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Figure 1: Feynman diagrams.

1 Correlations in gaussian variables

We start from the result

Z[y] =

∫
Π dxi e

− 1
2
xTAx+yT x =

√
πN

detA
e

1
2
yTA−1y (1)

We define correlations as

〈xkxlxmxn....〉 =
1

Z[0]

∫
Π dxi xkxlxmxn....e

− 1
2
xTAx

=
1

Z[0]

δZ[y]

δykδylδymδyn....
|y=0

(2)

One can deduce by differentiating with respoect to −ym multilpe times that

〈xkxlxmxn....〉 =
∑

All pairwise combinations

A−1
kl A

−1
mn.... (3)

Diagrammatically, one can represent the correlations by pairwise lines representing
propagators. Each propagator corresponds to A−1

mn. See Fig. for an example.
Note that pairwise combinations are not possible for an odd number of x’s. These terms

are 0 by parity symmetry.
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2 Correlation functions for the harmonic oscillator

Now consider the case where the lagrangian is that of a harmonic oscillator,

Z[y] =

∫
Dx ei

1
2

∫
dtx(t)m[− d2

dt2
−ω2]x(t)+

∫
dty(t)x(t) =

√
1

det Â
e

1
2

∫
dty(t)Â−1y(t) (4)

where

Â = im[
d2

dt2
+ ω2] . (5)

Following the previous section, we define correlations as

〈T{x(t1)x(t2)x(t3)x(t4)....}〉 =
1

Z[0]

∫
Dx x(t1)x(t2)x(t3)x(t4)....e

− 1
2

∫
dt x(t)Âx(t)

=
1

Z[0]

δZ[y]

δy(t1)δy(t2)δy(t3)δy(t4)....
|y=0

(6)

The continuum version of the previous section gives,

〈T{x(t1)x(t2)x(t3)x(t4)....}〉 =
∑

All pairwise combinations

A−1(t1, t2)A
−1(t3, t4).... (7)

The inverse of the operator A can be easily found in Fourier space,

A−1(t1, t2) =

∫
dp0

2π

i

m[(p0)2 − ω2 + iε]
e−ip0(t1−t2) , (8)

where iε avoids the singularity at ±ω.
Using contour integration one can show that,

A−1(t1, t2) =
1

2mω
[θ(t1 − t2)e−iω(t1−t2) + θ(t2 − t1)eiω(t1−t2)] (9)

Figure 2: Feynman diagrams for the correction to the propagator.

3 Anharmonic oscillator

Now consider the case where the lagrangian where we add corrections to a harmonic oscil-
lator,

Z[y] =

∫
Dx ei

1
2

∫
dtx(t)m[− d2

dt2
−ω2]x(t)−i

∫
dt

g4
4!
x(t)3+

∫
dty(t)x(t) (10)
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Figure 3: Feynman diagrams for the energy of the zero occupation state.

This can not be evaluated as before since the lagrangian is not quadratic. But quantities
can be evaluated perturbatively in g4. For example, let us consider the two point correlation
function,

〈T{x(t1)x(t2)}〉 =
1

Z[0]

∫
Dx x(t1)x(t2)e

i 1
2

∫
dtx(t)m[− d2

dt2
−ω2]x(t)−i

∫
dt

g4
4!
x(t)3

=
1

Z[0]

δZ[y]

δy(t1)δy(t2)
|y=0

(11)

In Fourier space, to the lowest order in g4 ((g4)
0), the correlation function is given by

the “non-interacting” propagator

i

m[(p0)2 − ω2 + iε]
(12)

The corrections to the propagator form a geometric series, Fig. 2

i

m[(p0)2 − ω2 + iε]
+

i

m[(p0)2 − ω2 + iε]
(−iΣ)

i

m[(p0)2 − ω2 + iε]

+
i

m[(p0)2 − ω2 + iε]
(−iΣ)

i

m[(p0)2 − ω2 + iε]
(−iΣ)

i

m[(p0)2 − ω2 + iε]
+ ··

=
i

m[(p0)2 − ω2 − Σ/m+ iε]

(13)

Σ gives the correction to the excitation energy of the state with occupation number 1.
In particular,

∆E1 =
Σ

2ωm
. (14)

The calculation of Σ gives,

−iΣ =
−ig4

2

∫
dk0

2π

i

m[(k0)2 − ω2 + iε]
. (15)
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This integration can be performed analytically and gives the result,

Σ =
g4

4mω
. (16)

Then, the change in the energy can be obtained from Eq. 14. This can be compared to
the result from time independent perturbation theory.

The correction to the ground state energy is given by the diagram Fig. 3.
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