Problem Set 5 (due Oct 15, 2018)

1. Field operators The Fock space representation of a state for N spin 0 particles with a quantum mechanical wavefunction $\Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)$ can be written as follows. We introduce field operators $\psi(r), \psi^{\dagger}(r)$ satisfying the commutation relations

$$
\begin{align*}
{\left[\psi(r), \psi^{\dagger}\left(r^{\prime}\right)\right] } & =\delta\left(r-r^{\prime}\right) \\
{\left[\psi(r), \psi\left(r^{\prime}\right)\right] } & =0 \tag{1}\\
{\left[\psi^{\dagger}(r), \psi^{\dagger}\left(r^{\prime}\right)\right] } & =0 .
\end{align*}
$$

We define a basis of states,

$$
\begin{gather*}
\left|r_{1}, r_{2}, \cdots r_{N}\right\rangle=\psi^{\dagger}\left(r_{1}\right) \psi^{\dagger}\left(r_{2}\right) \cdot \psi^{\dagger}\left(r_{N}\right)|\Omega\rangle \tag{2}\\
|\Phi\rangle=\int \Pi_{i=1}^{N} d r_{i} \frac{1}{N!} \Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)\left|r_{1}, r_{2}, \cdots r_{N}\right\rangle \tag{3}
\end{gather*}
$$

where $\Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)$ is symmetric under the exchange of its arguments. In other words, $\Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)$ is the state in position representation,

$$
\begin{equation*}
\Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)=\left\langle r_{1}, r_{2}, \cdots r_{N} \mid \Phi\right\rangle \tag{4}
\end{equation*}
$$

(a) Generalize Eqs. 1, 2, 3, 4 for particles with spin $1 / 2$. Note that there will be an additional index associated with the spin. What is the symmetry property of the wavefunctions under the permutation of its arguments?
(b) Write down the Hamiltonian \hat{H} in the Fock space representation for a multiparticle system of spin 0 particles in terms of the field operators for a system of particles in the presence of a background potential $V(r)$. Explicitly show that the Hamiltonian acting on a N-particle state with a quantum mechanical wavefunction $\Phi\left(r_{1}, r_{2}, \cdots r_{N}\right)$ gives the desired result. I.e.

$$
\begin{equation*}
\left\langle r_{1}, r_{2}, \cdots r_{N}\right| \hat{H}|\Phi\rangle=\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2 m}+\sum_{i} V\left(r_{i}\right)\right] \Phi\left(r_{1}, r_{2}, \cdots r_{N}\right) \tag{5}
\end{equation*}
$$

Generalize to spin $1 / 2$ allowing for spin dependent $V(r)$.
(c) Add terms to the Hamiltonian (spin 0) to include a two-body potential interaction $V_{2}\left(r_{1}, r_{2}\right)$ and a three body potential $V_{3}\left(r_{1}, r_{2}, r_{3}\right)$
(d) What are the constraints on the potentials V_{1}, V_{2}, V_{3} if the system is translationally invariant? (The Hamiltonian should not change if the location of each particle is shifted by the same amount.) Use the constraint to write $V_{2}\left(r_{1}, r_{2}\right)$ in momentum space. What is the additional constraint on V_{2} if the system is rotationally invariant?
2. (Galilean invariance of non-relativistic quantum mechanics) Problem 1, Chapter 2, Quantum Field Theory by Lowell S. Brown

