Problem Set 3 (due Dec 9, 2017)

1. Reading material Srednicki Read Chapters 2, 33, 34, 35, and 36.
2. Lie algebra for Lorentz transformations Srednicki Problem 2.8 (a), (b), (c).
3. Left handed spinor transformations Define generators for left handed spinor transformations,

$$
\begin{equation*}
\left(S_{L}^{\mu \nu}\right)_{a}{ }^{b}=\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)_{a}{ }^{b} . \tag{1}
\end{equation*}
$$

(a) Prove that $S_{L}^{\mu \nu}$ have the correct commutation relations for the generators of the Lorentz Lie algebra
(b) Write the transformation of a left handed spinor by a rotation by θ around the z axis. Compare with what was obtained in the class
(c) Write the transformation of a left handed spinor by a boost by θ along the z axis. Compare with what was obtained in the class
4. Right handed spinor transformations Define generators for right handed spinor transformations,

$$
\begin{equation*}
\left(S_{R}^{\mu \nu}\right)^{\dot{a}}{ }_{\dot{b}}=-\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\nu}\right)^{\dot{a}}{ }_{\dot{b}} . \tag{2}
\end{equation*}
$$

(a) Prove that $S_{R}^{\mu \nu}$ have the correct commutation relations for the generators of the Lorentz Lie algebra
(b) Write the transformation of a right handed spinor by a rotation by θ around the z axis. Compare with what was obtained in the class. (Hint: There might be a lowering of indices involved)
(c) Write the transformation of a right handed spinor by a boost by θ along the z axis. Compare with what was obtained in the class
5. Combining the Left and Right handed spinor transformations Define generators for Dirac spinor transformations,

$$
\begin{equation*}
\left(S^{\mu \nu}\right)=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] . \tag{3}
\end{equation*}
$$

(a) Using the previous problems show that $S^{\mu \nu}$ have the correct commutation relations for the generators of the Lorentz Lie algebra
(b) Show that the upper two components of the Dirac spinor transform as a left handed spinor and the lower two as a right handed spinor. Is it consistent with the definition of a four component Dirac field in Eq 36.19.

