Problem Set 7 (due Dec 7, 2018)

1. Lorentz transformations Problem 1, Chapter 3, Lowell Brown
2. Lie algebra of the lorentz group Problem 6, Chapter 3, Lowell Brown
3. Lie algebra of the lorentz group Problem 8, Chapter 3, Lowell Brown
4. Spinor representations of Lorentz transformations Consider a four vector $A^{\mu}=\left(A^{0}, A^{1}, A^{2}, A^{3}\right)$. Consider four tuples of 2×2 matrices

$$
\begin{align*}
\sigma^{\mu} & =\left(1, \sigma^{i}\right) \\
\bar{\sigma}^{\mu} & =\left(1,-\sigma^{i}\right) . \tag{1}
\end{align*}
$$

Now consider 2×2 matrices

$$
\begin{gather*}
{[A]=A_{\mu} \sigma^{\mu}} \\
{[\bar{A}]=A_{\mu} \bar{\sigma}^{\mu} .} \tag{2}
\end{gather*}
$$

The metric $\{-1,+1,+1,+1\}$ can be used to lower the indices of A.
(a) Calculate $\operatorname{det}[A], \operatorname{det}[\bar{A}]$. Are they lorentz invariant?
(b) Consider the transformations,

$$
\begin{align*}
& {[A] \rightarrow[M][A][M]^{\dagger}} \\
& {[\bar{A}] \rightarrow[M][\bar{A}][M]^{\dagger} .} \tag{3}
\end{align*}
$$

What is the condition on M for the Minkowski norm of A to be invariant
(c) Show that

$$
\begin{equation*}
[M]=e^{i \sigma^{z} \theta_{z} / 2} \tag{4}
\end{equation*}
$$

corresponds to a rotation by θ_{z} about the z axis in both cases
(d) Show that

$$
\begin{equation*}
[M]=e^{i \sigma^{z}\left(i \eta_{z} / 2\right)} \tag{5}
\end{equation*}
$$

corresponds to a boost by η_{z} along the $+z$ or $-z$ axis
5. Pauli-Lubansky vector Define the vector $W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} J_{\rho \sigma}$.
(a) Find $\left[W^{\mu}, W^{\nu}\right]$
(b) Find $\left[W^{\mu}, P^{\nu}\right]$
6. Massive spin $1 / 2$ particles For spin $1 / 2$ particles with mass $m>0$, the "standard momentum vector" can be chosen to be $k^{\mu}=(0,0,0, m)$. We can take the spin states in the "standard reference frame" to be eigenstates of σ^{z}. Find the transformed states by boosting the states for the following two cases.
(a) $p^{\mu}=\left(0,0, p^{z}, \sqrt{p_{z}^{2}+m^{2}}\right)$
(b) $p^{\mu}=\left(p^{x}, 0,0, \sqrt{p_{x}^{2}+m^{2}}\right)$
7. Massless spin 1 particles For spin 1 particles with mass $m=0$, the "standard momentum vector" can be chosen to be $k^{\mu}=(0,0, k, k)$. We can take the spin states in the "standard reference frame" to be states of helicity +1 and -1 . Find the transformed states by boosting the states for the following two cases.
(a) $p^{\mu}=\left(0,0, p^{z}, p^{z}\right)$
(b) $p^{\mu}=\left(p^{x}, 0,0, p^{x}\right)$

