right)$ and a three body potential $V_{3}\left(\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right)$. What are the constraints on the potentials if the system is translationally invariant? Use the constraint to write $V_{2}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ in momentum space. What is the additional constraint on V_{2} if the system is rotationally invariant?
4. (Galilean invariance of non-relativistic quantum mechanics) Problem 1, Chapter 2, Quantum Field Theory by Lowell S. Brown
